Vibration Assisted Machining – Theory, Modelling and Applications

Vibration Assisted Machining – Theory, Modelling and Applications
اسم المؤلف
Lu Zheng, Dehong Huo
التاريخ
22 أبريل 2023
المشاهدات
184
التقييم
(لا توجد تقييمات)
Loading...

Vibration Assisted Machining – Theory, Modelling and Applications
Lu Zheng
Newcastle University
Newcastle, UK
Wanqun Chen
Harbin Institute of Technology
Harbin, China
Dehong Huo
Newcastle University
Newcastle, UK
Contents
Preface xi
1 Introduction to Vibration-Assisted Machining Technology 1
1.1 Overview of Vibration-Assisted Machining Technology 1
1.1.1 Background 1
1.1.2 History and Development of Vibration-Assisted Machining 2
1.2 Vibration-Assisted Machining Process 3
1.2.1 Vibration-Assisted Milling 3
1.2.2 Vibration-Assisted Drilling 3
1.2.3 Vibration-Assisted Turning 5
1.2.4 Vibration-Assisted Grinding 5
1.2.5 Vibration-Assisted Polishing 6
1.2.6 Other Vibration-Assisted Machining Processes 7
1.3 Applications and Benefits of Vibration-Assisted Machining 7
1.3.1 Ductile Mode Cutting of Brittle Materials 7
1.3.2 Cutting Force Reduction 8
1.3.3 Burr Suppression 8
1.3.4 Tool Life Extension 8
1.3.5 Machining Accuracy and Surface Quality Improvement 9
1.3.6 Surface Texture Generation 10
1.4 Future Trend of Vibration-Assisted Machining 10
References 12
2 Review of Vibration Systems 17
2.1 Introduction 17
2.2 Actuators 18
2.2.1 Piezoelectric Actuators 18
2.2.2 Magnetostrictive Actuators 18
2.3 Transmission Mechanisms 18
2.4 Drive and Control 19
2.5 Vibration-Assisted Machining Systems 19
2.5.1 Resonant Vibration Systems 19
2.5.1.1 1D System 20viii Contents
2.5.1.2 2D and 3D Systems 23
2.5.2 Nonresonant Vibration System 27
2.5.2.1 2D System 29
2.5.2.2 3D Systems 34
2.6 Future Perspectives 35
2.7 Concluding Remarks 36
References 37
3 Vibration System Design and Implementation 45
3.1 Introduction 45
3.2 Resonant Vibration System Design 46
3.2.1 Composition of the Resonance System and Its Working Principle 46
3.2.2 Summary of Design Steps 46
3.2.3 Power Calculation 47
3.2.3.1 Analysis of Working Length Lpu 48
3.2.3.2 Analysis of Cutting Tool Pulse Force Fp 49
3.2.3.3 Calculation of Total Required Power 49
3.2.4 Ultrasonic Transducer Design 49
3.2.4.1 Piezoelectric Ceramic Selection 49
3.2.4.2 Calculation of Back Cover Size 51
3.2.4.3 Variable Cross-Sectional, One-Dimensional Longitudinal Vibration Wave
Equation 51
3.2.4.4 Calculation of Size of Longitudinal Vibration Transducer Structure 53
3.2.5 Horn Design 53
3.2.6 Design Optimization 54
3.3 Nonresonant Vibration System Design 55
3.3.1 Modeling of Compliant Mechanism 56
3.3.2 Compliance Modeling of Flexure Hinges Based on the Matrix Method 56
3.3.3 Compliance Modeling of Flexure Mechanism 59
3.3.4 Compliance Modeling of the 2 DOF Vibration Stage 61
3.3.5 Dynamic Analysis of the Vibration Stage 62
3.3.6 Finite Element Analysis of the Mechanism 63
3.3.6.1 Structural Optimization 63
3.3.6.2 Static and Dynamic Performance Analysis 63
3.3.7 Piezoelectric Actuator Selection 65
3.3.8 Control System Design 66
3.3.8.1 Control Program Construction 66
3.3.9 Hardware Selection 66
3.3.10 Layout of the Control System 68
3.4 Concluding Remarks 68
References 69
3.A Appendix 70
4 Kinematics Analysis of Vibration-Assisted Machining 73
4.1 Introduction 73
4.2 Kinematics of Vibration-Assisted Turning 74
4.2.1 TWS in 1D VAM Turning 75Contents ix
4.2.2 TWS in 2D VAM Turning 78
4.3 Kinematics of Vibration-Assisted Milling 80
4.3.1 Types of TWS in VAMilling 81
4.3.1.1 Type I 81
4.3.1.2 Type II 82
4.3.1.3 Type III 82
4.3.2 Requirements of TWS 83
4.3.2.1 Type I Separation Requirements 83
4.3.2.2 Type II Separation Requirements 85
4.3.2.3 Type III Separation Requirements 87
4.4 Finite Element Simulation of Vibration-Assisted Milling 89
4.5 Conclusion 93
References 93
5 Tool Wear and Burr Formation Analysis in Vibration-Assisted
Machining 95
5.1 Introduction 95
5.2 Tool Wear 95
5.2.1 Classification of Tool Wear 95
5.2.2 Wear Mechanism and Influencing Factors 96
5.2.3 Tool Wear Reduction in Vibration-Assisted Machining 98
5.2.3.1 Mechanical Wear Suppression in 1D Vibration-Assisted Machining 98
5.2.3.2 Mechanical Wear Suppression in 2D Vibration-Assisted Machining 101
5.2.3.3 Thermochemical Wear Suppression in Vibration-Assisted Machining 102
5.2.3.4 Tool Wear Suppression in Vibration-Assisted Micromachining 106
5.2.3.5 Effect of Vibration Parameters on Tool Wear 107
5.3 Burr Formation 108
5.4 Burr Formation and Classification 109
5.5 Burr Reduction in Vibration Assisted Machining 109
5.5.1 Burr Reduction in Vibration-Assisted Micromachining 111
5.6 Concluding Remarks 113
5.6.1 Tool Wear 113
5.6.2 Burr Formation 115
References 115
6 Modeling of Cutting Force in Vibration-Assisted Machining 119
6.1 Introduction 119
6.2 Elliptical Vibration Cutting 120
6.2.1 Elliptical Tool Path Dimensions 120
6.2.2 Analysis and Modeling of EVC Process 120
6.2.2.1 Analysis and Modeling of Tool Motion 120
6.2.2.2 Modeling of Chip Geometric Feature 120
6.2.2.3 Modeling of Transient Cutting Force 124
6.2.3 Validation of the Proposed Method 126
6.3 Vibration-Assisted Milling 127
6.3.1 Tool–Workpiece Separation in Vibration Assisted Milling 128x Contents
6.3.2 Verification of Tool–Workpiece Separation 131
6.3.3 Cutting Force Modeling of VAMILL 133
6.3.3.1 Instantaneous Uncut Thickness Model 133
6.3.3.2 Cutting Force Modeling of VAMILL 136
6.3.4 Discussion of Simulation Results and Experiments 137
6.4 Concluding Remarks 143
References 143
7 Finite Element Modeling and Analysis of Vibration-Assisted
Machining 145
7.1 Introduction 145
7.2 Size Effect Mechanism in Vibration-Assisted Micro-milling 147
7.2.1 FE Model Setup 148
7.2.2 Simulation Study on Size Effect in Vibration-Assisted Machining 151
7.3 Materials Removal Mechanism in Vibration-Assisted Machining 152
7.3.1 Shear Angle 152
7.3.2 Simulation Study on Chip Formation in Vibration-Assisted Machining 154
7.3.3 Characteristics of Simulated Cutting Force and von-Mises Stress in
Vibration-Assisted Micro-milling 156
7.4 Burr Control in Vibration-Assisted Milling 158
7.4.1 Kinematics Analysis 159
7.4.2 Finite Element Simulation 160
7.5 Verification of Simulation Models 161
7.5.1 Tool Wear and Chip Formation 162
7.5.2 Burr Formation 163
7.6 Concluding Remarks 164
References 164
8 Surface Topography Simulation Technology for Vibration-Assisted
Machining 167
8.1 Introduction 167
8.2 Surface Generation Modeling in Vibration-Assisted Milling 171
8.2.1 Cutter Edge Modeling 172
8.2.2 Kinematics Analysis of Vibration-Assisted Milling 173
8.2.3 Homogeneous Matrix Transformation 174
8.2.3.1 Basic Theory of HMT 174
8.2.3.2 Establishment of HTM in the End Milling Process 174
8.2.3.3 HMT in VAMILL 176
8.2.4 Surface Generation 185
8.2.4.1 Surface Generation Simulation 185
8.3 Vibration-Assisted Milling Experiments 187
8.4 Discussion and Analysis 187
8.4.1 The Influence of the Vibration Parameters on the Surface Wettability 188
8.4.2 Tool Wear Analysis 189
8.5 Concluding Remarks 189
References 189
Index 193x
Index
a
abnormal wear 95–96
chipping 95–96
cracking 95–96
fracture 95–96
spalling 95–96
abrasive wear 97
actuators 18–19
magnetostrictive actuators 18
piezoceramic rings 21
piezoelectric actuators 18
adhesion wear 97
analytical rigid body 148
ANSYS 63
Arbitrary Lagrangian Eulerian (ALE)
formulation 148
atomic force microscope (AFM) 171
b
block type chips 141
boundary conditions 54
brittle damage 95
burr 8
burr reduction 8, 108–115
c
Cartesian coordinate system 60
Castigliano’s second theorem 56
ceramic stack 46
chip generation 108
chip geometric feature 120
chip thickness 73, 89
uncut chip thickness 106–107
undeformed chip thickness 7, 112, 145
clamping mode 20, 35
coated tool 97
coating delamination 97
cold welding 97
compliance transformation matrix 60–63
composite horns 53
compound motion 34–35
compression shear deformation 112
constructive solid geometry 169
contact angles 188
continuous type chips 141
controllable wettability surface 171
coupling effect 31–33, 36–37, 45
crater 96
critical cutting depth 7
critical up-feed velocity 76
critical velocity 48, 100
cross-coupling 32
C type chips 141
cut-off burr 109
cutting-directional vibration-assisted (CDVA)
74
cutting-edge angle 89
cutting-edge radius 89
cutting energy 49, 69, 98
cutting force 8, 119–144
cutting force coefficient 127
cutting paths 132
cutting power 49
cutting temperature 105
cutting zone 89
d
data acquisition (DAQ) 66–67
data collection 66–67
decoupling 28, 45
DEFORM
2D software 152
deformation zone 104
depth ratio 120
diffusion wear 97
drive and control 19
open loop control system 19
proportion integration differentiation (PID)
19, 66
e
effective cutting time 48
electrode plate 49
electromechanical coupling coefficient
elliptic vibration-assisted (EVA) cutting 74
energy-dispersive X-ray spectroscopy (EDS)
101, 105
excitation sources 47
f
ferrous materials 98
Fick’s first law 105
finite element analysis (FEA) 17, 22, 63–65
fish scale surface 188
fish squamous structure 188
friction force 100
front cover 49–53
g
Gibbs free energy 104
Gibbs–Helmholtz equations 105
h
hard and brittle materials 1, 7, 36, 98, 102,
113
AISI 1045 steel 90
Steel and SiCp/Al composites 99
titanium alloys 102
homogeneous transformation matrix 174
horizontal speed ratio (HSR) 76
i
ImageJ 172
independent drive 34–35
instantaneous uncut thickness 135
Inverse kinematic modeling (IKM) 56
j
Johnson–Cook damage model 89
Johnson–Cook (JC) material model 89
l
LabVIEW platform 66–67
Langevin transducer 50
linear Hooke’s law 56
m
matrix-based compliance modeling (MCM)
56
maximum vibration velocity 85
mechanical amplification 18, 46
mechanical stiffness 29–30, 49
mechanical wear 96–98
micro-electro-mechanical systems 167
micro-Euler–Bernoulli beam 56
minimum chip thickness 106
motion strokes 33
n
natural frequency 17, 19, 22, 26, 28
negative shear angle 110
negative shear band 110
nodal plane 46, 52
node point 20, 27, 53
nominal cutting velocity 85
nonresonant system 27–36
normal-directional vibration-assisted (NDVA)
74
normal wear 95–96
boundary wear 96
flank wear 96
rake wear 96
tool tip wear 96
o
output compliance 61–62
oxidation wear 98Index 195
p
parasitic motions 33
piezoelectric transducer (PZT) 2
plastic-elastic deformation 106
plastic hinge point 110
ploughing effect 106
Poisson burr 109
polycrystalline diamond (PCD) tools 99
processing parameters 9, 169
cutting depth 123
feed rate 74, 83, 106
pseudo-rigid body (PRB) method 56
pulse force 47, 49
q
quarter-wave horns 53
r
radial force 136
rear cover 49–53
relative rotational angle 178
residual stress 108
resonance rod 27
resonant system 19–28
right circular flexure hinge 56–58
rollover burr 109
rotation matrix 60
rotation speed 87
s
scanning electron microscope (SEM) 99
secondary damage 107
shear angle 125
shear yield stress 110
signal generator 66–67
Sindatek Water Contact Goniometer 187
size effect 106
spindle rotation frequency 88
spindle rotation speed 185
stress concentration 22, 31, 64
structural compliance 63–64
structural stiffness 63–64
surface quality 9–10, 159
surface roughness 107, 108, 146
surface simulation 185
surface texture 10, 146, 167–171, 185–187
surface topography 188
sweep signal 66
t
tangential force 136
tear burr 109
thermochemical wear 96–98
thermo-elastic-plastic material 148
tool-chip contact length 152
tool geometry 108
tool holder 20–21, 30–31
tool life 9, 95–108
tool materials 35, 96, 145
tool parameters 9, 98, 170
tool paths 8, 87
elliptical tool paths 87
tool tip motion 75
tool trajectory 25, 30, 101, 120, 155
elliptical tool trajectory 101
tool-workpiece separation (TWS) 73–75, 80
top burr height 163
top burrs 112
transmission efficiency 47
transmission mechanisms 18–19
acoustic waveguide booster 19–20
double parallel four bar linkage 19, 32
flexible hinges 18, 32, 33, 56–59
hollow ultrasonic horn 22
sonotrode 19–20
ultrasonic horn 18–19, 22
ultrasonic transducer 19–20
u
ultrasonic generator 46
ultrasonic transducer 46
ultrasonic vibration 22–25, 35
uncut work material 76
unloaded power 49–50
up-feed increment 76
v
vibration amplitude 18, 22, 26, 29, 49, 67,
78, 82
vibration assisted machining process 3196 Index
vibration assisted machining process (contd.)
vibration-assisted drilling 3–4
vibration-assisted grinding 4–6
vibration-assisted machining process 3
vibration-assisted milling 3
vibration-assisted polishing 6
vibration-assisted turning 4
vibration frequency 29, 36, 47, 49, 53–54,
74
vibration resolutions 33

كلمة سر فك الضغط : books-world.net
The Unzip Password : books-world.net

تحميل

يجب عليك التسجيل في الموقع لكي تتمكن من التحميل
تسجيل | تسجيل الدخول

التعليقات

اترك تعليقاً