Constraint Satisfaction Problems
اسم المؤلف
Khaled Ghédira
التاريخ
المشاهدات
612
التقييم
(لا توجد تقييمات)
Loading...
التحميل

Constraint Satisfaction Problems
CSP Formalisms and Techniques
Khaled Ghédira
Table of Contents
Preface ix
Introduction xi
Chapter 1. Foundations of CSP 1
1.1. Basic concepts . 1
1.2. CSP framework 3
1.2.1. Formalism . 4
1.2.2. Areas of application . 6
1.2.3. Extensions . 17
1.3. Bibliography 22
Chapter 2. Consistency Reinforcement Techniques 29
2.1. Basic notions 29
2.1.1. Equivalence 29
2.1.2. K-consistency . 30
2.2. Arc consistency reinforcement algorithms 32
2.2.1. AC-1 . 33
2.2.2. AC-2 . 36
2.2.3. AC-3 . 38
2.2.4. AC-4 . 41
2.2.5. AC-5 . 44
2.2.6. AC-6 . 50
2.2.7. AC-7 . 54
2.2.8. AC2000 . 61vi Constraint Satisfaction Problems
2.2.9. AC2001 . 65
2.3. Bibliography 69
Chapter 3. CSP Solving Algorithms 73
3.1. Complete resolution methods 73
3.1.1. The backtracking algorithm . 74
3.1.2. Look-back algorithms . 76
3.1.3. Look-ahead algorithms 86
3.2. Experimental validation 92
3.2.1. Random generation of problems 92
3.2.2. Phase transition . 94
3.3. Bibliography 96
Chapter 4. Search Heuristics . 99
4.1. Organization of the search space 99
4.1.1. Parallel approaches . 99
4.1.2. Distributed approaches 100
4.1.3. Collaborative approaches . 102
4.2. Ordering heuristics . 102
4.2.1. Illustrative example 102
4.2.2. Variable ordering 109
4.2.3. Value ordering 115
4.2.4. Constraints-based ordering . 116
4.3. Bibliography 117
Chapter 5. Learning Techniques 121
5.1. The “nogood” concept 122
5.1.1. Example of union and projection 123
5.1.2. Use of nogoods 125
5.1.3. Nogood handling . 125
5.2. Nogood-recording algorithm . 126
5.3. The nogood-recording-forward-checking algorithm . 129
5.4. The weak-commitment-nogood-recording algorithm . 132
5.5. Bibliography 133Table of Contents vii
Chapter 6. Maximal Constraint Satisfaction Problems . 135
6.1. Branch and bound algorithm . 136
6.2. Partial Forward-Checking algorithm . 138
6.3. Weak-commitment search . 142
6.4. GENET method 144
6.5. Distributed simulated annealing 146
6.6. Distributed and guided genetic algorithm 147
6.6.1. Basic principles 148
6.6.2. The multi-agent model . 150
6.6.3. Genetic process 152
6.6.4. Extensions . 158
6.7. Bibliography 162
Chapter 7. Constraint Satisfaction and Optimization
Problems . 165
7.1. Formalism 166
7.2. Resolution methods . 166
7.2.1. Branch-and-bound algorithm 167
7.2.2. Tunneling algorithm 170
7.3. Bibliography 178
Chapter 8. Distributed Constraint Satisfaction
Problems . 181
8.1. DisCSP framework 183
8.1.1. Formalism . 183
8.1.2. Distribution modes . 185
8.1.3. Communication models 191
8.1.4. Convergence properties 193
8.2. Distributed consistency reinforcement 195
8.2.1. The DisAC-4 algorithm 196
8.2.2. The DisAC-6 algorithm 197
8.2.3. The DisAC-9 algorithm 198
8.2.4. The DRAC algorithm 199
8.3. Distributed resolution 200
8.3.1. Asynchronous backtracking algorithm 201
8.3.2. Asynchronous weak-commitment search 204viii Constraint Satisfaction Problems
8.3.3. Asynchronous aggregation search . 205
8.3.4. Approaches based on canonical distribution 207
8.3.5. DOC approach 208
8.3.6. Generalization of DisCSP algorithms to several
variables . 214
8.4. Bibliography 215
Index 221
كلمة سر فك الضغط : books-world.net
The Unzip Password : books-world.net

تحميل

يجب عليك التسجيل في الموقع لكي تتمكن من التحميل

تسجيل | تسجيل الدخول