Poly(Ethylene Terephthalate) Based Blends, Composites and Nanocomposites
Edited by
Visakh P.M.
Tomsk Polytechnic University, Tomsk, Russia
Mong Liang
Tomsk Polytechnic University, Tomsk, Russia
Table of contents
List of Contributors
Preface
1: Polyethylene Terephthalate: Blends, Composites, and Nanocomposites – State of Art, New Challenges, and Opportunities
Abstract
1.1. Modification of Polyethylene Terephthalate
1.2. Reinforcement of Polyethylene Terephthalate via Addition of Carbon-Based Materials
1.3. Polyethylene Terephthalate-Based Blends: Thermoplastic and Thermoset
1.4. Polyethylene Terephthalate-Based Blends: Natural Rubber and Synthetic Rubber
1.5. Characterization of Polyethylene Terephthalate-Based Composites and Nanocomposites
1.6. Polyethylene Terephthalate: Copolyesters, Composites, and Renewable Alternatives
1.7. Molecular Weight Determination of Polyethylene Terephthalate
1.8. Degradation Kinetic Parameter Determination of Blends Containing Polyethylene Terephthalate and Other Polymers with Nanomaterials
1.9. Modification of Polymer Composites by Polyethylene Terephthalate Waste
1.10. Highly Functionalized Polyethylene Terephthalate for Food Packaging
2: Modification of Polyethylene Terephthalate
Abstract
2.1. Introduction
2.2. Radio-Frequency Plasma
2.3. Ultraviolet Technique
2.4. Protein Immobilization on Treated Surfaces
2.5. Conclusions
Acknowledgments
3: Reinforcement of Polyethylene Terephthalate via Addition of Carbon-Based Materials
Abstract
3.1. Introduction
3.2. Carbon Nanotubes
3.3. Carbon Fibers
3.4. Graphene
3.5. Polyethylene Terephthalate/Carbon Nanotube Composites
3.6. Polyethylene Terephthalate/Carbon Fiber Composites
3.7. Polyethylene Terephthalate/Graphene Composites
3.8. Conclusions
4: Polyethylene Terephthalate-Based Blends: Thermoplastic and Thermoset
Abstract
4.1. Introduction
4.2. Polyethylene Terephthalate-Based Thermoplastic Blends
4.3. Preparation of Polyethylene Terephthalate-Based Thermoplastic Blends
4.4. Polyethylene Terephthalate-Based Thermoset Blends
4.5. Preparation of Polyethylene Terephthalate-Based Thermoset Blends
4.6. Conclusions
Acknowledgments
5: Polyethylene Terephthalate-Based Blends: Natural Rubber and Synthetic Rubber
Abstract
5.1. Introduction
5.2. Polyethylene Terephthalate-Based Natural Rubber Blends
5.3. Polyethylene Terephthalate/Synthetic Rubber Blends
5.4. Conclusions
Acknowledgments
6: PET Nanocomposites: Preparation and Characterization
Abstract
7: Polyethylene Terephthalate: Copolyesters, Composites, and Renewable Alternatives
Abstract
7.1. The Context
7.2. Composites from PET and Renewable Substrates
7.3. Copolyesters from PET and Aliphatic Renewable-Based Comonomers
7.4. Copolyesters from PET and Aromatic Renewable-Based Comonomers
7.5. PET Alternatives from Renewables
7.6. Conclusions and Future Challenges
Acknowledgments
8: Molecular Weight Determination of Polyethylene Terephthalate
Abstract
8.1. Introduction
8.2. Determination of PET Molecular Weight
8.3. Applications of PET
8.4. Conclusions
9: Degradation Kinetic Parameter Determination of Blends Containing Polyethylene Terephthalate (PET) and Other Polymers with Nanomaterials
Abstract
9.1. Introduction
9.2. Thermolysis Types and Classification
9.3. Principles of Polyethylene Terephthalate (PET) Degradation Reaction and Mechanisms
9.4. The Degradation Behavior of PET Blends in Thermogravimetry
9.5. Thermal Degradation of Polyester Blends with Nanoclay and Carbon Nanofibers
9.6. Concluding Remarks and Recommendations
Acknowledgment
10: Modification of Polymer Composites by Polyethylene Terephthalate Waste
Abstract
10.1. Introduction
10.2. Application of PET Waste in Construction Composites
10.3. Epoxy Mortars Modified by PET Glycolysate – A Case Study
10.4. Conclusions
11: Highly Functionalized Polyethylene Terephthalate for Food Packaging
Abstract
11.1. PET for Packaging: Backgrounds and Requirements
11.2. Fundamentals of the Properties Achieved by Composites for Food Packaging
11.3. Hard Material/PET Nanocomposites for Food Packaging
Index
Index
A
Acrylonitrile-butadiene-styrene
(co)polymer, 66
Actis, 221
Acyclic dienemetathesis (ADMET), 131
Adipic acid (AA), 117
ADMET. See Acyclic dienemetathesis
(ADMET)
Agglomerations, 30
Aggregates
concrete waste, 201
lightweight, 197
sulfuric acid solution, 208
waste PET and rubber, 198
Alcohol group reactions
epoxides, schematic of PET, 69
Aliphatic-aromatic copolyesters
ecoflex®, 120
packaging industry, 120
renewable-based aliphatic monomers, 117
through polycondensation of biobased
diacyl chlorides, 132
Aliphatic renewable-based comonomers,
117
applications, examples, 120
linear aliphatic comonomers, 117
PET-co-PEG copolyesters structure, 123
PET-co-PGA copolyesters structure, 122
PET-co-PS copolyesters structure, 117
poly(ethylene terephthalate-co-alkylene
dicarboxylate)s, 120
poly(ethylene terephthalate-co-alkylene
succinate)s, 117
poly(ethylene terephthalate-co-ethylene
glycol)s, 123
poly(ethylene terephthalate-co-glycolic
acid)s, 121
poly(ethylene terephthalate-co-lactic
acid-co-ethylene glycol)s, 124
poly(ethylene terephthalate-co-lactic
acid)s, 121
synthesize PET-co-PLA copolyesters,
schematic illustration, 122
Analytical solution method, kinetic
parameters determination, 188
APG plasma. See Atmospheric-pressure
glow (APG) plasma
Aromatic polyesters, 47, 52, 131
Aromatic renewable-based comonomers,
127
PET-co-PHB copolyesters, 128
polarized light microscopy, 129
structure of, 128
PET-co-PHQT copolyester
structure of, 128
poly(ethylene terephthalate)-co-
(4-gydroxybenzoate), 128
poly(ethylene terephthalate-cohydroquinone terephthalate), 128
Arrhenius-type temperature dependence,
175
ASTM D 2857 method, 145
ASTM D 4603 method, 145
AT. See Attapulgite (AT)
Atmospheric-pressure glow (APG)
plasma, 222
Atomic force microscopy (AFM)
measurements
bending force, 48
distribution of collagen molecules, 30
grain analysis method, 30, 33
plasma-treated films, 20
solver PRO-M, 19
tapping-mode, 33
untreated PET, 20
UV treated, 26
collagen immobilized on PET, 34
Attapulgite (AT), 106, 223
Automobile tire yarns, 99
B
Banbury mixer, 4, 79
Billmeyer equation, 145
Biobased diols (BD), 132
2.2-Bis-hydroxymethyl-propionic acid,
227
10-[3,5-Bis(methoxycarbonyl) phenoxy]
decyltriphenylphosphonium
bromide (IP10TP), 103
Bisphenol A diglycidyl ether (DGEBA),
231
Bisphenol-A epoxy resin (E-44), 3
Blending formulations, 91
polyvinyl chloride (PVC), 79
of thermoplastics and rubbers, 77
Blow-molding process, PET bottles, 225
Boltzmann equation, 16
Brabender Plasti-Corder, 79
Breaking bonds, energies, 17
C
CaCO
3 nanoparticles, 107
Carbon-based materials, 42
Carbon fiber composites
applications, 52
carbon fiber-reinforced PET (CFRPT), 50
durable properties, 52
electrical conductivity, 52
electromagnetic interference
shielding, 52
mechanical performance, 51
thermal properties, 51
preparation, 49
properties, 50
Carbon fiber-reinforced PET (CFRPT)
composites, 3, 50
durable properties, 52
electrical conductivity, 52
electromagnetic interference
shielding, 52
mechanical performance, 51
thermal properties, 51
Carbon fibers (CF), 44
commercial properties, 45
PAN-based manufacturing, 44
reinforced polymer, 45
-reinforced thermoplastic
composites, 51
Carbon nanofiber (CNF)
polyester blends, thermal degradation
of, 186
-toughened polyester, 50
Carbon nanotubes (CNTs) composites,
2, 42
application, 49
covalent functionalization, 44
crystallization characteristics, 48
electrical properties, 48
mechanical properties, 48
preparation, 47
properties, 47
surface modification, 4
thermal properties, 48
thermoconductivity, 43
Carbon-reinforced polyester composite
materials, 53
Carboxylic acids, schematic of PET, 69
Carroll method, 176
Catalytic cracking, 172
Cellulosic polymers, 190
CFRPT composites. See Carbon fiberreinforced PET (CFRPT)
composites
Chemical recycling, 171
Chemical surface modification
toxic compounds and physical
alterations, 15
Chemical vapor deposition (CVD), 43
Chopped rice husk (CRH) composites, 5,
116236 Index
Clay/PET composites, 217
platelets, 100
Cloisite® 30A, 100
CNF. See Carbon nanofiber (CNF)
13C-NMR analysis, 149
Coatings, 214
antireflection, 191
antistatic, 49
barrier properties, 219
diamond-like carbon (DLC), 218,
221–223
PET bottles, 221
fiber, 52
HMDSO/O
2/CF4 mixtures, 7, 219
hydrocarbon, 221
hydrophobic-protecting, 120
material/PET composite films, 215
plastic packaging materials, 7
silicon-based, 101
silicon oxide (SiO
x
), 218, 219
thin gas-barrier, 215
ultrathin, 104
Coats–Redfern method, 176
Collagen, 28
–buffer solution, SEM images of, 29, 30
extracellular matrix, 26
immobilization
AFM measurements, 31
AFM measurements on PET plasma,
32
-immobilized films, 28
PET film, 28
-rich tissue, 26
Composites
defined, 195
from PET, 115
Compressive strength test, testing machine,
206
Construction composites
chemical resistance, 201
epoxy mortars modified by PET
glycolysate, 202
HB hardness, 206
microstructural studies, 204
obtaining process, 202
pull-off test, 207
tensile strength in bending/
compressive strength, 204
water absorption and chemical
resistance to selected corrosive
media, 208
PET waste, application, 197
aggregates, 197
epoxy resins production, 201
mortar, 197
recycled fiber reinforcing concrete/
mortar, 199
uncemented composites, 201
in unsaturated polyester resins
production, 200
sulfuric acid solution, 201
Copolyesters, 117, 118, 127
aliphatic-aromatic, 120
from aliphatic renewable-based
comonomers, 117
backbone, 120
lignin-based, 131
liquid crystalline, 128
2,6-naphthalenedicarboxylic acid, 125
on PET, renewable-based succinic acid,
118
PET-co-PHB structure, 128
polydispersity, 131
poly(ethylene 2, 5-furandicarboxylate),
129
polyethylene terephthalate, 5
poly(ethylene terephthalateco-butylene succinate)
(PET-co-PBS), 119
Crude oil processing, 173
Cryofractured surfaces, 83
Crystallinity degree, trans conformer
fraction, 22
CVD. See Chemical vapor deposition
(CVD)
Cyclic aliphatic comonomers, 124
poly(ethylene terephthalate-co-1,
4-cyclohexylene dimethylene
terephthalate)s, 125
1,4-Cyclohexenedimethanol
(1,4-CHDM), 124
-based polyesters, 124
polymerization, 124
D
D8 Advance Bruker AXS diffractometer,
22
Dehydrohalogenation, 25
Depolymerization processes, 172
Diamond-like carbon (DLC), 218,
221–223
coating technology, 221
film, 8
PET bottles, 221
Diepoxide, reacts with hydroxyl/carboxyl
groups, 72
Differential scanning calorimetry (DSC),
48
heating thermograms, 85
measurements, 102
PET/ABS blends, 93
Diffusing molecules, tortuous path, 216
Diglycidyl ether, 70
1,4-Di-(hydroxymethyl)-benzene,
isosorbide, 130
Dimethyl terephthalate (DMT), 106, 227
Disproportionation reaction, 24
DLC. See Diamond-like carbon (DLC)
DMEM high-glucose medium, 34
DMT. See Dimethyl terephthalate (DMT)
Dodecyl-benzenesulfonate (DBS), 227
Dodecylsulfate (DS), 227
Druyvesteyn approximation, 17
DSC. See Differential scanning calorimetry
(DSC)
E
ECR plasma. See Electron cyclotron
resonance (ECR) plasma
EG. See Exfoliated graphite (EG)
E-GMA. See Ethylene-glycidyl
methacrylate (E-GMA)
Electrical insulating properties, 195
Electromagnetic interference
shielding, 52
Electron cyclotron resonance (ECR)
plasma, 8, 219
Emitech K1050X Plasma Asher, 18
Epoxy group, of GMA, 82
Epoxy mortars, 207
modified by PET glycolysate, 202
HB hardness, 206
microstructural studies, 204
obtaining process, 202
pull-off test, 207
SEM microphotographs, 204, 205
tensile strength in bending/
compressive strength, 204
water absorption and chemical
resistance to selected corrosive
media, 208
Epoxy resin
bisphenol-A, 3, 70
Epidian 5, 204
SEM microphotographs, 205
PET/PA6 blend, 71
E44 blends, 72
PET waste
application, 201
mortar modified, 199, 202
preparation of, 69, 70
Esterification reaction, 168
Ethylene-glycidyl methacrylate
(E-GMA), 67
Ethylene glycol (EG), 99, 114, 168,
227
condensation polymerization, 168
DMSI-modified LDH, 227
methylene protons, 149
polymer contains, 144
polymerization, 99
TA-intercalated LDHs, 106
trans–gauche conformation, 19
Ethylene-methyl acrylate-glycidyl
methacrylate (EMA-GMA),
104
Ethylene vinyl acetate, 66
Excited-state quenchers, 24
Exfoliated graphite (EG), 103
Exfoliation, 159
Expanded graphite, 229
Exposure, 25
Extruder
CSI Max Mixing Extruder, 87
ICMA MC 33, 67
single-screw, 67
twin-screw, 67
Werner-Pfleiderer, 71Index 237
F
FBS. See Fetal bovine serum (FBS)
FDCA. See 2,5-Furandicarboxylic acid
(FDCA)
Fetal bovine serum (FBS), 34
Fiber-reinforced polymer (FRP), 52
Film foil, 196
Flexible packaging, 215
Flexural strength testing, 205
Flexural-strength values, 208
Fluorine mica, 226
Food packaging
acid-MWCNT/diamine-MWCNT,
schematic diagram, 231
clay/polymer composites, 216
clays stretching, schematic
representation, 227
commercialized DLC coating machine,
222
O
2 and CO2 transmission rates, 223
diamond-like carbon (DLC)
nanocoating on PET bottles, 222
flexible packaging, 215
gas-barrier properties, 7
inorganic filler/PET composites, 223
by nanocomposites, 215
of sheet clay/polymer
nanocomposites, 229
by thin film coatings, 215
gas permeations
polymer bottle/DLC-coated polymer
bottle, 214
hard material/PET nanocomposites, 218
DLC thin-films, gas-barrier
properties, 221
SiO
x thin-films, gas-barrier properties,
218
high gas-barrier properties for, 218
highly functionalized, 7
hydrophilic to hydrophobic phases in
clays, 226
layered double hydroxide (LDH)
DMSI, schematic diagram, 228
mica clay, 225
modified atmosphere packaging (MAP),
213
modified montmorillonite (MMT) clays,
225
nanofillers, with sheet-like structures,
224
O
2 permeation, two-layer model, 215
PET bottles for beverage, 213
polymer nanocomposites, clays
classification, 224
reinforcement by nanocomposites, 216
silicate layered clays, exfoliation/
intercalation of, 224
Fourier transform infraded (FT-IR)
method, 202
plasma treatments/collagen
immobilization, measurements, 29
spectroscopy data, for PET, 19
Fourier transform infrared-attenuated total
reflection spectroscopy
(FTIR-ATR) spectroscopy, 18
Freeman method, 176
Friedman method, 182, 186, 187, 189
for activation determination, 187, 188
kinetic parameters determination, 188
for PBT/NC, 188
FRP. See Fiber-reinforced polymer (FRP)
Furan-aromatic polyesters, 131
2,5-Furandicarboxylic acid (FDCA),
129
copolyesters, 130
polyester, 114
G
Gas-barrier properties, 7
DLC thin-films/PET composites, 221
food packaging, 218
inorganic filler/PET composites, 223
by nanocomposites, 215
of sheet clay/polymer nanocomposites,
229
SiO
x thin-films/PET composites, 218
by thin film coatings, 215
Gas-phase photodissociation, UV light and
ozone, 24
Gauche CH
2 wagging band, 19
Gauche conformer, trans conformer
transformation, 1
Gel permeation chromatography (GPC)
methods, 6, 148
14 PET fibers, analysis of, 153
GF. See Glass fiber (GF)
Glass fiber (GF), 50
Glass fiber-reinforced recycled
polyethylene terephthalate, 50
Glycidyl methacrylate (GMA), 80
HDPE grafted, 67, 68
Glycolic acid, 114
Glycolysates, 202
characteristics, 203
critical values of hardness, 207
FT-IR spectrum, 203
resin, 196
spatial and contour graph, 206, 207
Glycolysis reaction, PET waste, 201
Grafting, of elastomer, 80
Granulated PET, 70
Graphene composites, 45, 46, 53, 228
advantages of, 56
application, 56
lightweight high-performance thermal
management systems, 56
melt-compounding polymerization, 54
PET reinforced, 2
preparation, 54
properties, 55
crystallization, 56
electrical, 56
mechanical, 55
thermal, 56
schematic diagram, 42
in situ polymerization/in situ melt
polycondensation, 54
synthesis of, 55
Graphene nanocomposites, 5, 46, 56
Graphene nanosheets, 5
Graphene oxide (GO), 228
Graphite, schematic diagram, 42
Graphite nanoplatelet (GNP), 229
Graphite oxide, 46
Gyration, 145
H
Hakke Rheomix 3000p, 67
Halpin–Tsai equation, 217, 218
Hand lay-up method (HLU), 50
Hard material/PET nanocomposites, 218
DLC thin-films, gas-barrier properties,
221
SiO
x thin-films, gas-barrier properties,
218
Heat-transfer problems, 176
Hematoxylin/eosin-stained samples,
photomicrographs of, 35
Hemp fiber composites, 115
Hexamethyldisilazane (HMDSN), 219
Hexamethyldisiloxane (HMDSO), 8, 218
HFIP–CDC1
3 mixture, 149
HFIP:chloroform, 153
High-density polyethylene (HDPE), 3,
116, 214
microfibrillar blends of, 116
scrap, 67
High-energy ball milling (HEBM), 227
High-tenacity polyester fibers, 155
Human endothelial cell line EA.hy926,
34
Hydrogen bonding, carbonyl group of
PET, 85
Hydrophobic BaSO4 nanoparticles, 107
Hydroquinone (HQ), 114, 127
Hydrous magnesium-aluminum silicate
mineral, 106
4-Hydroxybenzoic acid (HBA), 114, 127
Hydroxyl end group, of PET, 82
5-Hydroxymethulfurfural (HMF), catalytic
oxidation of, 129
I
ICMA MC 33
twin-screw corotating extruder, 67
Infrared (IR) radiation, 25
In situ polymerization technique (I-S), 105
Interfibrillar amorphous phase, 22
IPA. See Isophthalic acid (IPA)
Isocyanate, preparation of, 70
Isophthalic acid (IPA)
fossil-based, 123
mechanical properties, 7
Isothermal measurements, advantages/
disadvantages of, 175
Izod impact strength, 81238 Index
K
K2-5 formulation, SEM illustration, 91
Kissinger method, 176
L
Laponite-synthetic hectorite, 102
Laser irradiation, 1
Layered double hydroxide (LDH), 103,
223
anionic clays, 106
oxygen barrier properties, 103
Layer nanosheets, 228
LDH. See Layered double hydroxide
(LDH)
Light source, ultraviolet technique, 23
functional groups studies on treated
surfaces, 24
PET, UV radiation effects, 25
principle of technique, 23
Lightweight aggregates, 197
Lignin-based alternatives, 131
lignin-based copolyesters, 131
poly(dihydroferulic acid)/poly(alkylene
4-hydroxybenzoate)/
poly(alkylene vanillate)/
poly(alkylene syringate)
homopolyesters, 131
Lignin composites, 6
Limiting oxygen index (LOI), 106
Linear aliphatic comonomers, 117
Linear lowdensity polyethylene (LLDPE),
171
Liquid crystalline polymers (LCPs), 67
compatibilized and uncompatibilized
films, 68
Lotader AX8900, 80
Low density polyethylene (LDPE), 171, 198
M
Major municipal solid waste (MSW), 169
Maleic anhydride (MAH), 80
Maleic anhydride-grafted styrene-ethylenebutylene-styrene (MAH-gSEBS) rubber, 77
Mark–Houwink equation, 145, 147, 151
Material recovery facilities (MRFs), 169
MDI-grafted AT (MAT), 106
Melt blending, 66, 79
Melt-compounding polymerization
process, 54
Melt-flow index (MFI) measurements, 145
Melt flow rate (MFR), 71
mechanical properties, 71
Melt Indexer Dynisco–Kayeness Polymer
Test Systems model LMI 4004,
147
Melting temperature, of PET, 48
Melt mixing (MB), 105
Metallized polyethylene terephthalate/
nanotubes (M-PET/NTs), 2
Metal oxides
as fillers, 105
Microfiber formation, 48
Microfibrillar blends (MFBs), 116
Mini-Max Molder CS-183MM machine,
47
Mixing rigid fillers, 216
Modified montmorillonite (MMT)
clays, 4, 8
exfoliation of, 226
PET composites, 225
Modulus reduction factor (MRF), 217
Moisture resistance, 144
Molecular weight determination, 144
applications of PET, 154
in biomedical research, 155, 159
clay nanocomposites, 159
Coca-Cola bottles analyzed by GPC,
154
fabrication, ease of, 155
HT PET advantages, 155
ideal elongation, 159
materials properties, 156
medical-grade compatibility, 155
reference collection of synthetic fibers
by GPC, 155
strength and flexibility, 155
bottle-grade PET (BPET)
intrinsic viscosity, 147
viscosity vs. concentration, 146
carboxyl/hydroxyl end group assay
methods, 148
13C-NMR chemical shifts, 150
Dawkins method, 151
end group in PET by NMR
spectroscopy, 149
by gel permeation chromatography, 149
gel permeation chromatography (GPC)
analysis of diluted fiber polymer
sample, 153
obtaining methods, 151
iterative algorithm method, 151
1H-NMR spectra of PET fiber, 150
intrinsic viscosity method, 144, 145
Mark–Houwink equation, 147, 148
melt-flow index (MFI)
intrinsic viscosity
determination of, 147
of PET samples, 147
near infrared spectroscopy (NIR)
GPC methods, 149
scans, decreasing absorbance, 148
polydispersity measured by SEC, 153
polyesters, by NIR spectroscopy, 148
poly(ethylene terephthalate) (PET)
chemical structure, 144
determination of, 144
fibers
GPC chromatograms, 153
samples analyzed by GPC, 154
intrinsic viscosity, samples, 147
using GPC, 152
mobile phase, 152
simplified, 151
Sreenivasan and Nair Method, 152
terephthalic acid/diol, polyester
synthesized, 144
Ubbelohde viscometer, illustrative
image, 146
Montmorillonite (MMT) clay, 99, 223
thermal stability and degradation, 171
Multiwalled carbon nanotube
(MWCNT), 8
PET composites, 230, 231
surface, carboxylic acid groups, 231
Multiwalled nanotubes (MWNTs), 42
Municipal solid waste (MSW) categories,
169
N
Nanoclay
nanoparticles, 171
polyester blends, thermal degradation
of, 186
Nanocomposites
films, 186
crystallization temperature, 102
graphene with uniform dispersion,
103
isocyanate groups, 47
polyethylene terephthalate (PET), 2, 4,
5, 47, 100, 101, 103
in TGA, 179
Nanofillers, with sheet-like structures, 224
Nanolayers, 171
Nanoparticles, 171
Nanopolymers, classification/degradation,
170
Nanotechnology, 171
Nanotubes, 171
Natural rubber (NR) blends, 4, 77, 78
applications, 86
crystallinity, percentage of, 85
hydrogen bonding
carbonyl group of PET, 85
PET/NR blends, molecular
characteristics, 84
PET/NR blends, morphology, 82
PET/NR blends, preparation of, 78
Brabender Plasti-Corder, 79
Haake Rheocord, 79
mixing, 79
solution casting, 79
twin-screw extruder, 79
two-roll mill, 79
PET/NR blends, properties of, 80
influence of blend composition, 81
influence of compatibilizers, 80
influence of extrusion speed, 82
PET/NR blends, thermal properties, 85
Near infrared spectroscopy (NIR), 148
North America Free Trade Agreement
(NAFTA), 169
Notched Izod impact strength, of PET/NR
blends, 81
Notch sensitivity, of PET, 4
NR blends. See Natural rubber (NR)
blendsIndex 239
O
Objective function (OF), 181
Oligomeric poly(L-lactic acid) (PLLA),
121
Organoclay I.30E, 102
Organo-montmorillonite (OMMT), 101
Oxygenated polymers (polyesters)
extensive applications of, 191
Oxygen-containing polymers, 190
Ozawa-Flynn-Wall (OFW) method, 176,
179, 182
activation determination, 189
kinetic parameters determination, 188
Ozone, gas-phase photodissociation, 24
P
Peroxide components, generation/possible
disintegration products, 26
PET blends. See Polyethylene
terephthalate (PET) blends
Petrochemical plants, 172
Phenolic resins, 190
Phenol–tetrachloroethane
and molecular weight, 148
Phenyl containing highly cross-linked
polyborosiloxane (PBSiO), 101
Phosphate buffered saline (PBS), 28
Photooxidation, 168
Photooxidative degradation, 25
Photooxidative reactions, 25
Plasma enhanced CVD (PECVD), 218
Plasma-exposed substrate surfaces, 17
Plasma-treated films, surface topography,
20
Plasma-treated PET
AFM measurements for collagen
immobilization, 31
collagen immobilization on, 30
interaction mechanism, 18
samples study of aging time, 23
SEM images of collagen
immobilization, 30
Plasticity, improvement of, 196
Plastics, reusing, 169
Plastics industry, blending technology, 65
Plastic solid waste (PSW), 169
commercial-grade resins, 169
quantities, generation, and trends, 169
recovery routes, 172
recycling processes, 171
Plastic waste, 195
PN-EN ISO 2039-1: 2004, 206
Poly(acrylonitrile-co-butadiene-co-styrene)
blends, 4
Poly(alkylene 4-hydroxybenzoate)s, 131,
133
Poly(alkylene syringate) homopolyesters,
131
Poly(alkylene syringate)s synthesis, 133
Poly(alkylene vanillate)s, 131, 133
Polyamide 6 (PA6) blends, 3, 101
Polyarylate, 66
Poly(bis-O-dihydroferuloyl) copolyesters,
structure, 133
Poly(butylene 2,5-furandicarboxylate),
130
Poly(butylene terephthalate) (PBT)
crystal structure, 48
NC studied, activation energy plot
against heating rate, 190
Poly(butylene terephthalate-co-diethylene
terephthalate) random
copolymers (PBTDEG), 186
Polycarbodiimides, 70
PET blends, 72
preparation of, 70
Polycarbonates (PCs), 2, 66, 198
Poly(1,4-cyclohexylenedimethylene
terephthalate) (PCT), 124
homopolyester, structure of, 124
PCT-co-PCI (PCTA), 124
Poly(dihydroferulic acid) (PHFA), 131
polycondensation reaction, 131
synthesis, 132
Poly(ε-caprolactone) (PCL), 5, 115
Polyester blends, thermal degradation of,
186
Polyester fibers, 53, 196
Polyester nanocomposites, degradation
modeling, 186
Polyesters, 121, 186
structural constitution, 22
Polyethylene (PE), 66, 167, 215
thermal degradation, 172
Poly(ethylene 2,5-furandicarboxylate)
(PEF), 114
Poly(ethylene glycol) (PEG), 123, 231
Polyethylene naphthalate (PEN), 100, 104
Poly(ethylene2,6-naphthalate) (r-PET/
PEN) blends, 50
Polyethylene terephthalate (PET) blends,
15, 66, 167
ABS blends
DSC analysis of, 93
SEM micrographs, 92
application of, 68
biodegradable, 114
characterization of, 99–107
CNT composites, in situ microfiberreinforced, 2
composites/nanocomposites,
characterization, 4
copolyesters, 114
composites/renewable alternatives, 5
degradation kinetic parameter
determination, 6
film, mechanism collagen anchored, 28
food packaging, highly functionalized, 7
graphene, 46
HDPE blends, 67
interfacial tension, 1
ionic functionalities, 101
LCP blends, 67
manufacturing, 168
modification of, 1
molecular weight determination, 6
nanocomposites, 2, 4, 5, 47, 100, 101,
103
graphene with uniform dispersion,
103
isocyanate groups, 47
in TGA, 179
natural rubber (NR) blends, 4, 86
PA6 blend, 71
E44 blends, 70
PC blends, 67
PET-co-PCT copolyesters, 125
PCT homopolyester, structure of, 124
PET-co-PEG copolyesters, structure of,
123
PET-co-PES copolyesters, shape
transition of, 119
PET-co-PGA copolyesters, structure of,
122
PET-co-PHB copolyesters, 128
PHQT, polarized light microscopy,
129
polarized light microscopy, 129
structure of, 128
PET-co-PHQT copolyester, structure
of, 128
PET-co-PS copolyesters, structure, 117
plasma, AFM measurements, 21
polymer composites
matrix, 2
modification of, 7
with nanomaterials, 6
reinforcement via carbon-based
materials addition, 2
SBR viscosity, 88
SEBS-g-MAH blend, 82
synthetic rubber (NR) blends, 4
thermal treatments, 42
thermoplastic blends, 3
thermoset blends, 3
UV, AFM measurements, 27
VGCNF fibers, 105
waste synthesis, modification of, 7
Poly(ethylene terephthalate-co-alkylene
dicarboxylate)s, 120
Poly(ethylene terephthalate-co-alkylene
succinate)s, 117
poly(ethylene terephthalate-co-butylene
terephthalate-co-ethylene
adipate-co-butylene adipate)
(PET-co-PBT-co-PEAco-PBA)
copolyesters, 120
Poly(ethylene terephthalate-co-ethylene
glycol)s, 123
Poly(ethylene terephthalate-co-ethylene
succinate)s (PET-co-PES), 118
poly(ethylene terephthalate-co-ethylene
succinate-co-butylene succinate)
(PET-co-PES-co-PBS), 119
Poly(ethylene terephthalate-co-glycolic
acid)s, 121
Poly(ethylene terephthalate)-co-
(4-gydroxybenzoate), 128240 Index
Poly(ethylene terephthalate-cohydroquinone terephthalate)
(PET-co-PHQT) copolyesters,
128
Poly(ethylene terephthalate-co-4-
hydroxybenzoate) (PET-coPHB), 128
poly(ethylene terephthalate-co-4-
hydroxybenzoate-co-vanillate)
(PET-co-PHB-co-PVA), 128
Poly(ethylene terephthalate-co-lactic acid)s,
121
poly(ethylene terephthalate-co-lactic
acid-co-ethylene glycol)s, 124
Poly(ethylene terephthalate-co-propylene
succinate) (PET-co-PPS), 119
Polyethylene terephthalateco-trimethylene
terephthalate (PET-co-PTT)
blends, 116
Poly(glycolic acid) (PGA), 121
Poly(lactic acid) (PLA), 114, 121
Polymer blends, 76
Polymer bottle, gas permeations, 214
Polymer–clay nanocomposites, 159
Polymer composites, production of, 195
Polymeric nanomaterials, classifications
of, 171
Polymerization of terephatalic acid (PTA),
168
Polymerization processes, 49, 54, 167, 168
polyethylene terephthalate-based
nanocomposites, characterization
of, 99
in situ polymerization, 54
Polymers
blending of, 88
degradation types, 170
first-order reaction, 181
intrinsic viscosity, 151
resins, 195
Polymer thermal degradation, kinetics of,
175
Polymethyl methacrylate (PMMA) blends,
7, 180
UV irradiation, 2
zirconia nanocomposites, 180
Polyolefins, preparation of, 67
Poly(oxyalkylene)-diamine, 224
Poly(oxypropylene)-diamine, 224
Polyphenylene-ether (PPE) concentration,
71
Polypropylene (PP), 2, 66, 116, 167, 214,
215
Polysaccharides, 129
Polystyrene (PS), 2, 66, 79, 167
GPC instrument, 149
Mark–Houwink equation, 151
Poly(styrene-co-acrylonitride) (SAN), 87
Polyurethane blends, 69, 72
preparation of, 70
Polyvinyl chloride (PVC), 215
Poly(vinyl methyl ether) (PVME)
mixtures, 79
Protein adsorption, 1
Protein immobilization, on treated
surfaces, 26
biocompatible character of surface, 34
collagen immobilization after UV
treatments, 32
principle of technique, 26
Proton nuclear magnetic resonance
(1H-NMR), 149
Pseudovirgin material, structural/physical
properties, 182
Pultrusion, 50
Pyrolysis
advantages, 175
PBT degradation, 187
Pyromellitic dianhydride (PMDA), 5,
115
R
Radio frequency (RF)
discharges, 16
power, 219
Radio-frequency plasma, 16
principle of techniques, 16
treatments on polyethylene terephthalate
degradation behavior, 22
stabilization of, 23
surface characteristics, 18
ultraviolet technique, 23
functional groups studies on treated
surfaces, 24
PET, UV radiation effects, 25
principle of technique, 23
Raman spectroscopy, 56
Random chain scission, 178
Random ethyleneacrylic ester-glycidyl
methacrylate terpolymers, 80
Rational waste management, 195
Recycled polyethylene terephthalate
(R-PET), 102, 104, 116, 226
bottling powder, 76
PEN blend, 51
sample, 147
waste, 200
Reinforcement, in polymer, 100
Reinforcing fibers, 51
Renewable-based succinic acid, 118
Renewable resources
PET alternatives, 129
furan-based alternatives, 129
poly(alkylene 2,
5-furandicarboxylate)s, 130
poly(ethylene 2,
5-furandicarboxylate), 129
substrates, 115
Residual waste, 171
Resin composite, 206
Resin concrete samples, 201
Resin transfer molding, 50
rMMT/PET composites, 226
Ropet degradation, 180
R-PET. See Recycled polyethylene
terephthalate (R-PET)
Rubber cavitations, schematic
presentation, 78
Rubber toughening, 78
PET composites, 81
RxFibron HT, 155
S
Saponite, 99
Saw-dust (SD), 116
Scanning electron microscopy (SEM)
analysis, 18, 82
Schulz–Blaschke constants, 147
Schulz-Blaschke equation, 146, 148
Sebacic acid (SbA), 117
Sheet-like filler/polymer nanocomposites
gas-barrier properties of, 229
Short carbon fiber (SCF) composites, 50
Silane-coupling agents, 226
Silicate, hydrophilic surface of, 224
Silicon oxide (SiO
x
)
barrier technologies, 219
coating, 218
Single-walled carbon nanotube (SWCNT)
composites, 104
conceptual diagram, 42
Single-walled nanotubes (SWNTs), 42
Size-exclusion chromatography (SEC), 152
Sodium dodecyl sulfate (SDS), 8, 231
Solution viscosity measurement, 145
SR blends. See Synthetic rubber (SR)
blends
Stearic acid (SA)
coating, 107
Styrene acrylonitrile copolymer, 2
Styrene-butadiene rubber-grafted-maleic
anhydride (SBR-g-MAH), 87
Styrene-ethylene-butylene-styrene (SEBS)
blends, 81
Succinic acid, 117
aliphatic monomers, 117
renewable resources, 118
Synergistic flame retardant effects, 106
Synthesize PET-co-PLA copolyesters
schematic illustration, 122
Synthetic phyllosilicate mineral, 230
Synthetic rubber (SR) blends, 4, 77, 86
applications, 93
PET/ABS blends, 90
influence of fracture behavior, 91
mechanical properties, 93
thermal properties, 93
PET/SR blends, morphology, 89
PET/SR blends, preparation of, 86
acrylonitrile-butadiene-styrene (ABS)
blends, 87
styrene-butadiene rubber (SBR)
blend, 87
PET/SR blends, properties of, 88
influence of rubber
with grafting, 89
without grafting, 88
MAH concentration, 89
possesses, 86Index 241
Synthetics polymerization,
recommendations, 190
T
TBC. See Tributyl citrate (TBC)
Terephatalic acid, 114, 168
Testing adhesion, camera, 208
Tetraethoxysilane (TEOS), 218
Tetramethoxysilane (TMOS), 219
1,1,3,3-Tetramethyldisiloxane (TMDSO),
219
Tetramethylsilane, 218
Textile grade polymer, 144
Thermal insulating properties, 195
Thermochemical treatment (TCT), 173
Thermographs, 51
Thermogravimetric analysis (TGA), 106,
175
Thermogravimetry
apparent activation energy evaluated
PET, 185
PET blends, degradation behavior, 180
background, 180
Friedman method, pre-exponential
factor determination, 183
model comparison, 182
model development, 181
OFW method, kinetic parameters, 183
PET/PMMA blend
model vs. experimental results, 183,
184
Thermolysis
chemical treatment methods, 172
classification, 171, 173
kinetic parameter evaluation methods,
177
PET degradation mechanism, 179
cyclic oligomers formation, 179
reaction and mechanisms principles,
176
PET/PMMA degradation, pyrolysis
conditions, 180
petrochemicals (PCs) produced via
pyrolysis of POs, 174
polymers, treatment methods, 173
polymer thermal degradation, kinetics
of, 175
radical chain mechanism
PE, thermal degradation, 178
schemes with reference, 174
Thermoplastic blends, 3
PET/HDPE blends, 67
PET/LCP blends, 67
PET/PC blends, 67
polyethylene terephthalate, 66
blends, application of, 68
polyolefins, preparation of, 67
preparation of, 66
properties of, 68
Thermoplastic elastomers (TPEs), 86
Thermoplastic polymers, 66, 76
polyethylene terephthalate (PET), 69, 76
preparation of polymer blends, 66
reason for blending, 66
Thermoset blends, 3, 69
application of, 72
epoxy resin, preparation of, 69, 70
isocyanate, preparation of, 70
melt flow rates (MFR) and mechanical
properties, 71
polycarbodiimides, preparation of, 70
of polymers, 66
polyurethane, preparation of, 70
preparation of, 69
properties of, 71
Thermotropic liquid crystalline polymers
(TLCP), 127
Thin gas-barrier coatings, 215
TiO
2 nanoflowers, 106
TiO
2 /PET nanocomposites, 105
Tortuosity, 216
TPA acid, structures, 129
Transfer stations (TSs), 169
Tributyl citrate (TBC), 115
PET/sisal fibers interactions, 116
Triphenylphosphine, 179
Turbostratic–graphitic hybrid structure, 45
U
Ubbelohde-type viscometer, 145
Ubbelohde viscometer, 146
Ultraviolet technique
absorbers, 24
collagen immobilization, 32
FTIR measurements, 26
irradiation, 24
laser, 2, 25
surface, 32
light source, 23
functional groups studies on treated
surfaces, 24
gas-phase photodissociation, 24
PET, UV radiation effects, 25
principle of technique, 23
Philips lamp, 26
radiation, 15
schematic representation, 24
treated PET
AFM measurements, 33, 34
FTIR-ATR spectrum for, 32
hematoxylin/eosin-stained samples,
photomicrographs of, 35
mechanism of absorption collagen, 32
SEM images of collagen
immobilization, 33
Unsaturated polyester resins (UPRs), 120
Untreated PET, SEM images, 29
V
Vacuum-assisted resin transfer molding
(VARTM), 50
Vacuum infusion, 50
Vanillic acid (VA), 114, 127
Vapor-grown carbon nanofibers (VGCF),
52
under uniaxial tension, 50
Viscosity, 4
intrinsic, 144
molecular weight distribution of
polymer, 145, 147
of PET–SBRg blends, 90
Volumetric strain energy, 78
W
Waste
glycolysis reaction, 201
PET application, 197
aggregates, 197
epoxy resins production, 201
mortar, 197
recycled fiber reinforcing concrete/
mortar, 199
uncemented composites, 201
in unsaturated polyester resins
production, 200
plastics, 195, 196
synthesis
polyethylene terephthalate,
modification of, 7
Water-soluble polyvinylpyrrolidone-treated
fibrous silicate, 102
Werner-Pfleiderer extruder, 71
Wide angle X-ray diffraction (WAXD), 48
Y
Young’s modulus, 81, 217
PET fibers, 3
of reinforcement material, 217
yielding stress, 227
Z
Zirconia nanocomposites, 7
كلمة سر فك الضغط : books-world.net
The Unzip Password : books-world.net
تحميل
يجب عليك التسجيل في الموقع لكي تتمكن من التحميل
تسجيل | تسجيل الدخول