Heat and Mass Transfer

Heat and Mass Transfer
اسم المؤلف
R.K. RAJPUT
التاريخ
25 أكتوبر 2022
المشاهدات
275
التقييم
Loading...

Heat and Mass Transfer
A textbook for the students preparing for B.E., B.Tech., B.Sc. Engg., AMIE,
UPSC (Engg. Services) and GATE Examinations
IN
Er. R.K. RAJPUT
M.E. (Hons.), Gold Medalist; Grad. (Meeh. Engg. & Elec. Engg.); MIE (India)
MSESI; MISTE; CE (India)
Recipient of :
“Best Teacher (Academic) Award”
“Distinguished Author Award”
“Jawahar Lal Nehru Memorial Gold Medal”
for an Outstanding Research Paper
(Institution of Engineers-lndia)
Principal (Formerly)
Punjab College of Information Technology
PATIALA
CON
Chapters
Nomenclature

  1. BASIC CONCEPTS
    Pages
    (xv)—(xvi)
    1- 24
    1.1.
    1.2.
    1.3.
    1.4.
    Heat Transfer—General Aspects, 1
    1.1.1. Heat, 1
    1.1.2. Importance of heat transfer, 2
    1.1.3. Thermodynamics, 2
    1.1.3.1. Definition, 2
    1.1.3.2. Thermodynamic systems, 3
    1.1.3.3. Macroscopic and microscopic points of view, 4
    1.1.3.4. Pure substance, 4
    1.1.3.5. Thermodynamic equilibrium, 5
    1.1.3.6. Properties of systems, 6
    1.1.3.7. State, 6
    1.1.3.8. Process, 6
    1.1.3.9. Cycle, 7
    1.1.3.10. Point function, 7
    1.1.3.11. Path function, 7
    1.1.3.12. Temperature, 7
    1.1.3.13. Pressure, 8
    1.1.3.14. Energy, 8
    1.1.3.15. Work, 8
    1.1.3.16. Heat, 9
    1.1.3.17. Comparison of work and heat, 11
    1.1.4 Differences between thermodynamics
    and heat transfer, 10
    1.1.5. Basic laws governing heat transfer, 10
    1.1.6. Modes of heat transfer, 11
    Heat Transfer by Conduction, 13
    1.2.1. Fourier’s law of heat conduction, 13
    1.2.2. Thermal conductivity of materials, 14
    1.2.3. Thermal resistance (Rth), 16
    Heat Transfer by Convection, 18
    Heat Transfer by Radiation, 19
    Highlights, 22
    Theoretical Questions, 24
    Unsolved Examples, 24
    PART I : HEAT TRANSFER BY “CONDUCTION”
  2. CONDUCTION-STEADY-STATE ONE DIMENSION 27—268
    2.1. Introduction, 27
    2.2. General Heat Conduction Equation in Cartesian Coordinates, 27
    2.3. General Heat Conduction Equation in Cylindrical Coordinates, 32
    2.4. General Heat Conduction Equation in Spherical Coordinates, 35
    (vn)2.5. Heat Conduction Through Plane and
    Composite Walls, 38
    2.5.1. Heat conduction through a plane wall, 38
    2.5.2. Heat conduction through a composite
    wall, 42
    2.5.3. The overall heat transfer coefficient, 45
    2.6. Heat Conduction Through Hollow and
    Composite Cylinders, 87
    2.6.1. Heat conduction through a hollow cylinder, 87
    2.6.1.1. Logarithmic mean area for the hollow cylinder, 93
    2.6.2. Heat conduction through a composite cylinder, 94
    2.7. Heat Conduction Through Hollow and Composite Spheres, 128
    2.7.1. Heat conduction through a hollow sphere, 128
    2.7.1.1. Logarithmic mean area for the hollow sphere, 131
    2.7.2. Heat condition through a composite sphere, 132
    2.8.
    2.9.
    2.10.
    Critical Thickness of Insulation, 142
    2.8.1. Insulation-General aspects, 142
    2.8.2. Critical thickness of insulation, 143
    Heat conduction with Internal Heat Generation, 150
    2.9.1. Plane wall with uniform heat generation, 150
    2.9.2. Dielectric heating, 167
    2.9.3. Cylinder with uniform heat generation, 171
    2.9.4. Heat transfer through the piston crown, 192
    2.9.5. Heat conduction with heat generation in the
    nuclear cylindrical fuel rod, 193
    2.9.6. Sphere with uniform heat generation, 200
    Heat Transfer from Extended Surfaces (Fins), 203
    2.10.1.Introduction, 203
    2.10.2. Heat flow through “Rectangular fin”, 205
    2.10.2.1. Heat dissipation from an infinitel
    2.10.2.2. Heat dissipation from a fin insulated at the tip, 213
    2.10.2.3. Heat dissipation from a fin losing heat at the tip, 224
    2.10.2.4. Efficiency and effectiveness of fin, 233
    2.10.2.5. Design of rectangular fins, 238
    2.10.3. Heat flow through “straight triangular fin”, 242
    2.10.4.Estimation of error in temperature measurement in a thermometer well, 245
    2.10.5.Heat transfer from a bar connected to the two heat sources at different
    temperatures, 250
    Highlights, 259
    Theoretical Questions, 263
    Unsolved Examples, 263
  3. CONDUCTION-STEADY-STATE TWO DIMENSIONS AND THREE
    DIMENSIONS 269-289
    3.1. Introduction, 269
    3.2. Two Dimensional Steady State Conduction, 270
    3.2.1. Analytical method, 270
    (viii)3.2.1.1. Two-dimensional steady state heat con¬
    duction in rectangular plates, 270
    3.2.1.2. Two-dimensional steady state heat con
    duction in semi-infinite plates, 272
    3.2.2. Graphical method, 277
    3.2.3. Analogical method, 284
    3.2.4. Numerical methods, 285
    3.3. Three-dimensional Steady State Conduction, 287
    Highlights, 289
    Theoretical Questions, 289
    Unsolved Examples, 289
  4. CONDUCTION-UNSTEADY-STATE (TRANSIENT) 290—336
    4.1. Introduction, 290
    4.2. Heat conduction in Solids having Infinite Thermal
    Conductivity (Negligible Internal Resistance) —
    Lumped Parameter Analysis, 291
    4.3. Time constant and Response of Temperature
    Measuring Instruments, 304
    4.4. Transient Heat Conduction in Solids with Finite
    Conduction and Convective Resistances
    (0 < B. < 100), 308 4.5. Transient Heat Conduction in Semi-infinite Solids (h or B. «>), 318
    4.6. Systems with Periodic Variation of Surface Tem¬
    perature, 326
    4.7. Transient Conduction with Given Temperature Distribution, 328
    Typical Examples, 328
    Highlights, 329
    Theoretical Questions, 333
    Unsolved Examples, 333
    PART II : HEAT TRANSFER BY “CONVECTION”
  5. INTRODUCTION TO HYDRODYNAMICS
    5.1. Introduction, 339
    5.2. Ideal and Real Fluids, 339
    5.3. Viscosity, 340
    5.4. Continuity Equation in Cartesian Coordinates, 341
    5.5. Equation of Continuity in Polar Coordinates, 343
    5.6. Velocity Potential and Stream Function, 343
    5.6.1. Velocity potential, 343
    5.6.2 Stream function, 345
    5.7. Laminar and turbulent flows, 347
    Highlights, 350
    Theoretical Questions, 351
    339-351
    (.VC)6. DIMENSIONAL ANALYSIS 352 — 372
    7.
    A.
    6.1. Introduction, 352
    6.2. Dimensions, 353
    6.3. Dimensional Homogeneity, 353
    6.4. Methods of Dimensional Analysis, 354
    6.4.1. Rayleigh’s Method, 354
    6.4.2. Buckingham’sK-Method/Theorem, 356
    6.5. Dimensional Analysis Applied to Forced Convection
    Heat Transfer, 362
    6.6. Dimensional Analysis Applied to Natural or Free
    Convection, 364
    6.7. Advantages and Limitations of Dimensional
    Analysis, 365
    6.8. Dimensional Numbers and their Physical
    significance, 366
    6.9. Characteristic Length or Equivalent Diameter, 369
    6.10. Model Studies and Similitude, 371
    6.10.1. Model and prototype, 371
    6.10.2. Similitude, 371
    Highlights, 371
    Theoretical Questions, 372
    FORCED CONVECTION
    LAMINAR FLOW,373
    7.1. Laminar Flow over a Flat Plate, 373
    7.1.1. Introduction to boundary layer, 373
    7.1.1.1. Boundary layer definitions and
    characteristics, 374
    7.1.2. Momentum equation for hydrodynamic
    boundary layer over a flat plate, 380
    7.1.3. Blasius (exact) solution for laminar boundary
    layer flows, 382
    7.1.4. Van-Karman integral momentum equation
    (Approximate hydro-dynamic boundary layer
    analysis), 387
    7.1.5. Thermal boundary layer, 398
    7.1.6. Energy equation of thermal boundary layer
    over a flat plat, 399
    7.1.7. Integral energy equation (Approximate
    solution of energy equation), 406
    7.2. Laminar Tube Flow, 424
    7.2.1. Development of boundary layer, 424
    7.2.2. Velocity distribution, 425
    7.2.3. Temperature distribution, 428
    373- 505
    WB.TURBULENTFLOW,435
    7.3. Introduction, 435
    7.3.1. Turbulent boundary layer, 436
    7.3.2. Total drag due to laminar and turbulent
    layers, 439
    7.3.3. Reynolds analogy, 446
    7.4. Turbulent Tube Flow, 457
    7.5. Empirical Correlations 465
    7.5.1. Laminar flow over flat plates and walls, 465
    7.5.2. Laminar flow inside tubes, 466
    7.5.3. Turbulent flow over flat plate, 470
    7.5.4. Turbulent flow in tubes, 470
    7.5.5. Turbulent flow over cylinders, 480
    7.5.6. Turbulent flow over spheres, 486
    7.5.7. Flow across bluff objects, 487
    7.5.8. Flowthrough packed beds, 487
    7.5.9. Flow across a bank of tubes, 489
    7.5.10. Liquid metal heat transfer, 492
    Highlights, 495
    Theoretical Questions, 499
    Unsolved Examples, 500
  6. FREE CONVECTION 506- 538
    8.1. Introduction, 506
    8.2. Characteristic Parameters in Free Convection, 507
    8.3. Momentum and Energy Equation for Laminar Free Convection Heat
    Transfer on a Flat Plate, 508
    8.4. Integral Equations for Momentum and Energy on a Flat Plate, 509
    8.4.1. Velocity and temperature profiles on a vertical flat plate, 509
    8.4.2. Solution of integral equations for vertical flat plate, 510
    8.4.3. Free convection heat transfer coefficient for a vertical wall, 511
    8.5. Transition and Turbulence in Free Convection, 512
    8.6. Empirical Correlations for Free Convection, 512
    8.6.1. Vertical platesand cylinders, 512
    8.6.2. Horizontal plates, 512
    8.6.3. Horizontal cylinders, 513
    8.6.4. Inclined plates, 513
    8.6.5. Spheres, 513
    8.6.6. Enclosed spaces, 513
    8.6.7. Concentric cylinders space 514
    8.6.8. Concentric spheres spaces, 514
    8.7. Simplified Free Convection Relations for Air, 514
    8.8. Combined Free and Forced Convection, 514
    8.8.1. External flows, 515
    8.8.2. Internal flows, 515
    Typical Examples, 533
    Highlights, 536
    Unsolved Examples, 537
    (xi)9. BOILING AND CONDENSATION 539- 573
    9.1. Introduction, 539
    9.2. BoilingHeat Transfer, 540
    9.2.1. General aspects, 540
    9.2.2. Boilingregimes, 541
    9.2.3. Bubble shape and size consideration, 542
    9.2.4. Bubble growth and collapse,543
    9.2.5. Critical diameter of bubble, 544
    9.2.6. Factors affectingnucleate boiling, 544
    9.2.7. Boilingcorrelations, 545
    9.2.7.1. Nucleate pool boiling, 545
    9.2.7.2. Critical heat flux for nucleate pool
    boiling, 546
    9.2.7.3. Film pool boiling, 546
    9.3. Condensation Heat Transfer, 550
    9.3.1. General aspects, 550
    9.3.2. Laminar film condensation on a vertical plate, 552
    9.3.3. Turbulent film condensation, 557
    9.3.4. Film condensation on horizontal tubes, 558
    9.3.5. Film condensation inside horizontal tubes, 558
    9.3.6. Influence ofthe presence of non-condensable gases, 559
    Highlights, 570
    Theoretical Questions, 572
    Unsolved Examples, 572
  7. HEAT EXCHANGERS 574- 669
    10.1. Introduction, 574
    10.2. Types of Heat Exchangers, 574
    10.3. Heat Exchanger Analysis, 580
    10.4. Logarithmic Mean Temperature Difference (LMTD), 581
    10.4.1. Logarithmic mean temperature difference for
    parallel-flow, 581
    10.4.2. Logarithmic mean temperature difference
    for counter-flow, 583
    10.5. Overall Heat Transfer Coefficient, 585
    10.6. Correction Factors for Multi-pass
    Arrangements, 622
    10.7. Heat Exchanger Effectiveness and Number of
    Transfer Units (NTU), 627
    10.8. Pressure Drop and PumpingPower, 631
    10.9. Evaporators, 659
    10.9.1. Introduction, 659
    10.9.2. Classification of evaporators, 659
    Highlights, 665
    Theoretical Questions, 666
    Unsolved Examples, 666
    (xii)PART III : HEAT TRANSFER BY “RADIATION”
  8. THERMAL RADIATION-BASIC RELATIONS 673- 687
    11.1. Introduction, 673
    11.2. Surface Emission Properties, 674
    11.3. Absorptivity,Reflectivity and Transmissivity, 675
    11.4. Concept of a Black body, 677
    11.5. The Stefan-Boltzmann Law, 678
    11.6. Kirchoff’s Law, 678
    11.7. Planck’s Law, 679
    11.8. Wien Displacement Law, 680
    11.9. Intensity of Radiation and Lambert’s
    Cosine Law, 681
    11.9.1. Intensity of radiation, 681
    11.9.2. Lambert’s cosine law, 683
    Highlights, 686
    Theoretical Questions, 687
    Unsolved Examples, 687
    12.RADIATION EXCHANGE BETWEEN SURFACES 688 — 764
    12.1. Introduction, 688
    12.2. Radiation Exchange Between Black
    Bodies Separated by an a Non-absor¬
    bingMedium, 688
    12.3. Shape Factor Algebra and Salient
    Features of the Shape Factor, 692
    12.4. Heat Exchange Between Non-black
    Bodies, 710
    12.4.1. Infinite parallel planes, 710
    12.4.2. Infinite longconcentric
    cylinders, 710-711
    12.4.3. Small gray bodies, 714
    12.4.4. Small body in a large enclosure, 714
    12.5. Electrical Network Analogy for Thermal Radiation Systems, 716
    12.6. Radiation Heat Exchange for Three Gray Surfaces, 718
    12.7. Radiation Heat Exchange for Two Black Surfaces Connected by a Single Refractory
    surface, 719
    12.8. Radiation Heat Exchange for Two Gray Surfaces Connected by Single Refractory
    Surface, 720
    12.9. Radiation Heat Exchange for Four Black Surfaces, 721
    12.10. Radiation Heat Exchange for Four Gray Surfaces, 721
    12.11. Radiation Shields, 742
    12.12. Coefficient of Radiant Heat Transfer and Radiation Combined with Convection, 754
    12.13. Error in Temperature Measurement due to Radiation, 756
    12.14. Radiation from Gases, Vapours and Flames, 760
    Highlights, 762
    Theoretical Questions, 763
    Unsolved Examples, 763
    (xiii)PART IV : MASS TRANSFER
    13.MASS TRANSFER 767—808
    13.1. Introduction, 767
    13.2. Modes of Mass Transfer, 768
    13.3. Concentrations, Velocities and Fluxes, 768
    13.3.1. Concentrations, 768
    13.3.2. Velocities, 769
    13.3.3. Fluxes, 770
    13.4. Fick’s Law, 772
    13.5. General Mass Diffusion Equation in
    Stationary Media, 777
    13.6. Steady-State Diffusion in Common
    Geometries, 779
    13.6.1. Steady state diffusion through
    a plain membrane, 779
    13.6.2. Steady state diffusion through
    a cylindrical shell 781
    13.6.3. Steady state diffusion through
    aspherical shell, 783
    13.7. Steady-State Equimolar Counter Diffusion, 785
    13.8. Steady State Undirectional Diffusion (Steady state Diffusion through a stagnant Gas
    Film), 788
    13.9. Steady State Diffusion in Liquids, 794
    13.10. Transient Mass Diffusion in Semi-finite Stationary Medium, 795
    13.11. Mass Transfer Co-efficient, 796
    13.12. Convective Mass Transfer, 799
    13.13. Correlations for Connective Mass Transfer, 800
    13.14. Reynolds and Colburn Analogies for Mass Transfer-Combined Heat and
    Mass Transfer, 801
    Highlights, 805
    Theoretical Questions,806
    Unsolved Examples, 807
  9. UNIVERSITIES’ QUESTIONS (Latest) – with Solutions 809-821
    ADDITIONAL/TYPICAL WORKED EXAMPLES 822-845
    (QuestionsselectedfromUniversities’and Competitive Examinations)
    PART V : OBJECTIVE TYPE QUESTIONS
    BANK WITH ANSWERS & INDEX
    Objective Type Questions
    Index
    849-901
    902-903
    (xiv)INDEX
    B
    Biot number, 294
    Black body, 676
    Blasius exact solution for laminar boundary
    layer flow, 382
    Boiling and condensation, 539
    Boiling heat transfer, 540
  • boilingcorrelations,545
  • boilingregimes,541
  • bubble growth and collapse, 543
  • bubble shape and size consideration, 542
  • critical diameterof bubble,544
  • factorsaffecting nucleateboiling,544
    c
    Characteristic length, 369
    Condensation heat transfer, 550
  • dropwise condensation, 551
  • film condensation,551
  • laminar film condensation on a
    vertical plate, 552
  • turbulent film condensation, 557
    Convective mass transfer, 799
    correlation for, 800
    Conduction-unsteady state, 290
  • in semi-finite solids, 318
  • lumped parameter analysis, 291
  • thermal time constant, 293
    Conduction shape factor, 279
    Continuity equation, 341
  • in cartesian coordinates, 342
  • in polar coordinates, 343
    Critical thickness of insulation, 143
  • for cylinder, 143
  • for sphere, 145
    Cycle, 7
    D
    Dimensional analysis, 352
    Dimensions, 353
    Dimensional homogeneity, 353
  • advantages and limitations of, 365
  • applications of, 353
  • applied to forced convention heat
    transfer, 362
  • applied to natural or free convection heat
    transfer, 364
  • methods of, 354
  • Buckingham’s method, 356
    Dimensional numbers, 366
    E
    Energy, 8
    Evaporators, 659
    F
    Fick’s law, 772
    Forced convection, 373
  • empirical correlationsfor, 465
  • laminar flowover flat platesand walls, 465
  • laminar flow inside tubes, 466
  • turbulent flow over flat plate, 470
  • turbulent flow in tubes, 470
  • turbulent flow over cylinders, 480
  • turbulent flow over spheres, 486
  • flow across bluff bodies, 487
  • flow through packed beds, 489
  • flow across a bank of tubes, 489
  • liquid metal heat transfer, 492
  • laminar flowovera flat plate, 373
  • boundary layer thickness, 375
  • displacement thickness, 375
  • energy thickness, 377
  • integral energy equation, 406
  • momentum thickness, 376
  • momentum equation for hydrodynamic
    layer, 380
  • thermal boundary layer, 398
  • Fourier’s law, 13
    Fourier number, 294
    Free convection, 506
  • characteristics parameters in, 507
  • empiricalcorrelations,512
  • concentric cylinders spaces, 514
  • enclosed spaces, 513
  • horizontal plates, 512
  • horizontal cylinders, 513
  • inclined plates, 512
  • spheres, 513
  • vertical plates and cylinders, 512
  • transition and turbulence in, 512
    G
    Gaussian error function, 319
    H
    Heat, 1, 9
    Heat exchangers, 574
  • analysis of, 580
  • compact, 579
  • concentric tubes, 578
  • condensers, 579
  • counter-flow, 576
  • cross-flow, 577
  • effectiveness and NTU, 627
  • logarithmic mean temperature
    difference, 581
  • for parallel-flow,581
  • for counter-flow, 583
  • overall heat transfercoefficient, 585
  • parallel-flow,576
  • pressure drop and pumping power, 631
  • recuperators, 576
  • regenerators,575
  • types of, 563
    Heat transfer, 1
  • from fins, 203
    902Chapter : 9 : Boiling and Condensation 903
  • straight triangular fin, 242
  • rectangular fin, 205
  • modes of, 11
  • conduction, 11
  • convection, 12
  • radiation, 12
    Heister charts, 309
    I
    Integral energy equation, 406
    K
    Kirchhoff’s law, 19, 678
    L
    Laminar flow, 347, 373
  • over a flat plate, 373
    Lambert’s cosine law, 681
    Laminar tube flow, 424
  • development of boundary layer, 424
  • temperature distribution, 428
  • velocity distribution, 425
    M
    Mass transfer, 767
  • concentrations, 768
  • mass concentration, 768
  • mass fraction, 769
  • molar concentration, 768
  • mole fraction, 769
  • convective mass transfer, 799
  • mass diffusion coefficient, 774
  • fluxes,770
  • mass diffusion equation, 777
  • mass transfer coefficient, 796
  • modes of, 768
  • by change of phase, 768
  • by convection, 768
  • by diffusion, 768
  • steady state equimolar counter
    diffusion, 785
  • velocities, 769
  • mass-average velocity,769
  • mass-diffusion velocity, 770
  • molar-average velocity,769
  • molar-diffusion velocity, 770
    Model studies and similitude, 371
    o
    Opaque body, 676
    Overall heat transfer coefficient, 45
    P
    Path function, 7
    Planck’s law, 679
    Point function, 7
    Process, 6
    Pure substance, 4
    R
    Radiation exchange between surfaces, 688
  • electrical network analogy, 716
  • gray body factor, 718
  • irradiation, 716
  • radiosity, 716
  • space resistance, 717
  • heatexchange between non-black
    bodies, 710
  • infinite parallel planes, 710
  • infinite long concentric cylinders, 711
  • small gray bodies, 714
  • small body in a largeenclosure, 714
  • radiation shields, 742
  • shape factor algebra, 692
    Radiation heat transfer, 673
  • absorptivity, reflectivity and
    transmissivity, 675
  • black body, 676
  • intensity of radiation, 681
  • surface emission properties, 674
  • monochromatic emissive power, 674
  • total emissive power, 674
  • the Stefan-Boltzmann law, 678
    Rayleigh’s method, 354
    Rectangular fin, 205
  • design of, 238
  • effectiveness of, 233
  • efficiency of, 233
    Recuperators, 576
    Regenerators, 575
    Reynolds number, 349
    s
    Shape factor algebra, 692
    State, 6
    Stefan-Boltzmann law, 678
    Stefan’s law for diffusion, 790
    Stream function, 345
  • properties of, 346
    T
    Temperature, 7
    Thermal conductivity, 14
    Thermal resistance, 16
    Thermal boundary layer, 398
  • energy equation of, 399
  • Pohlhausen solution, 401
    Thermal contact resistance, 44
    Thermal diffusivity, 30
    Thermodynamics, 3
    Thermodynamic equilibrium, 5
    Thermodynamic systems, 3
    Turbulent flow, 348, 435
    Turbulent boundary layer, 436
    Turbulent tube flow, 457
    V
    Velocity potential, 343
    Viscosity, 340
  • Newton’s law of, 341
  • units of, 341
    Von Karman integral momentum equation, 387
    W
    White body, 676
    Wien’s displacement law, 680
    Wien’s law, 19
    Work, 8

كلمة سر فك الضغط : books-world.net
The Unzip Password : books-world.net

تحميل

يجب عليك التسجيل في الموقع لكي تتمكن من التحميل
تسجيل | تسجيل الدخول

التعليقات

اترك تعليقاً