Applied Thermodynamics

Applied Thermodynamics
اسم المؤلف
Onkar Singh
التاريخ
23 أبريل 2021
المشاهدات
560
التقييم
(لا توجد تقييمات)
Loading...

Applied Thermodynamics
( Third Editon )
Onkar Singh
Professor
Mechanical Engineering Department
Harcourt Butler Technological Institute
Kanpur (U.P.), INDIA
C O N T E N T S
Preface to the third edition (v)
Preface to the first edition (vii)
Chapter 1 Fundamental Concepts and Definitions 1
1.1 Introduction and definition of thermodynamics 1
1.2 Dimensions and units 1
1.3 Concept of continuum 3
1.4 Systems, surroundings and universe 4
1.5 Properties and state 5
1.6 Thermodynamic path, process and cycle 5
1.7 Thermodynamic equilibrium 6
1.8 Reversibility and irreversibility 7
1.9 Quasi-static process 7
1.10 Some thermodynamic properties 8
1.11 Energy and its forms 11
1.12 Heat and work 13
1.13 Gas laws 14
1.14 Ideal gas 14
1.15 Dalton’s law, Amagat’s law and property of mixture of gases 15
1.16 Real gas 17
1.17 Vander Waals and other equations of state for real gas 20
Examples 22
Exercises 38
Chapter 2 Zeroth Law of Thermodynamics 40
2.1 Introduction 40
2.2 Principle of temperature measurement and Zeroth law of thermodynamics 40
2.3 Temperature scales 42
2.4 Temperature measurement 43
Examples 46
Exercises 49
Chapter 3 First Law of Thermodynamics 50
3.1 Introduction 50
3.2 Thermodynamic processes and calculation of work 50
3.3 Non-flow work and flow work 57
3.4 First law of thermodynamics 59
3.5 Internal energy and enthalpy 62
3.6 Specific heats and their relation with internal energy and enthalpy 633.7 First law of thermodynamics applied to open systems 64
3.8 Steady flow systems and their analysis 65
3.9 First law applied to engineering systems 68
3.10 Unsteady flow systems and their analysis 73
3.11 Limitations of first law of thermodynamics 75
Examples 76
Exercises 94
Chapter 4 Second Law of Thermodynamics 97
4.1 Introduction 97
4.2 Heat reservoir 97
4.3 Heat engine 97
4.4 Heat pump and refrigerator 99
4.5 Statements for IInd law of thermodynamics 100
4.6 Equivalence of Kelvin-Planck and Clausius statements of IInd law of
thermodynamics 101
4.7 Reversible and irreversible processes 103
4.8 Carnot cycle and Carnot engine 105
4.9 Carnot theorem and its corollaries 108
4.10 Thermodynamic temperature scale 109
Examples 113
Exercises 128
Chapter 5 Entropy 131
5.1 Introduction 131
5.2 Clausius inequality 131
5.3 Entropy – A property of system 134
5.4 Principle of entropy increase 138
5.5 Entropy change during different thermodynamic processes 140
5.6 Entropy and its relevance 144
5.7 Thermodynamic property relationship 144
5.8 Third law of thermodynamics 146
Examples 146
Exercises 161
Chapter 6 Thermodynamic Properties of Pure Substance 164
6.1 Introduction 164
6.2 Properties and important definitions 164
6.3 Phase transformation process 166
6.4 Graphical representation of pressure, volume and temperature 167
6.5 Thermodynamic relations involving entropy 170
6.6 Properties of steam 172
6.7 Steam tables and mollier diagram 175
6.8 Dryness fraction measurement 177
Examples 181
Exercises 199
(x)Chapter 7 Availability and General Thermodynamic Relations 202
7.1 Introduction 202
7.2 Availability or exergy 203
7.3 Availability associated with heat and work 207
7.4 Effectiveness or second law efficiency 210
7.5 Second law analysis of steady flow systems 211
7.6 General thermodynamic relations 213
Examples 230
Exercises 248
Chapter 8 Vapour Power Cycles 250
8.1 Introduction 250
8.2 Performance parameters 250
8.3 Carnot vapour power cycle 251
8.4 Rankine cycle 253
8.5 Desired thermodynamic properties of working fluid 255
8.6 Parametric analysis for performance improvement in Rankine cycle 256
8.7 Reheat cycle 258
8.8 Regenerative cycle 260
8.9 Binary vapour cycle 268
8.10 Combined Cycle 270
8.11 Combined Heat and Power 272
8.12 Different steam turbine arrangements 273
Examples 273
Exercises 327
Chapter 9 Gas Power Cycles 330
9.1 Introduction 330
9.2 Air-standard cycles 330
9.3 Brayton cycle 340
9.4 Regenerative gas turbine cycle 345
9.5 Reheat gas turbine cycle 347
9.6 Gas turbine cycle with intercooling 351
9.7 Gas turbine cycle with reheat and regeneration 353
9.8 Gas turbine cycle with reheat and intercooling 354
9.9 Gas turbine cycle with regeneration, reheat and intercooling 355
9.10 Gas turbine irreversibilites and losses 355
9.11 Compressor and turbine efficiencies 358
9.12 Ericsson cycle 362
9.13 Stirling cycle 364
Examples 365
Exercises 396
Chapter 10 Fuel and Combustion 399
10.1 Introduction 399
10.2 Types of fuels 401
10.3 Calorific value of fuel 402
(xi)10.4 Bomb calorimeter 402
10.5 Gas calorimeter 404
10.6 Combustion of fuel 404
10.7 Combustion analysis 407
10.8 Determination of air requirement 409
10.9 Flue gas analysis 411
10.10 Fuel cells 413
Examples 413
Exercises 434
Chapter 11 Boilers and Boiler Calculations 436
11.1 Introduction 436
11.2 Types of boilers 437
11.3 Requirements of a good boiler 438
11.4 Fire tube and water tube boilers 438
11.5 Simple vertical boiler 442
11.6 Cochran boiler 443
11.7 Lancashire boiler 444
11.8 Cornish boiler 446
11.9 Locomotive boilers 446
11.10 Nestler boilers 448
11.11 Babcock and Wilcox boiler 448
11.12 Stirling boiler 449
11.13 High pressure boiler 450
11.14 Benson boiler 451
11.15 Loeffler boiler 452
11.16 Velox boiler 452
11.17 La Mont boiler 453
11.18 Fluidized bed boiler 454
11.19 Waste heat boiler 456
11.20 Boiler mountings and accessories 459
11.21 Boiler draught 467
11.22 Natural draught 467
11.23 Artificial draught 474
11.24 Equivalent evaporation 477
11.25 Boiler efficiency 478
11.26 Heat balance on boiler 478
11.27 Boiler trial 481
Examples 481
Exercises 502
Chapter 12 Steam Engine 506
12.1 Introduction 506
12.2 Classification of steam engines 506
12.3 Working of steam engine 508
12.4 Thermodynamic cycle 515
12.5 Indicator diagram 518
(xii)12.6 Saturation curve and missing quantity 519
12.7 Heat balance and other performance parameters 521
12.8 Governing of simple steam engines 525
12.9 Compound steam engine 527
12.10 Methods of compounding 527
12.11 Indicator diagram for compound steam engine 530
12.12 Calculations for compound steam engines 531
12.13 Governing of compound steam engine 533
12.14 Uniflow engine 535
Examples 536
Exercises 561
Chapter 13 Nozzles 564
13.1 Introduction 564
13.2 One dimensional steady flow in nozzles 565
13.3 Choked flow 576
13.4 Off design operation of nozzle 577
13.5 Effect of friction on nozzle 580
13.6 Supersaturation phenomenon in steam nozzles 582
13.7 Steam injector 584
Examples 584
Exercises 608
Chapter 14 Steam Turbines 611
14.1 Introduction 611
14.2 Working of steam turbine 612
14.3 Classification of steam turbines 614
14.4 Impulse turbine 619
14.5 Velocity diagram and calculations for impulse turbines 623
14.6 Impulse turbine blade height 632
14.7 Calculations for compounded impulse turbine 634
14.8 Reaction turbines 637
14.9 Losses in steam turbines 644
14.10 Reheat factor 646
14.11 Steam turbine control 649
14.12 Governing of steam turbines 650
14.13 Difference between throttle governing and nozzle control governing 654
14.14 Difference between impulse and reaction turbines 654
Examples 655
Exercises 680
Chapter 15 Steam Condensor 684
15.1 Introduction 684
15.2 Classification of Condenser 685
15.3 Air Leakage 691
15.4 Condenser Performance Measurement 692
15.5 Cooling Tower 693
Examples 695
Exercises 704
(xiii)Chapter 16 Reciprocating and Rotary Compressor 706
16.1 Introduction 706
16.2 Reciprocating compressors 708
16.3 Thermodynamic analysis 709
16.4 Actual indicator diagram 715
16.5 Multistage compression 716
16.6 Control of reciprocating compressors 722
16.7 Reciprocating air motor 722
16.8 Rotary compressors 723
16.9 Centrifugal compressors 728
16.10 Axial flow compressors 732
16.11 Surging and choking 733
16.12 Stalling 735
16.13 Centrifugal compressor characteristics 736
16.14 Axial flow compressor characteristics 739
16.15 Comparative study of compressors 740
Examples 742
Exercises 767
Chapter 17 Introduction to Internal Combustion Engines 770
17.1 Introduction 770
17.2 Classification of IC engines 771
17.3 IC Engine terminology 772
17.4 4-Stroke SI Engine 773
17.5 2-Stroke SI Engine 776
17.6 4-Stroke CI Engine 776
17.7 2-Stroke CI Engine 777
17.8 Thermodynamic cycles in IC engines 778
17.9 Indicator diagram and power measurement 780
17.10 Combustion in SI engine 783
17.11 Combustion in CI engines 785
17.12 IC engine fuels 786
17.13 Morse test 787
17.14 Comparative study of IC engines 788
Examples 790
Exercises 802
Chapter 18 Introduction to Refrigeration and Air Conditioning 805
18.1 Introduction 805
18.2 Performance parameters 807
18.3 Unit of refrigeration 808
18.4 Carnot refrigeration cycles 808
18.5 Air refrigeration cycles 809
18.6 Vapour compression cycles 813
18.7 Multistage vapour compression cycle 819
18.8 Absorption refrigeration cycle 820
(xiv)18.9 Modified absorption refrigeration cycle 822
18.10 Heat pump systems 823
18.11 Refrigerants 824
18.12 Desired properties of refrigerants 827
18.13 Psychrometry 827
18.14 Air conditioning systems 835
18.15 Comparison of different refrigeration methods 837
Examples 838
Exercises 855
Chapter 19 Jet Propulsion and Rocket Engines 858
19.1 Introduction 858
19.2 Principle of jet propulsion 858
19.3 Classification of jet propulsion engines 860
19.4 Performance of jet propulsion engines 861
19.5 Turbojet engine 863
19.6 Turbofan engine 867
19.7 Turboprop engine 868
19.8 Turbojet engine with afterburner 868
19.9 Ramjet engine 869
19.10 Pulse jet engine 870
19.11 Principle of rocket propulsion 871
19.12 Rocket engine 872
19.13 Solid propellant rocket engines 872
19.14 Liquid propellant rocket engines 873
Examples 873
Exercises 891
Multiple Answer Type Questions 892
Appendix 917
Table 1 : Ideal gas specific heats of various common gases at 300 K 917
Table 2 : Saturated steam (temperature) table 917
Table 3 : Saturated steam (pressure) table 919
Table 4 : Superheated steam table 921
Table 5 : Compressed liquid water table 927
Table 6 : Saturated ice-steam (temperature) table 928
Table 7 : Critical point data for some substances 929
Table 8 : Saturated ammonia table 930
Table 9 : Superheated ammonia table 931
Table 10 : Saturated Freon – 12 table 933
Table 11 : Superheated Freon – 12 table 934
Table 12 : Enthalpies of Formation, Gibbs Function of Formation, and Absolute
Entropy at 25°C and 1 atm Pressure 937
Chart 1 : Psychrometric chart 938
Chart 2 : Mollier diagram 939
Index 94


-methyl napthalene 787
Absolute humidity 828
Absolute volumetric efficiency 714
Absorption Refrigeration cycle 820
Accessories 459
Actual indicator diagram 715
Adiabatic expansion index 574
Adiabatic flame temperature 400
Adiabatic mixing 834
Air breathing jet engines or
atmospheric jet engine 860
Air compressors 706
Air conditioning systems 835
Air cooled engines 771
Air fuel ratio 398
Air leakage 691
Air preheater 465
Air refrigeration cycles 809
Air requirement 409
Air standard cycle 330, 778
Air standard efficiency 331
Ammonia-water absorption system 821
Angle of advance 514
Artificial draught 474
Axial flow compressor characteristics 739
Axial flow compressors 732
Axial flow turbine 616
Axial thrust 628
Azeotropes 826
B
Babcock and Wilcox boiler 448
Back pressure turbine 273, 618
Back work ratio 251
Balanced draught 476
Bearings 614, 772
Bell-Coleman 810
Benson boiler 451
Bent water tube boilers 440
Binary vapour cycle 268
Blade height 632
Blade velocity coefficient 625, 627
Blow off cock 463
Blowers 706
Boiler 436
Boiler efficiency 478
Boiler mountings 459
Boiler trial 481
Bomb calorimeter 402
Bore 772
Bottom dead centre (BDC) 708, 773
Brake power 780, 787
Brake thermal efficiency 524
Branca’s impulse turbine 611
Brayton cycle 340
By pass factor 833
By-pass governing 650, 653
C
Calorific value 402
Cams and Camshafts 772
Carburettor 772
Carnot cycle 121
Carnot engine 121942 ________________________________________________________ Applied Thermodynamics
Carburettor type engines 771
Carnot gas power cycle 250
Carnot refrigeration cycle 808
Carnot vapour power cycle 250, 251
Cascade method 265
Casing 612
Central flow type 689
Centrifugal compressor characteristics 736
Centrifugal compressors 728, 730
Cetane 788
Cetane number 788
Chimney 468
Choice of refrigerant 827
Choked flow 576
Choking 733
Classification of jet propulsion engines 860
Classification of steam engines 506
Classification of steam turbines 614
Clearance volume 519, 773
Cloud point 400
Cochran boiler 443
Coefficient of performance 807
Coefficient of velocity 581
Cogeneration 272
Combined cycle 270
Combined governing 650
Combined heat and power 272
Combustion analysis 407
Combustion in CI engines 785
Combustion in SI engine 783
Comfort air conditioning 805
Composite boilers 442
Composition of air 400
Compound steam engine 508, 527, 530
Compounded impulse turbine 634
Compressible flow 565
Compression ignition engines 771, 772
Compression ratio 331, 773
Compressor and turbine efficiency 358
Compressors 706
Condenser 684
Condenser efficiency 693
Condensing engine 508
Condensing plant 685
Condensing turbine 618
Continuum 3
Connecting rod 510, 772
Control of Reciprocating Compressors 722
Convergent nozzle 577
Convergent-divergent nozzle 578
Cooling tower 693
Cooling with dehumidification 832
COP 807
Cornish boiler 446
Corrected vacuum 692
Counter flow jet condenser 686
Crank 509, 512, 772
Crank pin 510
Crank shaft 509, 512, 772
Crankcase 772
Critical pressure ratio 573, 575
Cross flow compound turbine with double flow 615
Cross flow compound turbine with single flow 615
Cross head 509, 512
Cumulative heat drop 647
Curtis turbine 621
Cut-off governing 508, 525, 526, 534
Cylinder 772
D
D-slide valve 514
Damper 449
Dead centre 773
Dead state 233
Dead steam 509
Dead weight safety valve 460
Deaerator 262
Degree of reaction 639
Degree of supersaturation 583
Degree of undercooling 583
Dew point temperature 829
Diagram efficiency 629
Diagram efficiency or blading efficiency 628Index _________________________________________________________________________ 943
Diagram factor 519
Diaphragm 613
Diesel cycle 250, 334, 779
Diesel engines 771, 790
Diffuser 569, 570
Dimensionless mass flow 737
Dimensionless pressure 737
Dimensionless rotational speeds 737
Direct contact heaters 262
Direct contact type 685
Disc friction loss 645
Dissociation 400
Double acting engine 507
Double flow single casing turbine 615
Down flow type 689
Draught 467
Driving thrust 626
Dry bulb temperature 829
Dry compression 813
Dry ice 806
Dual cycle 250, 337, 779
E
Eccentric 513
Economizer 464
Efficiency 192
Efficiency of chimney 473
Ejector condenser 686, 688
Energy performance ratio 807
Enthalpy of combustion 400
Enthalpy of formation 400
Enthalpy of moist air or mixture enthalpy 829
Equivalence ratio 399
Equivalent Evaporation 477, 478
Ericsson cycle 362, 250
Evaporative condenser 685, 690
Evaporator cooling 834
Excess air 399
Exhaust hood 614
Exhaust manifold 772
Expansive type 507
External combustion engine 770
Externally fired boilers 437
F
Fans 706
Feed check valve 462
Feed pump 465
Feed water 684
Feed water heaters 261
Fire bridge 444
Fire point 399
Fire tube 438
Fire tube boilers 437, 438
Fired boilers 438
Flash point 399
Flow velocity 624
Flue gas analysis 411
Fluidized bed boiler 454
Forced circulation boilers 438
Forced draught 474
Four stage compressor 707
Four stroke engines 771
Free air condition 713
Free air delivery 713
Friction power 780
Friction on nozzle 580
Friction power 787
Fuel 401
Fuel cells 413
Fuel feed hopper 449
Fusible plug 461
G
Gas calorimeter 404, 405
Gas engines 771
Gas fired boilers 437
Gas power cycle 250, 330
Gas turbine 790
Gas turbine irreversibilities 355944 ________________________________________________________ Applied Thermodynamics
Gaseous fuels 402
Governor 614
Gross efficiency 629
Gudgeon pin 772
Guide blades 612
Guide ways 509
Guideways 512
Gustaf de laval 611
H
Halocarbon refrigerants 825
Heat Pump Systems 823
Heat rate 251
Heat recovery steam generators 456
Height of blade 643
Helical type compressor 723
Hero’s reaction turbine 611
HHV = LHV 400
High capacity compressors 707
High level jet condenser 686
High pressure boiler 450
High pressure compressor 707
High speed engine 507
High speed steam turbine 618
High steam and low water safety valve 460
Higher heating value (HHV) 400
Horizontal boiler 437
Humid specific volume 829
Humidification 833
Humidifier 833
Humidity ratio or specific humidity 828
Hydrocarbons 826
Hyperbolic expansion 515
Hypothetical indicator diagram 518
I
IC engine fuels 786
IC engines 789
Impulse turbines 614, 619, 654
Inclined boiler 437
Inclined cylinder engines 771
Indicated power 780, 787
Indicated thermal efficiency 524
Indicator diagram 518, 780
Indirect contact type 685
Induced draught 475
Industrial air conditioning 805
Injection type engines 771
Inorganic compounds 825
Intake manifold 772
Intercooling 351
Internal combustion engine 770
Internal efficiency 648
Internally fired 437
Isentropic compressor efficiency 358
Isentropic efficiency 737
Isentropic turbine efficiency 358
Iso-octane 786
Isothermal efficiency 710
J
Jet condenser 685, 686
Jet efficiency 863
Jet propulsion 858
L
La Mont boiler 453
Labyrinth seals 613
Lancashire Boiler 444
Lead 514
Liquid fuel fired boilers 437
Liquid fuels 401
Liquid propellant rocket engines 873
Live steam 509, 514
Locomotive boilers 446
Locomotive engine 508
Loeffler boiler 452
Loss due to leakage 645
Losses at inlet and exit 646
Losses due to radiations 646Index _________________________________________________________________________ 945
Losses in bearings 645
Losses in moving blades 644
Losses in nozzles 644
Low capacity compressors 707
Low level jet condenser 686
Low pressure compressor 707
Low speed steam turbine 618
Lower heating value 400
M
Mach number 567
Manhole and mud box 463
Marine engine 508
Maximum discharge 473, 574
Mean effective pressure 333
Mechanical draught 474
Mechanical efficiency 524
Mechanical stoker 449
Medium capacity compressors 707
Medium pressure compressor 707
Medium speed engine 507
Metastable flow 583
Methods of Compounding 527
Missing quantity 519, 520
Mixed pressure turbine 274
Modified absorption refrigeration cycle 822
Modified rankine cycle 515
Morse test 787
Moving blades 612
Multi pressure HRSG 457
Multi rotor engine 771
Multi stage turbine 616
Multi-fuel engines 771
Multistage compression 716
Multistage intercooled compression 352
Multistage vapour compression cycle 819
N
N-heptane 786
Natural circulation boilers 437
Natural draught 467
Nestler boilers 448
Non condensing engine 508
Non-air breathing jet engines or rocket engines 860
Non-condensing turbine 618
Non-expansive steam engine 507
Non-positive displacement compressors 706
Normal speed steam turbine 618
Nozzle 564
Nozzle control governing 650, 654
Nozzle efficiency 580, 629
Nozzle flow analysis 567
O
Octane number 786
Off design operation 577
Open type heaters 262, 264
Opposed cylinder engines 772
Optimization 630
Optimum blade speed to steam velocity ratio 643
Orsat analyzer 412
Otto cycle 250, 331, 779
Over-expanding nozzles 577
Overall efficiency 525, 629, 863
Overall volumetric efficiency 713
P
Package boilers 437
Packing 613
Parallel flow jet condenser 686
Pass out or extraction turbine 274
Pass out turbine 618
Petrol engines 771
Piston 772
Piston and piston rod 509
Piston area 772
Piston rings 510, 772
Piston valve 515
Polytropic compression 730
Polytropic efficiency 358, 361946 ________________________________________________________ Applied Thermodynamics
Portable boiler 437
Positive displacement compressors 706
Pour point 400
Power 476
Power cycles 250
Pressure compounded impulse turbine 620
Pressure gauge 462
Pressure waves 565
Pressure-velocity compounded
impulse turbine 620, 622
Primary reference fuels 786
Primary refrigerants 825
Process 6
Property 18
Propulsive efficiency 862
Propulsive power 861
Proximate analysis 401
Psychrometric charts 830
Psychrometric processes 830
Psychrometry 827
Pulse jet engine 870
R
Radial flow turbine 616
Radius of eccentric 513
Ramjet engine 869
Ramjet or athodyds and lorin tube 860
Rankine cycle 250, 253
Rankine efficiency 525
Rankine heat drop 648
Rateau turbine 620
Reaction force 615
Reaction turbines 614, 637, 654
Receiver compound engines 527
Reciprocating air motor 722
Reciprocating compressors 708
Reciprocating engines 771
Reciprocating type positive displacement
compresso 707
Refrigerants 824
Refrigeration 355, 805
Refrigeration by evaporation 806
Refrigeration by ice 806
Refrigeration cycle 805
Regenerative cycle 250, 260
Regenerative cycle efficiency 266
Regenerative gas turbine cycle 345, 247
Reheat and Intercooling 354, 355
Reheat cycle 250, 258
Reheat factor 646, 648
Relative efficiency 525
Relative humidity 828
Relative velocity 624
Ring or wheel 612
Rocket engine 872
Rocket propulsion 871
Roots blower 707, 723
Roots efficiency 725
Rotary compressors 723
Rotary engines 771
Rotary type positive displacement compressors 707
S
Safety valve 460
Saturation curve 519
Saturation curve 520
Screw type 723
Secondary refrigerants 825, 826
Sensible cooling 830
Sensible heating 830
Shaft 612
Simple impulse turbine 623
Simple steam engine 508
Single acting engine 507
Single flow single casing turbine 615
Single pressure HRSG 457
Single rotor engine 771
Single stage 508
Single stage compressor 707
Single stage turbine 617
Slide valve 514Index _________________________________________________________________________ 947
Slip factor 732
Slow speed engine 507
Smoke box 449
Solid fuel 401
Solid fuel fired boilers 437
Solid propellant rocket engines 872
Sonic flow 567
Sound waves 565
Spark ignition engines 771
Spark plug 772
Spark-Ignition engine 771
Specific steam consumption 251, 524
Stack 468
Stage efficiency 629, 647
Stage efficiency 359
Stagnation enthalpy 568
Stagnation properties 356
Stalling 735
Standard reference state 400
Stationary engine 508
Stationary nozzle 612
Stationery boiler 437
Steam chest 509, 613
Steam engine 506
Steam generator 436
Steam injector 584
Steam jet draught 477
Steam trap 466
Steam turbine control 649
Steam turbine plant 790
Steam turbines 611
Stirling boiler 449
Stirling cycle 250, 364
Stop valve 462
Straight water tube boilers 440
Stroke 773
Stuffing box 512
Subatmospheric 684
Subsonic flow 567, 569
Summer air conditioning systems 835
Super high pressure compressor 707
Superheater 463
Supersaturation 582
Supersonic flow 567
Supplementary fired boilers 438
Surface condenser 685
Surface type heaters method 263
Surging 733
Swept volume 773
Symmetrical blades 626
T
Tandem compound engines 527
Tangential flow turbine 616
Tangential force 626
Terminal temperature difference 262
Theoretical air 399
Thermal efficiency 250, 524, 862
Three stage 508
Three stage compressor 707
Throat 573
Throttle governing 508, 525, 533, 650, 654
Throttle valve 614
Throttling process 806
Throw of eccentric 513
Thrust power 861
Ton 808
Top dead centre 773
Top dead centre (TDC) 708
Trip mechanism 614
Triple cross flow compound turbine
with double flow 615
Turbofan engines 860, 867
Turbojet engine with afterburner 868
Turbojet engines 860, 863
Turbojet with afterburner 860
Turboprop engine 868
Turboprop or propjet 860
Turning gear 614
Two stage 508
Two stage compressor 707
Two stroke engines 771948 ________________________________________________________ Applied Thermodynamics
U
Ultimate analysis 401
Under-expanding 577
Unfired boilers 438
Uniflow Engine 535
Unsaturated organic compounds 826
V
V-shaped cylinder arrangement 771
Vacuum efficiency 693
Valves 772
Vaned type compressors 707, 723
Vapour compression cycles 813
Vapour power cycle 250
Vapour refrigeration system 807
Velocity compounded impulse turbine 620, 621
Velocity diagram 623, 730
Velox boiler 452
Vertical boiler 437
Volume handled 476
Volumetric and gravimetric analysis 400
Volumetric efficiency 714
W
Waste geat boiler 456
Water cooled engines 771
Water level indicator 459
Water tube boilers 437, 438
Wet and dry analysis of combustion 400
Wet bulb temperature 829
Wet compression 814
Whirl velocity 624
Windage loss 645
Winter air conditioning systems 835, 836
Woolf compound engines 527
Work ratio 251
Z
Zeroth law 40
كلمة سر فك الضغط : books-world.net
The Unzip Password : books-world.net

تحميل

يجب عليك التسجيل في الموقع لكي تتمكن من التحميل
تسجيل | تسجيل الدخول

التعليقات

اترك تعليقاً