Precision CNC Machining for High-Performance Gears – Theory and Technology
شارك
Precision CNC Machining for High-Performance Gears – Theory and Technology
SHILONG WANG
Chongqing University, Chongqing, China
GUOLONG LI
Chongqing University, Chongqing, China
CHI MA
Chongqing University, Chongqing, China
Contents
Preface vii
Acknowledgments ix
- Introduction 1
1.1 Overview of high-performance gear 1
1.2 High-performance gear CNC machining technology 4
1.3 Status and development trend of CNC machining technology
of high-performance gear 23
1.4 Current situation and development trends of typical gear making machines 38
1.5 Opportunities and challenges 40
References 41 - Computational theory for precision machining
of high-performance gear 49
2.1 Modeling the modified tooth surface of high-performance gear 50
2.2 Envelope principle of point-vector family 56
2.3 First envelope calculation of point-vector family for a modified tooth profile 63
2.4 Calculation of the second envelope modification of point-vector family 74
References 86 - Method to reduce the principle errors in high-performance gear
machining 87
3.1 Method for reducing the tooth surface twist during forming machining
for a modified gear 88
3.2 Method for modified gear to reduce errors during generating machining 105
3.3 Principle error of hob-relief grinding and its reduction method 118
3.4 Method of error reduction for the gear shaper cutter grinding principle 128
References 141 - Modeling methods and compensation techniques for multisource
errors of the CNC gear machine tool 143
4.1 Modeling and sensitivity analysis of the geometric error 144
4.2 Tool error modeling of the CNC gear machine tool 161
4.3 Modeling the force-induced geometric error in CNC gearing machines 176
v4.4 Establishment of the thermal error model of the CNC gear machine tool 186
4.5 Multisource errors compensation for the CNC gear machine tool 206
References 239 - Design and optimization of the precision CNC gear machine tool 241
5.1 Design of core functional components for precision CNC gear machine tool 242
5.2 Thermal characteristics analysis and optimization of the precision CNC gear
machine tool 258
5.3 Design of high-speed dry cutting hob 290
5.4 Gear manufacturing function software 294
5.5 Application case 300
References 303 - Optimization method of the grinding process parameters 305
6.1 Process parameter optimization for tooth-surface precision 306
6.2 Grinding parameter optimization for residual stress 315
6.3 Process parameter optimization for energy consumption 326
6.4 Process parameter optimization of gear-tooth machining considering
precision and quality 337
References 345 - High-speed dry-cutting process and automatic production line of gear 347
7.1 High-speed dry cutting process of gear and key technology of automatic
production line 349
7.2 Automatic production line integration of high-speed dry cutting of gears 360
7.3 Energy efficiency monitoring and process management system for
high-speed dry cutting automatic production line for gears 363
7.4 Demonstration of the high-speed dry cutting automation production
line of gears 369
References 371
Index 373
Index
Note: Page numbers followed by f indicate figures and t indicate tables.
A
Adaptive neural fuzzy inference system (ANFIS)
method, 13
AISI 52100 steel, 16–17
Automatic production line, 348–350f, 349
chamfering process, 358–360, 359f
characteristics, 349–350
chip control technology, 349
dry turning tool, new, 351t, 352f
energy efficiency monitoring, 363–369
heat accumulation, 349
hobbing process and equipment, 351–358
integration of high-speed dry cutting of gears
linear layout truss-type, 361–363, 362f
pin-type robot, 360–361, 361t, 361f
parameters, 350, 351t
process management system, 363–369
spindle structure, 350, 351f
Automobile gears, 348
Auxiliary function module, 37
Axial modification
end-face profile, 55
helix modifications, 54–56, 55f
model, 352–354, 353f
position, 54–55, 55f
profile, 54, 56
tooth repair shape, 54, 55f
Axis compensation method
EGB working principle, 209, 210f
error compensation, 209–210
grinding motion trajectory, 209–210, 210f
motion axes, 207
path planning measurement, 208
point-vector quadratic envelope, 209
thermal error compensation, 233–239
three-dimensional (3D) model diagram, 206, 207f
tooth surface
creation coupling model, 208, 208f
generation model, 208, 208f
B
Boundary constraints
contact pair between hobbing machine table
and platen, 253, 253f
spindle transmission structure, 252, 252f
table surface and body of hobbing machine, 253,
253f
worm gear, 252, 252f
C
Chamfering technology, 358–360, 359f
Chinese gear industry, 1–2
Chip-free machining method, 4
CNC gear machine tool
boundary constraints, 252–253, 252–253f
error modeling, 161–176
finite element
mesh model, 251, 251f
simulation, 253–257
geometric error, 144–161
high efficiency and precision multifunction, 303
high-precision and high-speed rotary table,
244–246, 246f
high-speed precision hobbing spindle system,
242–244
large-scale hydrostatic rotary table, 247–251,
247–248f
multisource errors, 241
structural optimization, 258
CNC machining technology
high-performance gear, 4–23
status and development trend, 23–37
Conical worm grinding wheel
grinding motion model, 137–138
grinding position and attitude, 135–137,
136–137f
parameters, 132–135, 133f, 138, 139t
proposal, 130–132, 132f
Coordinate systems, 123–124, 124f
Coordinate transformation, 64, 71, 77–79
Cubic boron nitride (CBN) modified honing
process, 39–40
Cutting force, geometric error, 176–177
comparative analysis of M-value, 231–233, 232f
compensation model, 228–230, 229t, 229f
experimental principle of radial error, M value,
230–231, 230–232f
373Cutting force, geometric error (Continued)
experimental scheme, 230
gear M-value, 231, 232f
Cutting heat, high-speed cutting, 14–18
Cyclic grinding module, 37
D
Deflection
diamond roller, 113–116, 114–115f
rotor core, 263
Diamond roller, 113–116, 114–115f
DLL. See Dynamic link library (DLL)
Double degree-of-freedom meshing analysis,
178–182, 179–181f
Drum modification, 91, 110
Drum-shape modification, 82, 84f
Dry cutting. See High-speed dry cutting process
Dynamic link library (DLL), 299
E
Electric spindle tool post, 354–355, 355f
Energy consumption model
gear-machining machine, 326–335
machine power, 326–327
toothing process parameters, 335–337
Energy efficiency monitoring, 363–369, 364f
automatic NC programming, 368
drawing process and production tasks, dynamic
issue, 365
dynamic monitoring system, 366–367
equipment and production line, 366
equipment running status monitoring and fault
alarm management, 366
optimization decision of process parameters, 368
production schedule information collection, 365
remote diagnosis and management, 368–369
task monitoring, 365
tool changes, 367, 367f
Enveloping process, 59–60, 60f
Error compensation
geometric, 224–228
measurement and identification, transmission
chain, 213–216, 213–214f, 214t
thermal model (see Thermal errors)
transmission chain errors, 210–213, 211f
Error modeling
grinding wheel error, 168–170, 168–169f
hob error
end-tooth profile, 161–164, 166, 166f
error helicoid, 167–168, 167f
gear hob, 161–164
helicoid, 166, 166f
parametric expression, 166
tooth surface, 167
worm grinding wheel (see Worm grinding wheel
error)
Error sensitivity analysis
error model simplification, 148–149
Morris method, 150–157, 153–156f, 156t
Sobol method, 157–161, 160f
F
Finite element analysis (FEA) method, 177–178,
177f, 273–274
cloud chart for modal vibration
column, large, 254, 254f
column structure, 254, 257f
hob box, large column and left body assembly,
254, 256f
left body, 254, 255f
outer support structure, 254, 257f
right body structure, 254, 258f
sliding plate on hob box, 254, 254f
table shell, 254, 257f
table surface, 254, 256f
tool holder of hob box and cover plate, 254,
255f
transmission mechanism, 254, 255f
x-axis screw and screw chuck holder, 254, 256f
hobbing machine, 253–254
First envelope process
comparative analysis, 72–73, 72t, 73–74f
coordinate systems, 63–64, 64f
of point vector, 66–69, 66–68f
profile calculation of forming tools, 69–72,
69–70f
projection, 64–66, 65f
Flywheel, 19
Force-induced geometric error, 10–12
cutting, 176–177, 176f
finite element analysis (FEA) method, 177–178,
177f
mapping relationship
double degree-of-freedom meshing analysis,
178–182, 179–181f
machining simulation, 182–186, 183t,
184–185f
374 IndexG
Gear grinding processes, 32–34
auxiliary function module, 37
CNC machine, 303
contact line, 89–90
contact trace, 106
cyclic grinding module, 37
finite element model, large plane wheel, 287–290,
287–290f
five-axis linkage, 35, 35f
gear making process, 22–23
gear shaper cutter, 131–132, 132f, 138–141
and hobbing, 22–23
interface, 37
machine tool status module, 37
mapping relationship, 88, 89f
numerical simulation, 140–141, 140–141f
optimization, 21–23
production process module, 37
project management module, 36–37
simulation process, 90–91, 90–91f
temperature rise calculation, large plane wheel,
283–287, 284f, 286f
thermal characteristics, large plane wheel
coordinate system, 281, 281f
grinding wheel and tooth surface, 281–282,
282f
mirror heat source, 282–283, 282f
schematic diagram, 280, 280f
working principle, 279–280, 279f
thermal deformation, 12
three-dimensional model diagram, 35–36, 36f
worm wheel, 5–6, 6f
Gear hobbing machine, 4–5, 5f, 20, 28f, 243, 356,
358f, 362
and gear grinding processes, 22–23
gear making machine tools, 18–19
machining accuracy optimization
algorithm flow, 309–310, 310f
cumulative pitch errors, 309–310, 312f,
313–315, 314f
gear errors, 313, 314t
helix errors, 309–310, 311f, 313–315,
313f
hobbing parameters, 309
optimal process parameters, 313–315, 315t
prediction, 309–310, 312t
process parameters and gear errors, 309,
311t
single pitch errors, 309–310, 312f, 313–315,
314f
tooth profile errors, 309–310, 311f, 313–315,
313f
machining precision, 306
power measurement, 333f
process parameters, 21–23
status and development
CNC gear, intelligent, 24–25
high-precision, high-stiffness, and
high-reliability, 25
high-speed and high-efficiency, 25–26
large-scale CNC, 27–28
wet and dry cutting, 26–27
structure and function module, 28–32, 28f
numerical control (NC) code template, 29, 29t
Siemens SINUMERIK 840Dsl, 30–31, 31f
thermal error, 186–196
compensation model, 195–196
temperature variable, 192–196, 192–193f, 194t
Gear machine. See also CNC gear machine tool
large-scale gear machine tool, 301
thermal error, 3
tool transmission system, 2, 34
Gear-machining machine, 347, 351–352, 360
coordinate system, 330
cutting edge trajectory, 330–332
cutting power, 327, 329, 332
cutting stage energy, 329, 329f
energy consumption model, 326–335
error modeling
compensation technology, 7–8
force-induced, 10–12
machine tool geometric, 9–10
thermal-induced, 12–14
tool modeling, 7–8
fitting curve of machine tool, 327, 328f
gear hobbing machine power measurement, 333,
333f
gear workpiece, 331
hobbing force, 332
hobbing machine processing power, 327, 328f
parameters, 333, 333t
power measurements and prediction values,
333–335, 334t
precision, 306
single tooth cutting simulation diagram, 331, 331f
spindle speed, 327, 328t
tooth-profile equation, 330
Index 375Gear-making errors, 148–149
Gear-making machine tool, 38–40
compensation method, 9–10
error modeling, 9–10
rotary table, 19–21
spindle system, 18–19
thermal errors, 12–13
Gear-making zero-programming system
deformation error compensation, 234–235
hobbing machine, 234–235, 237
online temperature sensor arrangement, 235–236,
236f
principle, 234
thermal error compensation, 236–237, 237f, 237t
working gear and hob parameters, 236, 236t
Y31200CNC6 hobbing machine, 236, 237f
Gear manufacturing function software
arbitrary modification module
tooth direction, 297
tooth profile, 296–297
auxiliary function module, 296
circulating grinding module, 296
grinding wheel arbitrary modification module,
297, 298f
machine tool status module, 295
production flow module, 295–296
project management module, 294–297
secondary development
dynamic link library (DLL), 299
installation, 300
NC programming, 300
visual interface design, 298–299
tooth surface distortion control module, 297
Gear profile, 100
Gear shaper cutter
conical worm grinding wheel, 130–135
gear grinding, 128–129
kinematic analysis, 135–138
parameters, 138, 139t
principle, 129–130, 129f, 131f
simulation verification, 138–141
Gear shaping machines, 38
Gear-tooth machining, 3, 35–36, 40, 337–345,
338f
multiobjective parameter optimization algorithm
competitive selection and cross variation,
340–341
elite strategy and population merging,
342–343, 342f
nondominated sorting and congestion
calculation, 340
population initialization, 339–340, 340–341t
processing parameter
characteristic quantities, 344
correlation coefficient matrix calculation,
343–344
principal component score, 344–345, 345t
standardized data processing in optimal
frontier, 343
Geometric error
CNC gear machine tool motion chain, 144, 145f,
146
compensation
CNC worm wheel gear grinding machine, 224
cutting force, 228–233
replacement value, 227
spatial attitude error component, 225
spatial error model, 224–225
ternary linear equation system, 227
value, 226–227
elements, 146
gear machine tool, 144, 145f, 146
modeling, 9–10, 144–148, 145f
motion axes, 144–146
multisource, 144–146
sensitivity analysis, 148–161
spatial position error, 147–148
transformation matrix, 147
Geometric structure design, 241–242, 293, 294f
chip grooves, 292
coating, 292–293, 293f
cutting edge length, 292
heat treatment procedure, 293
high-speed dry cutting hob, 293, 294f
manufacturing procedure, 292
multihead hob, 292
shank mechanism, 291
small diameter, 291, 291f
Green manufacturing
environmental impact, 347
resource consumption, 347
Green production, 348
Grinding parameter
and hobbing, 305
mathematical relationship, 322–324
residual stress, 315–326
Grinding process
gear, 315
376 Indexhigh-performance gears, 305
optimization process, 338f
parameters, 337–338
process parameter optimization, 306–315
Grinding simulation, 138–140
Grinding wheel
arbitrary modification, 294, 297
automatic modification, 303
carborundum, 297
CNC gear machine tool, 241–242
and diamond roller, 295
error, 168–170, 168–169f
profile
contour calculation, 125–126
coordinate systems, 123–124, 124f
relieving grinding wheel, 125–126
SIEMENS numerical control programming
language, 300
tooth surface, 279–280, 282f
H
Heat accumulation, 349
Heat dissipation
forced convection
by cooling system, 269
heat transfer, 270–271
and heat generation, 276–277
natural convection, 270
Heat source model
ball screw pair, 267–268
rolling bearing, 258–268, 260f
rolling guide pair, 268
servo/built-in motor, 261–267, 264f, 266t
Helical tooth surfaces, 50, 50f, 64f
High-performance gears, 2–4
High-speed dry cutting process
automatic production line, 349, 349–350f
characteristics, 349–350
chip control technology, 349
heat accumulation, 349
new dry turning tool, 351t, 352f
parameters, 350, 351t
spindle structure, 350, 351f
line of gears, 369–370, 370t
High-speed dry hobbing machine, 291f, 301–303,
302f
data acquisition flowchart, 196, 197f
displacement data acquisition, 197–198, 198f
environmental temperature, 198
geometric structure design, 293, 294f
chip grooves, 292
coating, 292–293, 293f
cutting edge length, 292
heat treatment procedure, 293
manufacturing procedure, 292
multihead hob, 292
shank mechanism, 291
small diameter, 291
recording device, 197–198, 198f
sensors arrangement, 198, 199f
temperature
change curve, 198, 199f
data acquisition, 197–198, 197f
sensors, 198
temperature-thermal error, 197–198
thermal characteristics experiment, 196–199
thermal error
curve, 199, 200f
modeling, 199–202, 200–201t, 201f
principle, 196–199, 197f
Hobbing error, 242–244, 242–243f, 245f
end-tooth profile, 161–164, 166, 166f
helicoid, 166–168, 166–167f
parametric expression, 166
tooth surface, 167
Hobbing process, 87–88
cutting edge, 330
and equipment, 351–358
gear (see Gear hobbing machine)
and grinding machines, 305, 326–327
high-speed dry cutting precision, 352–354, 353f
machine processing, 328f
optimization design
high-speed dry cutting workbench, 355–358,
357–358f
modified hob, 354
spindle, 354–355, 355–356f
parameters, 306, 368
precision prediction model, 306–309, 306–308f
Hobbing tooth profile, 352–354, 353f
Hobbing workbench
damping mechanism, 356–358, 357f
gear hobbing machine, 356
high-speed dry cutting precision gear, 357,
358f
three-dimensional solid model, 356, 357f
workbench design principle, 358
Human-machine interface (HMI), 30
Index 377I
Improved particle swarm optimization (IPSO),
308–310, 308f, 312t, 315
K
K-shape modification, 82, 84f
L
Large-scale precision CNC hobbing machine, 247,
301, 302f
Linear layout truss-type automatic production line,
361–363, 362f
M
Machine tool geometric error modeling, 9–10
Machining error
contact trace calculation, 106
tooth surface twist
calculation model, 108–111, 108–109f
in generating machining, 106–108, 107f
Machining simulation, 182–186, 183t, 184–185f
Material removal rate (MRR), 327
Modified gear
contact line, 89–90
machining error analysis, 105–111
modeling, 105–111
tooth surface
errors, 111–118
twist, 88–104
Modified tooth surface, 50–56
axial modification, 54–56, 55f
first envelope calculation, 63–73, 64f
spiral, 50–52
tooth profile modification, 52–54, 53f
Morris method
analysis steps, 150–151
cyclic sampling number, 152
error identification, 156–157
error reduction rate, 156–157, 157t
geometric error tooth surface, 150
input and output parameters, 150
sensitivity analysis process, 152
sensitivity index plot, 152–153, 153–156f
tooth-surface error
component, 153–156, 156t
model, 150
value interval, 151–152
Multisource errors, 241
axis compensation method, 206–210
error compensation for transmission chain,
210–223
geometric error compensation, 224–233
thermal error compensation, 233–239
N
NC control programming, 300
Neural network (NN) algorithms,306–309,310f, 315
P
Particle swarm optimization (PSO), 307, 308f, 312t
Pin-type robot, 360–361, 361t, 361f
Point-vector family, 170
approximation algorithm, 61–62, 61f
composition, 56, 57f
coordinate transformation, 64, 71, 77–79
end surface profile, 62–63, 62f
enveloping process, 59–60, 60f
first envelope calculation, 63–73, 64f
motion trajectory, 58–59, 59f
rotational projection, 71–72, 72t, 72f
second envelope modification, 74–85
two-dimensional (2D) plane curves, 56–57, 57f
three-dimensional (3D) space surfaces, 57–58, 58f
Power honing, 39–40
Principle error of hob-relief grinding
chip-holding grooves, 118
comparative verification grinding
blade pitch circle, 128, 128t
equal back angle cam, 126, 127f
parameters, 126, 127t
preshaving hob, 126, 127f
gear-hob manufacturing process, 118
grinding wheel profile, 123–126
tooth tip curve, 119–123
Process management system, 363–369, 364f
automatic NC programming, 368
drawing process and production tasks, dynamic
issue, 365
dynamic monitoring system, 366–367
equipment and production line, 366
equipment running status monitoring and fault
alarm management, 366
optimization decision of process parameters, 368
production schedule information collection and
task monitoring, 365
remote diagnosis and management, 368–369
tool change monitoring and management, 367,
367f
378 IndexProcess parameter optimization
gear-machining machine, 326–335
gear-tooth machining, 337–345
hobbing precision prediction model, 306–309,
306–308f
machining accuracy
algorithm flow, 309–310, 310f
cumulative pitch errors, 309–310, 312f,
313–315, 314f
gear errors, 313, 314t
helix errors, 309–310, 311f, 313–315, 313f
hobbing parameters, 309
optimal process parameters, 313–315, 315t
prediction, 309–310, 312t
process parameters and gear errors, 309,
311t
single pitch errors, 309–310, 312f, 313–315,
314f
tooth profile errors, 309–310, 311f, 313–315,
313f
Profile grinding, 6, 7f
R
Renishaw XL-80 laser, 151–152
Residual stress, 316f
alignment fixture, 315–318, 317–318f
grinding parameters influence
cutting depth, 318–320, 321t, 322f
feed speed, 306–307, 320–321, 320t, 322f,
324
gear geometry specification, 318, 319t
mathematical relationship, 322–324, 323t,
323f
measurement results, 320, 320t
parameter levels, 319, 319t
wheel speed, 320–321, 321t
measurement method, 315–318, 317–318f
self-balanced internal stress, 315
surface stress influence, 324–326, 325f, 325t
Roller deflection, 113–116, 114–115f
Rotary table, 19–21
accuracy, 247–248
damping worm, 249–250, 250f
high-precision, high-speed, 244–246, 246f
hobbing machine, 247, 247–248f
large-scale precision CNC hobbing machine,
247
large-size hydrostatic, 248–251, 249f
transmission accuracy, 248
worm gear, 247, 248f
worm transmission, 249–250, 250f
Rotational projection, 71–72, 72t, 72f
S
Second envelope process
comparative analysis, 80–85
coordinate transformation, 77–79
of point-vector family, 74–77, 75–78f, 83–85, 85f
spiral projection, 79–80
Shaving process, 38–39
SIEMENS840Dsl CNC system, 294
Siemens SINUMERIK 840Dsl
COM (commercial) technology, 32
full PC integrated control system, 31
human-machine interface (HMI), 30–31
numerical control system, 30
OPC standard, 32
software system, 30, 31f
Simulation envelope surface
contact line shape on tooth surface error, 95–97,
95–96f
distribution, 91–92, 94f
errors, 91–92, 93t
spatial contact lines, 91
tooth profile error, 103, 104–105f
tooth surface error
additional rotation of c-axis, 99–100, 99f
additional rotation on x-axis, 97–98, 97f
Sobol method
first-order sensitivity index, 159
flowchart calculation, 160, 160f
geometric error probability distribution, 161
global sensitivity analysis method, 157–159
higher-order function terms, 158
identification process, 158
Monte Carlo integral method, 159
sampling sequence probability statistics, 161, 162t
sensitivity analysis method, 160–161, 163–165f
tooth-surface error component, 161, 165t
SPARTApro software, 11–12
Spindle system, 18–19, 242–244, 242–243f, 245f
Spiral tooth surface
coordinate system, 63
gear end plane profile, 57–58
modeling, 50–52, 50f
point-vector family, 66
tool coordinate system, 64
Standard involute profile, 82, 83f
Index 379T
Temperature field control technology, 14–18, 15f
Thermal characteristics
in gear grinding, 278–290
heat dissipation, 269–271
heat source analysis, 258–268
for tool holder
analysis method, 271
finite element analysis (FEA), 273–274, 273f
high-speed dry cutting, 271, 271f
thermal-structure coupling analysis, 272, 272f
three-dimensional geometric model, 272,
273f
Thermal deformation, 12, 187–192, 187–188f, 190f,
233–234, 233f, 235f
displacement and temperature test data, 191–192,
191f, 191t
experimental test platform, 187–190, 188f, 190f
model, 186–187, 187f
Thermal errors, 12–13
CNC gear machine tool
compensation, 234–239
thermal deformation, 233–234, 233f
compensation
model, 195–196
technology, 234–237
continuous generating grinding machine
automobile transmission gears, 202
double meshing gear tester, 202, 203f
experiment site, 202, 203f
gear M-value, 202, 204f
installation position, 202, 202f
prediction model, 205
probabilistic neural network structure,
205–206, 205–206f
radial thermal error modeling steps, 205,
205f
temperature curve, 202, 204–205, 204f
high-speed dry hobbing machine, 196–202
spiral compensation structure, 237–239, 238f
temperature variable, 192–196, 192–193f, 194t
vertical gear hobbing machine, 186–196
Thermal-induced error
compensation methods, 14
error modeling, 13–14
temperature measurement points, 13
Three-dimensional (3D) modeling software, 11–12,
138–140
Ti6Al4Vdrymilling, 18
Tool error model
grinding wheel error, 168–170, 168–169f
hob, 161–168, 166–167f
worm grinding wheel (see Worm grinding
wheel error)
Tool holder
analysis method, 271
finite element analysis (FEA), 273–274, 273f
high-speed dry cutting, 271, 271f
numerical simulation analysis
steady temperature field, 274–275, 274f
steady thermal deformation, 275–276, 276f
transient temperature field, 276–277, 277f
transient thermal deformation, 277–278, 278f
thermal-structure coupling analysis, 272, 272f
three-dimensional geometric model, 272, 273f
Tool spindle system, 241–244, 242–243f, 245f
Tooth flank surface, 120–121, 121f
Toothing process parameter optimization,
336–337
energy consumption model, 335–336
genetic algorithm, 336, 337f
Tooth profile errors, 103, 104–105f, 111, 313–315,
313f
Tooth profile modification
coordinate system, 53
curves, 53, 53f, 80–81, 81f
point vectors, 81–82
tooth root trimming, 52
Tooth surface integrity, 337–338
Tooth surface precision
cutting forces, 308–309
gear hobbing, 306
improved particle swarm optimization (IPSO),
308, 308f
mapping, 306–307, 307f
neural network (NN) algorithms, 307
particle swarm optimization (PSO), 307, 308f
process parameters, 306–307
Tooth surface quality
gear-tooth machining, 337–345
optimization process, 337, 338f
process parameters, 337
Tooth surfaces, 88f. See also Modified tooth surface
axial modification, 54–56, 55f
coordinate system, 64
creation coupling model, 208, 208f
380 Indexdistortion control module, 297
errors reduction
additional rotation of the X-axis, 100–102,
102–103f
contact lines shapes, 92t, 100, 101f
during generating machining, 111–118,
112f
gear, 80
generation model, 208, 208f
grinding gear
contact line, 89–90
mapping relationship, 88, 89f
simulation process, 90–91, 90–91f
measurement, 207, 208f
optimization
wheel installation angle, 103, 104f
wheel profile, 103–104, 105f
point vector (see Point-vector family)
quality
gear-tooth machining, 337–345
optimization process, 337, 338f
process parameters, 337
simulation envelope surface, 93–100, 94f
spiral, 50–52
twist analysis, 91–93, 92t, 92f
calculation model, 108–111
errors reduction, 100–102
machining, 106–108
modified gear, 88–104
simulation envelope surface, 93–100
tool envelope plane, 88–91
Tooth tip curve
equal back angle hob, 121–123, 122f
hobs geometry, 119–120, 120f
tooth flank surface, 120–121, 121f
Torque motor, 20–21
Transmission chain errors, 210–213, 211f
experiments, 219–223, 220t, 220f
compensation of eI, 220–222, 221–222f
compensation of el, 222–223, 223f
measurement and identification, 213–216,
213–214f, 214t
principle, compensation, 216–219, 217–218f
Trial-and-error method, 3, 22
Truss-type automatic production line, 361–363,
362f
Two-dimensional (2D) simulations, 11–12
V
Vertical gear hobbing machine
thermal deformation, 186–192, 187–188f, 190f
thermal error modeling
compensation model, 195–196
temperature variable, 192–196, 192–193f, 194t
Vibration error, 143–144
Visual interface design, 298–299
W
Workbench, hobbing
damping mechanism, 356–358, 357f
gear hobbing machine, 356
high-speed dry cutting precision gear, 357, 358f
three-dimensional solid model, 356, 357f
workbench design principle, 358
Worm gear shaft lead, 116–118, 117f
Worm grinding wheel error, 5–6, 6f
error separation, 174
forming dressing, 174–175, 174f
functional model, 174
gear end face profile, 172, 172f
grinding process, 173–174
mapping relationship, 170, 171f
point trimming, 174–175, 175f
point-vector family, 170
reverse compensation profile, 173, 173f
reverse profile compensation, 174–175, 175f
spiral surface, 172
tooth-profile error, 172–173
tooth surface of gear, 170, 171f, 172
two-dimensional (2D) point-vector family, 170
Worm-wheel generating grinding gears, 106
Y
Y31200CNC6 hobbing machine, 236, 237f
Yttrium aluminum garnet (YAG) tool, 17–18
Z
Zero-programming system
deformation error compensation, 234–235
hobbing machine, 234–235, 237
online temperature sensor arrangement, 235–236,
236f
principle, 234
thermal error compensation, 236–237, 237f, 237t
working gear and hob parameters, 236, 236t
كلمة سر فك الضغط : books-world.net
The Unzip Password : books-world.net
تحميل
شارك
تعليقات