Piezoelectric Accelerometers with Integral Electronics

Piezoelectric Accelerometers with Integral Electronics
اسم المؤلف
Felix Levinzon
التاريخ
14 سبتمبر 2023
المشاهدات
362
التقييم
(لا توجد تقييمات)
Loading...

Piezoelectric Accelerometers with Integral Electronics
Felix Levinzon
Contents
1 Introduction to Piezoelectric Accelerometers with Integral
Electronics (IEPE) 1
1.1 Principle, Construction, and Block Diagram of IEPE
Accelerometers . 1
1.2 PE Accelerometer Used Without Electronics
and Its Comparison with an IEPE Accelerometer . 5
1.3 Characteristics of IEPE Accelerometers 8
1.3.1 Sensitivity . 8
1.3.2 Range or Dynamic Range . 9
1.3.3 Transfer Function and Frequency Response . 9
1.3.4 Resonant Frequency 13
1.3.5 Temperature Response 13
1.3.6 Transverse Sensitivity 15
1.3.7 Amplitude Linearity . 15
1.3.8 Total Harmonic Distortion . 15
1.3.9 DC Output Bias Voltage 16
1.3.10 Full Scale Output Voltage . 16
1.3.11 Output Impedance . 17
1.3.12 Noise Floor 18
1.3.13 Warm-Up Time . 18
1.3.14 Overload Recovery 19
1.3.15 Temperature Range 19
1.3.16 Sinusoidal Vibration Limit . 20
1.3.17 Shock Limit . 20
1.3.18 Base Strain Sensitivity 21
1.3.19 Size and Weight 21
1.4 Types of IEPE Accelerometers 22
1.4.1 Charge Mode IEPE Accelerometer . 22
1.4.2 Voltage Mode IEPE Accelerometers 29
xi1.4.3 IEPE Accelerometers with Ground Isolation.
Ground Loop Issue 34
1.4.4 IEPE Accelerometers with Transducer Electronic
Data Sheet 35
References . 39
2 Piezoelectric Transducers Used for Piezoelectric
Accelerometers with Integral Electronics . 43
2.1 Function of a PE Transducer in an IEPE Accelerometer 43
2.2 Transfer Function of a PE Transducer . 44
2.3 Equivalent Electrical Schematic of a PE Transducer
and Its Main Electrical Characteristics . 45
2.4 Constructions of the PE Transducers Used in the IEPE
Accelerometers . 47
2.4.1 Compression Mode Design 47
2.4.2 Shear Mode Design 48
2.4.3 Flexural or Bending Mode Design . 50
2.4.4 Comparison Between Compression, Shear,
and Flexural Mode Designs 53
2.5 Piezoelectric Elements Used in the IEPE Accelerometers . 53
2.5.1 Quartz Piezoelectric Element . 53
2.5.2 Lead Zirconate Titanate Piezoceramic Element 54
2.5.3 Comparison Between IEPE Sensors Using PZT
Piezoceramic and Quartz Sensitive Elements 55
2.5.4 The Pyroelectric Effect . 55
References . 55
3 Integral Amplifiers Used for IEPE Accelerometers . 59
3.1 Charge Amplifier 59
3.1.1 Configuration of a FET-BJT Charge Amplifier 60
3.1.2 Configuration of a Charge Amplifier Based
on an Op Amp 61
3.1.3 Performance Characteristics of Charge Amplifiers 63
3.2 Voltage Amplifier . 65
3.2.1 Configurations of the Voltage Amplifiers 66
3.2.2 Performance Characteristics of a Voltage Amplifier . 67
3.3 Other Performance Characteristics of Charge and Voltage
Amplifiers . 69
3.3.1 Noise or Noise Floor . 69
3.3.2 DC Output Bias Voltage 70
3.3.3 Full Scale or Maximum Linear Output Voltage 71
3.3.4 Gain Stability 71
3.3.5 Amplitude Linearity and Total Harmonic Distortion 71
3.3.6 Input and Output Impedances . 72
3.3.7 Power Requirements: Voltage Supply
and Current Supply 72
xii Contents3.3.8 Temperature Range 72
3.3.9 Size and Shape of the Hybrid Circuit Board 73
3.4 Technology, Components, and Materials Used for Amplifier
Circuits . 73
3.4.1 Resistors 74
3.4.2 Capacitors . 74
3.4.3 JFETs vs. MOSFETs in FET-Input Amplifiers 75
References . 76
4 Noise of a FET Amplifier . 79
4.1 Equivalent Noise Circuit of a FET Amplifier 80
4.2 Noise Analysis and Noise Sources of the FET Amplifier . 83
4.2.1 FET Thermal Noise 83
4.2.2 Thermal Noise Caused by the Load Resistance 83
4.2.3 Thermal Noise Caused by the Biasing Resistor 84
4.2.4 1/f Noise of JFETs and MOSFETs . 85
4.2.5 Shot Noise Current in the Gate 86
4.2.6 Overall Equivalent Noise Voltage Referred
to the FET Input 87
4.2.7 Some Practical Examples 88
4.2.8 Comparison Between Theoretical
and Measurement Results 89
4.2.9 1/f Noise and Thermal Noise of JFET 2N4338
Measurement Results . 90
References . 91
5 Comparison of 1/f Noise and Thermal Noise in JFETs
and MOSFETs . 93
5.1 Introduction to 1/f Noise and Thermal Noise in JFETs
and MOSFETs 93
5.2 Low-Noise Measurement System for Measurement
of 1/f Noise and Thermal Noise in JFETs and MOSFETs . 94
5.2.1 Preamplifier . 95
5.2.2 Major Amplifier 97
5.3 Measurement Results of the 1/f Noise and Thermal Noise
in JFETs and MOSFETs . 97
5.3.1 N-Channel JFETs 1/f and Thermal Noise
Measurement Results . 100
5.3.2 N-Channel MOSFETs 1/f and Thermal Noise
Measurement Results . 102
5.3.3 P-Channel MOSFETs 1/f and Thermal Noise
Measurement Results . 103
5.4 Summary and Discussion of the Measurement Results . 105
References . 106
Contents xiii6 Fundamental Noise Limit of an IEPE Accelerometer 107
6.1 When and Why Noise of a PE Transducer Should
Not Be Neglected 107
6.2 The PE Transducer’s Noise Sources Description . 108
6.3 Equivalent Electrical Noise Schematic of a PE Transducer 108
6.4 The PE Transducer’s Mechanical-Thermal Noise . 110
6.5 The PE Transducer’s Electrical-Thermal Noise 112
6.6 Complete Expression for the Fundamental Noise Limit
of an IEPE Accelerometer . 114
6.7 Some Practical Examples 115
References . 116
7 Noise of an IEPE Accelerometer 117
7.1 Introduction 117
7.2 Equivalent Noise Schematic of the IEPE Accelerometer
and General Noise Expressions Derivation 118
7.3 Noise of the FET-Input Amplifier 123
7.3.1 The FET Thermal Noise ent 123
7.3.2 The FET 1/f Noise en1=f . 124
7.3.3 The FET Noise ens Caused by the Shot Noise
Current i
ns in the Gate Circuit 125
7.3.4 Total Noise enFET Generated by the FET Noise
Sources . 126
7.3.5 Thermal Noise Sources enRb and enR1 Caused
by the FET Biasing Resistor Rb and Resistor R1,
Respectively . 126
7.3.6 Total Noise e
namp Generated by the FET-Input
Amplifier Noise Sources 127
7.4 Noise of the PE Transducer . 128
7.5 Overall Noise of the IEPE Accelerometer 129
7.6 Comparison Between Theoretical and Experimental Results . 129
References . 132
8 Ultra-Low-Noise IEPE Seismic Accelerometers 135
8.1 Introduction 136
8.2 Configuration of the Designed Accelerometers . 136
8.3 Construction of the Designed Accelerometers . 138
8.4 Characteristics of the Designed Accelerometers 139
8.5 Key Factors Providing Ultra-Low-Noise in the Designed
Accelerometers . 144
8.6 Direct Measurement of the Designed Accelerometer’s Noise 145
References . 148
9 High-Temperature, Up to 175 C, Miniature IEPE
Accelerometers . 151
9.1 Introduction 152
xiv Contents9.2 Configuration and Performance Characteristics of the Designed
175 C Triaxial IEPE Accelerometers Having Sensitivities
100 mV/g and 10 mV/g and Size of 14.8 mm3 . 153
9.3 Configuration and Performance Characteristics of the Designed
175 C Triaxial IEPE Accelerometers Having Sensitivities
10, 1, and 0.5 mV/g and Size of 10 mm3 . 155
9.4 Configuration and Characteristics of the Designed 175 C,
10 mV/g Triaxial IEPE Accelerometers with Size of 10 mm3
and Comprising 2-Pole Active LPF . 158
9.5 Configuration and Characteristics of the Designed 175 C,
10 mV/g Single Axis IEPE Accelerometers Comprising
2-Pole Active LPF . 158
9.6 Key Factors Providing High-Temperature Operations
in the Designed Accelerometers . 165
References . 168

كلمة سر فك الضغط : books-world.net
The Unzip Password : books-world.net

تحميل

يجب عليك التسجيل في الموقع لكي تتمكن من التحميل
تسجيل | تسجيل الدخول

التعليقات

اترك تعليقاً