Fundamentals of Process Safety

Fundamentals of Process Safety
اسم المؤلف
Vie Marshall and Steve Ruhemann
التاريخ
1 أبريل 2024
المشاهدات
337
التقييم
(لا توجد تقييمات)
Loading...

Fundamentals of Process Safety
Vie Marshall and Steve Ruhemann
Contents
Foreword iii
Acknowledgements vii
Introduction 1
1 Basicconcepts 6
1.1 Processsafety 6
1.2 Theconcept ofahazard system 9
1.3 Thecharacterizationofhazards 13
1.4 Theassessmentofhazards 17
Referencesin
Chapter 1 23
2 Hazard sourcesand their realizations 25
2.1 Introduction 25
2.2 Causation andrealizations 26
2.3 Passivehazards 35
2.4 Mechanical
energyreleases 36
2.5 Pressure
energy releases 40
2.6 Thermal
energyreleases 57
2.7 Chemical
energyreleases—general principles 67
2.8 Runawayreactions 80
2.9 Deflagrations anddetonations — general principles 92
2.10 Chemical
energyreleases—unconfined deflagrations 96
2.11 Chemical
energyreleases—confined deflagrations 109
2.12 Explosive deflagrations 115
2.13 Detonations 121
2.14 Deflagrations anddetonations — specificpowercompared 128
Referencesin
Chapter 2 129
ix3 Transmission pathsandattenuation 133
3.1 General principles 133
3.2 Theatmosphere asatransmission path 136
33 Waterasatransmission
path 153
3.4 Thegroundasatransmission path 156
3.5 Barriers 157
ReferencesinChapter3 158
4 Harmtoreceptors 160
4.1 General principles 160
4.2 Injuryanddamage 162
4.3 Concepts of dose 164
4.4 Correspondence between dose andharm 172
4.5 Harm topeoplefrompressure energy releases 177
4.6 Harm topeoplefromthermal energyreleases 180
4.7 Harm topeoplefromasphyxiants 186
4.8 Harm topeoplefromtoxics 188
4.9 Harm topeoplefromcorrosives 192
4.10 Harm toequipmentandbuildingsfromemissions of pressureenergy 194
4.11 Harm toequipment,materials andbuildingsfromemissionsofthermalenergy 197
4.12 Harm totheenvironmentfromacuteemissions 201
Referencesin
Chapter4 202
AppendixtoChapter 4—toxicitydatasheets 205
5 Significant casehistories 211
5.1 Abbeystead(UK) 212
5.2 Anglesey(UK) 213
5.3 Basel(Switzerland) 214
5.4 Bhopal (India) 215
5.5 Bolsover (UK) 217
5.6 Boston (USA) 217
5.7 Bradford (UK) 218
5.8 Camelford (UK) 219
5.9 Castleford (UK) 220
5.10 Cleveland (USA) 222
5.11 CrescentCity(USA) 223
5.12 Feyzin (France) 225
5.13 Flixborough (UK) 227
5.14 Guadalajara(Mexico) 228
5.15 Houston(USA) 229
5.16 Ludwigshafen (Germany) 230
x5.17 Manchester Ship Canal(UK) 231
5.18 Mexico City(Mexico) 232
5.19 Mississauga(Canada) 233
520 Oppau(Germany) 233
5.21 Organic peroxides 234
5.22 PortHudson (USA) 235
5.23 Seveso(Italy) 235
5.24 Spanish campsite disaster 237
5.25 Staten Island (USA) 239
526 Stevenston
(UK) 239
527 TexasCity(USA) 240
Referencesin
Chapter 5 241
6 Controlof
processhazards 245
6.1 Introduction 245
6.2 Thestrategicapproach tohazard reduction 254
6.3 Theacceptability ofrisks 270
6.4 Safety andmanagement 272
6.5 Theroleofthelaw 278
6.6 Concluding remarks 280
ReferencesinChapter 6 280
Index 284
Index
A ANFO 126
Abbeystead 111,212 Anglesey 113,213
absorptioncoefficient 178 Arrhenius equation 76, 82
acceptability ofrisks 270—272 as low asis reasonablypracticable
accidents 12 (ALARP) 272
activation energy 76, 78, 79 asphyxia 36
active hazards 12, 25 asphyxiants 146
acute
exposures 160 dose versus harm 187
acutesources ofhazards 12 harmtopeople from 186—188
adaptivecontrol 265 types 187
adiabatic calorimetry 91 asphyxiation 229
adiabatic flame temperature 106 definition 186
adiabatic temperature rise 91, 97 atmosphere asatransmission path
AdvisoryCommittee onMajor 136—153
Hazards 228 compared towater 154
agro-chemicals 214 atmosphericheating 238
alann
systems 199 atmosphericmonitoring 266
ALARP (seeas low asisreasonably atmosphericresistance to
practicable) moving objects 143—145
algorithms 265 atmospheric stability 151
aluminiumpowder 213 attenuation 13, 133
aluminium sulphate 219—220 byabsorption ofenergy 135
Amatol 126 bydilution 135
ammonia 47—49,50, 229,230 bydistance 260—261
toxicity data sheet 205 factors 133, 168
ammonium nitrate 108, 126, 127, geometrical 134—135
234,240 ofrarefiedexplosions 142
ammonium perchlorate 126 auditing ofsafety systems 277,278
ammonium sulphate 234 automation 264
amplification 134 azodiisobutyronitrile
anaerobic combustion 240 (AZDN) 218—219
284INDEX
B Boston 217—218, 257
Badische Anilin undSodaFabriek Bradford 199, 201, 202,218—219, 269
(BASF) 233 breathing apparatus 158, 192
barriers 133, 157—158, 167, brisance 127, 143
259,261, 262 buildings 228, 261
ofattenuation 161 blastdamage 196
construction ofplantand blast-resistant 158
buildings 261 and fire 200—201
natureof 157 harmfromemissions of
permanent 158,261—262 pressure energy 194—197
temporary 158 harmfromemissions of
Basel 156, 199,201, 202,214—215 thermalenergy 197—201
batchproduction 264 bundwalls 158
batchreactors 81, 259 bunds 60, 194,217, 225
bellows, failures of 33 buoyancy 57, 58, 146
Bhopal 78, 80, 90,215—216, 258, 262 ofsomegases atambient
binarypropellants 114 temperature 147
BiotNumber 87 buoyant
blast 241 insoluble liquidson flowing
from conventional explosives 195 water 155
from nuclear
weapons 195 insoluble liquidson staticwater 154
from
vapourcloudexplosions 195 soluble liquids onflowingwater 156
blastdamage 238 solubleliquidsonstaticwater 155
representative values for burning 96
buildings 196 burns
representative values for coldcontact 185
equipment 195 degreesofseverity 182
blastdose 168 extentofinjury 182—183
blast
energy 140, 141, 195 burnsand scalds, nature of 181
blastwalls 158, 259 burstingdisks 235, 236,266
blastwaves 30,94, 95, 135, butadiene 230
137—143,227 butylene 230
duration 179
energy 178
properties 138—139
blast-resistantbuildings 158 C
BLEVEs (seeboilingliquid Camelford 219—220
expanding vapourexplosions) caprolactam 227
boiling liquidexpanding vapour carbon monoxide 190
explosions (BLEVEs) 34, 51, 106, toxicitydata sheet 206
200,224, 225,232,233 case histories 211—244
Bolsover 78,217 Castleford 113, 220—222
‘bolt-on’devices 246,250 catalysis 77
bondenergies 73, 74 catalysts 79,258
285FUNDAMENTALSOF PROCESS SAFETY
catastrophic failure
of
pressure vessels
causation andrealizations
caustic
caustic soda
centrifuges
109—115
68—69
67—80
96—109
257
81
148
217,236
50
207
160
12
155,222—223
120
120
279
of 100—101
180—181
185
combustion 97,99—100, 102,
anaerobic
ofcokeand coal
controlled anduncontrolled
ofliquids 101—102
ofsubstances inmassive form
ofwood
combustion and detonation, energy
releases compared 126
combustion and fire 96
combustion reactions, preconditions 99
286
communication, clarity of
compensation
components
compressed gas releases
specificenergy
specificpower
computer-managementofcontrol
systems
concentration
conceptual model
condensation
conduction
confined deflagrations 93, 95,
dust/airmixtures
gas/airmixtures
natureof
propellants
confinedexplosions
confined
gas explosions
confined
spaces
confinement
conflagrations
continuous reactors 82
contractors
controlbuildings
control of
process hazards
control
systems
controlled explosions
238 convection
66—67 conveyer systems
238 cool flames 97
103, 198 copper 220
240 cordite 114
100—101 coretemperature 180—181
99 correlation ofharmwithdose 174—177
correspondence for thermal injury 184
corrosive, definition 192
100—102 corrosives
101 attenuation ofharm
harmto people from
natureof
194
192—194
193—194
102
34
34
266
26—35
193, 236
233
39
101
106
276
214,219,271
30
53—54
54
54
264
174
255,256
266
57
109—115
111—1 13
110-111
109
113—115
223
239
270
96
51, 96, 109, 223,
225,227, 238, 263
charcoal
Charles’s Law
chemical
energyreleases
confineddeflagrations
energyandpower
generalprinciples
unconfined deflagrations
chemical properties ofprocess
materials
chemical reactor types
chimney plumes
chloracne
chlorine
toxicitydatasheet
chronic exposures
chronic sources ofhazards
Cleveland 34,56, 109,
coal dustexplosions
coal mines, deflagrations
CodesofPractice
cokeandcoal, combustion
cold, harmfrom
coldcontact burns
coldliquid
coldmaterials releases
collisions
269,274
196, 228,261
245—283
263—265, 267
30
57, 197—198
120
cracking
cracksINDEX
craters 127, 234 comparison withdefiagrations 121
Crescent City 37, 223—224, 233 consequences 94—95
critical temperature 43, 44 dense-phase 123—128
critical temperatureexcess 86, 92 interchangeability ofmode 95
cryogenic liquids 54, 67 ofgas/airmixtures 121—122
cumulative frequency 253 general principles 92—95
cyclohexane 119,227 nature of 121
open-air gas/airmixtures 122
D specificpower 128—129
damage 161 taxonomy 94
classification 163 theory 121—122
dangerous toxicload 189 typicalparameters 129
decontamination 202 detriment 255
defiagrations (see alsodetonations) 229 dilution 146
ofaerosols 113 dimensional analysis 164
incoalmines 120 dimethyl ether 230
confined 93, 95, 109—115 dioxin 202, 217,236,237
consequences 94—95 directdigitalcontrol 264
definition 92 dispersion models 152—153
explosive 92, 93, 95, 116—120 dog-leg pipes 227
gas-phase 103—106 domino effect 199,228,232
general principles 92—95 dose 160, 171, 173, 174
interchangeabilityofmode 95 concepts 164-172
ofpowders anddroplets 102—103 definitions 165, 166
specificpower 128—129 dimensional analysis 166
taxonomy 94 anddirectinjury 179
typicalparameters 129 fromblastwaves 177
unconfined 93,95, 96—109 indices 168—171
defoliation 236 relationship toemission 167
denseexplosives 179 symbols and dimensions 167
dense-phase detonations 123—128 thresholdvalues 177
near-field effects 127 doseinblast, summary of
dense-phase explosions 233 expressions 171
dense-phase explosives, classification doseandcorrosives 193
123 doseandharm,correspondence
dense-phase reactions 107 between 172—177
dense-phasesystems 93, 121 doseindex 174
depthofthewavefront 178 doserate 174
derailment 224 doseandthermal
energy 183—184
detonation, definition 92 dose-harm relationship 174
detonation velocities 142 Dow Fire and Explosion Index 248
of
gasesin air 122 dragcoefficient 178
detonations (see also defiagrations) droplets, defiagrations 102—103
95, 119, 121—128, 140, 234,235,240 drums 239
287FUNDAMENTALSOF PROCESS SAFETY
dumping 259 explosions 29—30,238
duration attenuation ofharm 197
ofblastwaves 95 confined 223
of
exposure 174 confined gas 239
offireballs 64 controlled 30
dustexplosions 95, 111—112,213 dense-phase 233
dust/airmixtures 111—113, 120 explosive deflagrations 92,93, 95,
dusts 115—120,229
hazardous concentrations 112 ofdust inprocess plant 120
particle size 112 dust/airmixtures 120
energyandpoweremissions 119
factorswhichleadtothem 116
E gas/air mixtures 116—120
Eisenberg doseequation 183—184 ofgasesinlongducts 116—117
Eisenberg probit 184 intheopen air 117—118
electric
powersupply 265 explosives
embrittlement 223 behaviour onunconfined
emergency barriers 262 deflagration 108—109
emergency refuges 228 definition 107
emergency services 219, 260 dense-phase 123
emergency watercooling 259 natureof 108
emissivity 59, 62 primary 123—124
enclosed
spaces 36 secondary 124—125
energyflux 164, 174 tertiary 126
energyandpower 25—26 exposure 160, 164—166, 171, 172
enhanced
oxygenconcentrations 104 definition 165
enthalpy 70, 71, 72 toblast 179
entropy 26 tothermal energy 181
environmental pollution 198, 199, extended surfaces 258
201—202, 219
enzymes 98
equipment 31 F
blastdamage 195 f/Ncurves 253
designand selection 263 f/Ndiagrams 19, 20, 21,253
electrical 263 f/Nhistograms 18, 19, 20
harmfromemissions of
pressure failure categories 30—31
energy 194-197 components 30
harmto 194—201 equipment 31
evacuation 261 machinery 31
event-treeanalysis 22, 254 vessels 31
exotherm 237 failure data 31
expansion factor 105 failure modes 28
expected value 255 failure pressure 111
explosion-proofing 261 failure rates 32
288failures
ofbellows
ofmachinery
ofpipes
ofpipingsystems 31
of
pumps 33
ofvessels 33
FAR(see fatalaccident rate)
fatalaccident rate (FAR) 252
fault-tree/event-tree diagram 255
fault-treeanalysis 22, 251, 253
ferry accident 231
fertilizer 240
Feyzin 34, 45, 52,63, 106, 109, 200,
225—226, 232, 262, 263
260, 262
200—201
fire brigade
fireandbuildings
fire station
fire triangle
fire-fighting
fire-fightingwater
fire-water
fireballs
definition
duration
physics
power
radiativeflux
radius
surface temperature
fires
jet
secondary
in
storage
FirstLawofThermodynamics
flame front
flame speeds
flames
cool
from poolfires
jet
luminous
nature of
33 types
33 flammability limits
32 ofhydrocarbons inair
flammable clouds
flammable liquids
flammable
vapour
flaring
flashfires 60,
flash point
flashing
flow diagrams
fluidmechanics, definition
foam
systems
foodchain
foodstuffs
59
60
99, 102, 103
104
146
223
238, 239
266
106,225, 238
102
44—52,225, 238
INDEX
energyrelease 48
physical models 45
power 50
volume of
vapour 48
flashing fraction 45—47
Flixborough 33,45, 109, 117, 119, 122,
195, 227—228, 235, 247,
258, 260,261,262, 270
7
240
99
226,262
199
214, 218, 219
60, 62—66, 106, 213, 224,
232, 238, 239
145
199
202, 236
111
flash 60, 106,225,238
62 forcedconvection 58
64 forklifttrucks 239
63 Frank-Kamenetskii 82,87
64 frequency 15—21,27, 250,251, 253,
65 255, 263
63 definition 15
65 fuel 99, 103
220 fundamentalburningvelocity 105
232 G
241
gasdetonations, power 122
198—200 gasdispersion 145—153
71, 77 gasreleases 43—44,53—54
119 gas-phase deflagrations 103—106
105, 110 gas/air detonations, conditions 122
58,96—97, 101 gas/airmixtures 110—ill, 116—120,
97 121—122
60—62 gasoline 231
60, 225 generalmanagement 272
101 geometrical attenuation 134—135
289FUNDAMENTALSOF PROCESS SAFETY
geometry 26 harmftzlemissions,types 162
glucose oxidation 68, 76 hazard, definition 9
ground, as atransmission path 156—157 hazard control 254
ground-burst 141 tactics and strategy 246—248
Guadalajara 117, 155, 228—229 hazard identification 249
guidewords 249 hazard indices 248
gunpropellants 114—115 hazard magnitude 254, 265—266
hazard and operability studies
(HAZOP) 249
H hazard reduction, strategic
harbours 240 approach to 254—270
hardhats 158 hazard and riskassessment 275
harm hazard systems 9—13,246,251
correlation withdose 174-177 definition 9—10
from heat andcold 180—181 diagram 10
from thermal radiation and hazardous concentrations ofdusts 112
convection 197—198 hazardousness 245
quantification 173 criteria 250
harmandnatural laws 161 hazards
harmto
buildings active 12, 25
from emissionsof
pressure analysis 11—12
energy 194—197 assessment of 17—23,248—254
from emissionsofthermal binary nature 13—14
energy 197—201 characterization 13—16
harmtothe environment control of 245—283
attenuation 202 likelihood ofrealization 14
from acuteemissions 201—202 magnitude 14
harmtoequipment measures 17—21
from emissionsofpressure passive 12, 25, 35—36
energy 194—197 HAZOP (seehazard and operability
from emissionsofthermal studies)
energy 197—201 healthand safety 273
harmtomaterials, from Health and Safety atWork
emissionsofthermal
energy 197—201 Act 219,228,279
harmtopeople Health and Safety Commission 279
from asphyxiants 186—188 Health and Safety Executive 279
from corrosives 192—194 heat
from lossofthermal
energy 185—186 harm from 180-181
from
pressure energy as asourceofactivation energy 78
releases 177—180 heat-transfer conductance 84
from thermal
energy herbicides 202
releases 180-186 Hess’s LawofConstant Heat
from toxics 188—192 Summation 71
harm to
receptors 160-204 Hopkinson Plot 142
290INDEX
Hopkinson’s Law 139—140, 141 average 252
application 141 contours 252
statement 140 definition 17
Hopkinson’s Scaling Law 196 equation 251
hot
gasreleases 59—60 estimation 251
hotliquidreleases 59 spatial variation 251
housing damage 196, 232 industrial sources ofthermalenergy 181
Houston 67, 229 inhalation 171
humanbrain 220 inherent safety 249, 257
humanerror 264,276—277 initiating causes 27
hydraulicpressure 230,238 classification 28
hydraulic rupture 42 definition 27
hydraulic testing 42 examples 27
hydrogen fluoride, toxicity data initiationofreactions 78—79
sheet 208 injury 161, 179
hydrogenperoxide 114 classification 162
hydrogen sulphide,toxicitydata directorindirect 177
sheet 209 indirect 180
hypothermia 185 injury and damage 162—164
thsecticides 202, 214,215
insurance benefits 271
interlocks 266, 270
intemal explosions 238
ignition energy 99 intrinsic safety 266
ignition source suppression 199 inventory 228
ignition sources 105—106, 113,223 limitation 199, 202
ignition temperatures 105 reduction 258
Immediately Dangerous toLifeor inverse square law 127, 134, 135
Health 190 investigations ofincidents 278
impact ofvehicles 37 isopropanol 239
implosions 52—53 isothermalcalorimetry 91
impulse 95, 138, 168, 169—171,
178, 179
definition 139
incandescence 68, 96, 97
jet fires 232
Incipient HarmSyndrome 190

  • jetflames 60, 225
    mcompatiblematerials 219
  • • Joule-Thomson effect 57
    indices ofdose 173, 178
    •indices • ofdosefor blast 168—171 just-in-time 216
    calculations 171
    impulse 169—171
    overpressure 169 I.
    indices ofdose fortoxics 171—172 lapse rate,definition 152
    individual risk 250 layoutofplants 228
    291FUNDAMENTALSOF PROCESS SAFETY
    legislation 278 ofemission 259
    legislative framework 279 maintenance 269, 270
    limitation management 272—278
    byattenuation ofemissions 259—263 general 272
    byreduction ofhazard line 272, 277
    magnitude 256—259 Manchester ShipCanal 154, 231
    line management 272,277 marine installations 261
    liquefied gasreleases 54—56 masstransfer 145
    liquefied gases 43 definition 146
    comparison withliquefied materials
    vapours 56 harmfromemissions of
    someproperties 55 thermalenergy 197—201
    liquefied natural gas(LNG) 223, 239 maximum peakoverpressure 142
    liquefiedpetroleum gas (LPG) 43, 223, maximum pressure rises 113
    225, 232 meanbonddissociation enthalpy 74
    liquefied vapour systems 43 mechanical energyreleases 36—39
    liquefied vapours 258 medicalcentres 260
    hazards 50 medicaltreatment 270
    releases of 42—52
    mercury 214
    liquidpropane 225 meteorological factors 151
    liquidreleases 41—42 meteorology 146
    liquids,combustion of 101—102 methane/airmixture 212
    LNG(seeliquefied natural gas) methyl isocyanate (MIC) 215
    load 190 MexicoCity 34,52, 106, 109, 200,
    the
    concept 174 232—233, 262
    load-to-harm transform 175 Milford Haven 199
    logicdiagram 22 minimizing thermodynamic
    logictrees 253 severity 258
    low
    temperatures missiles 127,224, 225, 232,233
    associated withliquefiedgases 67 fromexplosions 143
    associated withliquefied frommoving machinery 144
    vapours 66—67 Mississauga 37,233
    low-temperature embrittlement 223 mitigation 270
    LPG(see liquefiedpetroleum gas) mixing 258,259
    lubricating oil 102 mobile hazard sources 12
    Ludwigshafen 117, 230—231 molasses 217
    lunginjury 179 moleculardiffusion 148
    moleculardisintegration 75
    MondFire, Explosion and
    M Toxicity Index 249
    machinery 31, 38—39 mono-nitrotoluene (MNT) 126, 221
    failure of 33 mono-propellants 114
    machinery guards 158 mouthulceration 220
    magnitude 250 mustard gas 201
    292INDEX
    N lackof 36, 146, 186—188
    natural convection 58 liquid 55, 58,67
    natural
    gas supply 222 reaction withhydrogen 76, 79, 128
    Newtonian liquids 41 reaction withsugars 68,98
    nitro-cellulose 107, 239
    nitro-glycerin 125, 127, 258
    nitrotoluenes 221 P
    nitrous oxide 109 P&ID (seeprocess and instrumentation
    non-buoyant diagram)
    soluble liquids inflowing water 156 papersacks 240
    soluble solidsinflowingwater 156 particle sizeofhazardous dusts 112
    non-Newtonian liquids 42 Pasquill stability classes 152
    normal boilingpoint 43 passive hazards 12,25, 35—36,270
    chemical 36
    physical 35—36
    o peak overpressure 171, 178
    occupational disease 160 peakpositive overpressure 94, 95
    office blocks 228, 260 definition 139
    operating instructions 250 peak(side-on) overpressure 169
    operating logs 268 peak-shavingplant 222
    operating manuals 267—268 permanent barriers 158, 261—262
    Oppau 108, 126, 233—234 permeability 156
    organic peroxides 108, 124, 127, 234 permit-to-worksystems 36, 188, 270,
    organization 274 277
    out-sourcing 274 peroxides 234
    overall coefficient ofheattransfer 84 persistence 201
    overlapping ofsystems 11 personnel 274
    overpressure 94, 109, 110, 138, 168, petal fracture 51, 225
    169, 178, 179, 196 phenol 235
    asan index 195 phosgene 214
    definition 139
    toxicity datasheet 210
    overpressurization 259 pinchtechnology 258
    oxidations of
    sugars 98 PiperAlpha 269, 270
    oxidizing agents 80, 97, 98, 126, 218 pipes, failures 32
    oxygen piping systems, failures 31
    enhancedconcentrations 104—105 planterection 266
    incombustion 72, 96, 99, 126—127, plantmaintenance and
    217 modifications 269—270
    industexplosions 112—113 plantoperation
    inexplosive deflagrations 119 batchprocessing 269
    ingeneral redoxreactions 80, 97, general 267
    213 theoperating log 268
    intramolecular 91, 107—108, theoperating manual 267—268
    124—126,240 theworking environment 268
    293FUNDAMENTALSOF PROCESS SAFETY
    planttesting and commissioning features 6—7
    266—267 propertiesofmaterials handled 7
    plasma 127 process and instrumentation
    poolfires 60—62, 101, 223,224,225 diagram(P&ID) 249
    duration 61
    processsafety
    flame shape 61 basic concepts 6—9
    sources 60—62 definition 8—9
    thermal
    energyrelease 61 processsafetyanalysis 248
    population density 252 prohibition notices 280
    Port Hudson 117, 122,235 projectedarea 168
    powderreleases 40—41 propane 50, 224,233,235
    powdered reducingagents 111 propanehydrate 225
    powders, deflagrations 102—103 propellants 113—115
    pressure energy emissions behaviouronunconfined
    harmtoequipment 194—197 deflagration 107—108
    pressure energyreleases 40—56 binary 114
    harmtopeople 177—180 definition 107
    pressure risesachieved in gun 114—115
    practice 110—111 mono 114
    pressure vessels,catastrophic rocket 114
    failure 266 theirnature 107, 113
    pressure-testing 267 propene (propylene) 237—239
    prevention, limitation and prosecutions 280
    mitigation 256 protection againstignition from
    prevention ofhazardrealizations electrical equipment 263
    (riskreduction) 263—270 protection ofpeople
    primaryexplosives 123—124 fromgainorlossofthermal
    primarypressure hazards 51 energy 186
    primarysource 11 from pressure energyreleases 180
    probabilisticf/Ncurves 253, 255 protective clothing 246,262
    probabilisticf/Ndiagrams 253, 254 protective devices 265—266
    probability 16 proximate cause 27
    definition 15
    pumps,failures of 33
    ofharm 173
    punctures 34
    probit 176, 190
    probitanalysis 175
    probitequation for deaths from
    lunginjury 179 Q
    probit relationships 251 QRA(see quantitative risk assessment)
    probit/doserelationship 176 quantalfractions 176, 251, 252
    process hazards, control of 245—283 quantals 173, 175, 189—190, 196
    process industries quantifying absorption 164
    definition 6 quantitative riskassessment
    equipment used 6—7 (QRA) 21—23,250-255
    294INDEX
    definition 22 redox molecules 221
    quasi-dose 174 redox reactions 80, 96, 97—98,
    103, 126, 129
    enthalpies 97
    R andtheperiodictable 98
    radiation 57—59 preconditions forhazardous 98
    and lapse rate 152 rates 97—98
    attenuation 134—136, 260—261 reducing agents 80, 97, 98, 99,
    attenuation ofharmontankfarms 103, 218
    199 refuge rooms 158
    combustion ofliquids 102 regimes offlow 149—150
    fromchemical
    energyreleases 67 regulatory authorities 278—280
    fromdeflagrationsand detonations releases
    94 ofchemical
    energy 67—80, 109—115
    fromflames 60—66,224, 225 ofcoldmaterials 66—67
    fromreactor coil 237 ofcompressed gases 53—54
    incident dose 183—184 offree-flowingpowders 40—41
    sources ofharmto equipment etc. ofgases 43—44
    197 ofhot
    gases 59—60
    sources ofharmto people 181 ofhotliquids 59
    rapidphasetransitions 56, 223 ofliquefied gases 54—56
    rarefied systems 93, 121 ofliquefiedvapours 42—52
    rarefied-phase reactions 102—103, ofliquids 41—42
    111, 116 ofpressure energy 40—56, 177—180
    ratesofreaction 76—78 ofthermal
    energy 57—67, 180-186
    RDX 125, 127 unconfined deflagrations 96—109
    reaction hazards, evaluation 91—92 ofvapours 43—44
    reactionrates 76—78 reliability, definition 16
    reactiontype andspecific energy, reliability and risk, relationship 16
    relationship between 74—76 reliefpanels 213, 266
    reactions reliefvalves 238, 262, 266
    initiation 78—79 respirators 158, 192
    redox 80,96, 97—98, 103, 126, 129 Reynolds number 149, 150
    runaway 78, 80—92 Rhine,River 214
    reactortypes 81 risk 255
    batch 81, 82 theconcept 14—16
    continuous 82 definition 15
    realization estimation 253
    definition 10—11 individual 17,250, 251, 252
    differing levels 11 societal 18,245,250, 252, 253
    receptors 10,246, 251, 252,260 risk assessment, definition 22
    classification 13 risk criteria 271
    as secondary sources 262 riskreduction 263—270
    redoxcompounds 240 riskand reliability,relationship 16
    295FUNDAMENTALSOF PROCESS SAFETY
    risks, acceptability of
    roadtankers
    rocket propellants 114
    rootcauses 27
    runawaypolymerization reactions 215
    runawayreactions 30, 78, 80—92,221
    commoncauses 89—90
    conclusions fromthe theory 88
    definition 81
    effect ofscale 86
    effects 90—91
    how they occur 88—90
    theory 82—88
    safetyofficers
    safetypolicy
    safetyprofessionals
    safetyreviews
    atsuccessive stages
    and audits
    safetystrategy
    safetytraining
    safety-critical situations
    scale-up
    scaleddistance
    expressed intermsofenergy
    expressed intermsofmass
    scaledduration
    scaledimpulse
    fora TNT explosion atground
    scaled
    overpressure
    scrubbing
    secondary explosives
    secondary fires
    secondary realizations
    296
    secondary sources
    segregation
    ofincompatible substances
    of
    receptors
    self-regulation
    Semenov 82, 87
    seriousharmsyndrome 189
    Seveso 78, 80, 89,201, 202,
    217, 235—237
    237
    215
    117,223, 228
    240
    shock 93, 238
    shocktransfer 109, 115
    shockwaves 30,95, 115, 121, 127
    side-on
    overpressure, definition 139
    skin blistering 220
    skin
    temperature 180—181
    smoke 96, 190,214,218, 221
    socialacceptability 245,255, 270—272
    societalrisk 245,250, 255
    definition 18
    equation 253
    estimation 252
    sodiumchlorate 126
    sodiumpersuiphate 218
    soluble solidsin the
    openair 156
    sonic velocity 92, 121, 170
    soundwaves 121, 138
    sources 10, 246,251
    7 sources ofhazards
    11, 260
    219, 264
    269
    260
    279
    270—272
    229, 237—239
    Seveso Directive
    Sevm
    sewers
    ships
    S
    sabotage
    safetyculture
    safetydistances
    safety legislation
    safety management
    safety andmanagement
    215
    275
    199
    278
    247
    272—278
    247
    219,268, 273
    278
    ofaproject 247
    278
    248, 256, 278
    275, 278
    274
    level
    171 acute
    140 chronic
    141 mobile
    171 static
    171, 179 Spanish campsite disaster
    170
    179 specificblastenergy
    266 specificdose
    124—125 definition
    241 specificdoserate
    223 definition
    12
    12
    12
    12
    34,45, 51,
    56, 106, 186,
    237—239
    141, 142
    168, 170, 172
    166
    171
    166standardenthalpy
    ofcombustion
    offormation
    ofreaction
    Staten Island
    static sources ofhazards
    steam
    steam-tracing
    Stefan-Boltzmannequation
    Stefan-BoltzmannLaw
    Stevenston
    stochastic correlation
    stoichiometry
    storage tanks
    strategic approach tohazard
    control
    strategic approach tohazard
    reduction
    stratification
    streamline flow, definition
    structural collapse
    substitution andsynthesis
    sulphur
    sulphuric acid
    surface-to-volumeratio
    survivability
    T
    flashing fraction)
    tankcars
    tankfarms
    temperatureinversion
    temporary barriers
    tertiaryexplosives
    TexasCity 109, 126, 240—241
    theoretical adiabatic flashing fraction
    (TAFF) 46
    theoretical flame temperature 59
    theoretical maximum
    pressure rise 110
    thermalbalances around flames inthe
    openair 60
    72 thermal energy
    71 harmtopeople from lossof 185—186
    70 industrial sources 181
    111, 239 thermal energy emissions,
    12 harmfrom 197—201
    50,236, 240 thermal energy releases 57—67
    226 harmtopeople 180—186
    62 thermalexpansion 238
    58 thermal explosion 30, 82, 83
    113,239—240 effect ofvaryingconcentration 84
    173 effect ofvarying heattransfer
    100 conductance 85
    239 effect ofvaryingwall temperature 85
    thermalinsulation 158
    245, 246—248 thermalload 184
    toluene 233
    top events 253
    toxic,definition 188
    toxicload 190
    toxicities, comparison 191
    toxicity andchemical composition 189
    toxicitydatasheets 205—210
    toxics 146
    230 data
    198—199 harmtopeoplefrom
    151 howdoseisexpressed
    158 indicesofdose
    126 protection ofthepublic
    INDEX
    specificenergy 25, 69
    specificpower 26,68, 69, 129
    specificrespiration rate 171, 172
    SpecifiedLevelofToxicity 189
    spontaneous combustion 79
    sprays 158, 194, 199,226, 233
    254—270
    148—149
    149
    37—38
    74
    241
    220
    102—103
    179
    thermalradiation, harmsto
    equipment etc.
    thermalresistance criteria
    thermochemistry
    thermodynamic severity
    thermodynamics
    thresholdvalues ofdose
    TNTequivalence
    TNT(seetrmitrotoluene)
    197—198
    200
    69—74
    258
    68, 69
    177
    119—120, 235
    tablesofcorrespondence 175, 251
    tactical approach tohazard control 246
    TAFF(seetheoreticaladiabatic
    190
    188—192
    I89
    171—172
    192
    297FUNDAMENTALS OF PROCESS SAFETY
    quantals 189 V
    respiratory protection 192 vapourcloudexplosions
    sources ofinformation 188 (VCEs) 119, 179,227, 230,
    trains 233 232, 235,238
    derailment 223 vapourclouds 232
    transferofthermalenergy, vapour releases 43—44
    mechanisms 57—59 VCEs (see vapourcloudexplosions)
    transformation of
    energy 26 vehicles
    transmission paths 10, 133, 167, impact of 37
    201,246 roadtankers 237—239
    theatmosphere 136—I 53 ventilation 240
    definition 133 vessels 31
    theground 156—157 failures of 33
    water 153—156 viewfactors 135
    transparency 135, 136
    transportandattenuation 146 w
    trauma 237
    warehouses
    2,4,5—tri-chlorophenol (TCP) 217,235
    explosions 218,235
    trinitrotoluene (TNT) 50, 108, 125,
    fires 199,214
    126, 127, 142
    warnmgs 280
    trips 246, 266 watercurtains 158, 226
    turbulence 149
    waterhoses 240
    promotion of 150 water
    sprays 199,226, 233
    turbulentflow, definition 149
    wateras atransmission path 153—156
    compared to theatmosphere 153
    U influence ofvelocity 153—154
    ullage 230, 238 welfare, oftheworkforce 277
    unconfined deflagrations 93, 95, wind 58, 127, 128
    96—109 windconvection 58
    ofpropellants and windrose 151
    explosives 107—109 windspeedanddirection 151
    ‘unconfined vapourcloud wood, combustion of 101
    explosions’ 117 working environment 268

كلمة سر فك الضغط : books-world.net
The Unzip Password : books-world.net

تحميل

يجب عليك التسجيل في الموقع لكي تتمكن من التحميل
تسجيل | تسجيل الدخول

التعليقات

اترك تعليقاً