Hydraulics & Fluid Mechanics – including Hydraulics Machines

Hydraulics & Fluid Mechanics – including Hydraulics Machines
اسم المؤلف
Dr. P.N. and Dr. S.M. Seth
التاريخ
8 أغسطس 2022
المشاهدات
192
التقييم
(لا توجد تقييمات)
Loading...

Hydraulics & Fluid Mechanics – including Hydraulics Machines
(In SI Units)
By Dr. P.N.
Modi
B.E., M.E., Ph.D
Former Professor of civil
Engineering,
M.R. Engineering College, (Now M.N.I.T), Jaipur
Formerly Principal, Kautilya Institute of technology and Engineering, Jaipur
and
Dr. S.M. Seth
B.E., M.E., M.I.E., Ph.D (Manchester)
Former Director, National Institute ofHydrology, Roorkee
Presently Principal, Kautilya Institute ofTechnology and Engineering, Jaipur
Contents
CHAPTER 1. PROPERTIES OF FLUIDS 1-35
1.1 Introduction 1
1.2 Definition of a Fluid 2
1.3 Development of Fluid Mechanics 2
1.4 Units of Measurement 3
1.5 Mass Density, Specific Weight, Specific Volume 7
1.6 Specific Gravity 8
1.7 Equation of State: The Perfect Gas 9
1.8 Viscosity 10
1.9 Vapour Pressure 12
1.10 Compressibility and Elasticity 13
1.11 Surface Tension and Capillarity 14
Sumary ofMain Points 33
Problems 34
CHAPTER 2. FLUID PRESSURE AND ITS MEASUREMENT 36-92
2.1 Fluid Pressure at a Point 36
2.2 Variation of Pressure in a Fluid 36
2.3 Equilibrium of a Compressible Fluid—Atmospheric Equilibrium 40
2.4 Pressure, Same in all Directions — Pascal’s Law 47
2.5 Atmospheric, Absolute, Gage and Vacuum Pressures 48
2.6 Mesurement of Pressure 49
2.7 General Comments on Connections for Manometers and Gages 65
Sumary ofMain Points 89
Problems 90
CHAPTER 3. HYDROSTATICFORCES ON SURFACES 93-154
3.1 Total Pressure and Centre of Pressure 93
3.2 Total Pressure on a Plane Surface 93vi J Contents
3.3 Pressure Diagram 102
3.4 Total Pressure on Curved Surface 103
3.5 Practical Applications of Total Pressure and Centreof Pressure 105
Sumary ofMain Points 151
Problems 152
CHAPTER 4. BUOYANCY AND FLOATATION 155-189
4.1 Buoyancy, Buoyant Force and Centre of Buoyancy 155
4.2 Metacentre and Metacentric Height 157
4.3 Stability of Submerged and Floating Bodies 158
4.4 Determination of Metacentric Height 161
4.5 Metacentric Height for Floating Bodies Containing Liquid 165
4.6 Time Period of Transverse Oscillation of a Floating Body 166
Sumary ofMain Points 187
Problems 188
CHAPTER 5. LIQUIDS IN RELATIVE EQUILIBRIUM 190-228
5.1 Introduction 190
5.2 Fluid Mass Subjected to Uniform Linear Acceleration 190
5.3 Liquid Containers Subjected to Constant Horizontal Acceleration 193
5.4 Liquid Containers Subjected to Constant Vertical Acceleration 196
5.5 Fluid Containers Subjected to Constant Rotation 199
Sumary ofMain Points 227
Problems 227
CHAPTER 6. FUNDAMENTALS OF FLUID FLOW 229-285
6.1 Introduction 229
6.2 Velocity of Fluid Particles 229
6.3 Types of Fluid Flow 231
6.4 Description of the Flow Pattern 234
6.5 Basic Principles of Fluid Flow 236
6.6 Continutty Equation 236
6.7 Acceleration of a Fluid Particle 246
6.8 Rotational and Irrotational Motions 251
6.9 Circulation and Vorticity 254
6.10 Velocity Potential 256
6.11 Stream Function 257
6.12 Streamlines, Equipotential Lines and Flow Net 260
6.13 Methods of Drawing Flow Nets 262
6.14 Use of the Flow Net 263
6.15 Limitations of Flow Net 265
Sumary ofMain Points 281
Problems 284
Final Proof/24.10.2009Contents vii
CHAPTER 7. EQUATIONS OF MOTION AND ENERGY EQUATION 286-350
7.1 Introduction 286
7.2 Forces Acting on Fluid in Motion 287
7.3 Euler‘s Equation of Motion 288
7.4 Integration of Euler’s Equations 291
7.5 Bernoulli’s Equation from the Principle of Conservation of Energy 297
7.6 Kinetic Energy Correction Factor 301
7.7 Bernoulli’s Equation for a Compressible Fluid 302
7.8 Pressure Velocity Realationship 304
7.9 Applications of Bernoulli’s Equation 305
7.10 Venturi Meter 305
7.11 Orifice Meter 310
7.12 Nozzle Meter or Flow Nozzle 313
7.13 Other Flow Measurement Devices 313
7.14 Pitot Tube 314
7.15 Free Liquid Jet 317
7.16 Vortex Motion 319
7.17 Radial Flow or Radial Motion 323
7.18 Spiral Vortex Motion 326
Sumary ofMain Points 345
Problems 348
CHAPTER 8. IMPULSE MOMENTUM EQUATION AND
ITS APPLICATIONS 351-382
8.1 Introduction 351
8.2 Impulse-momentum Equations 351
8.3 Momentum Correction Factor 354
8.4 Applications of the Impulse-MomentumEquation 355
8.5 Force on a Pipe Bend 355
8.6 Jet Propulsion—Reaction of Jet 357
8.7 Momentum Theory of Propellers 362
8.8 Angular Momentum Principle—Momentof Momentum Equation 365
Sumary ofMain Points 380
Problems 381
CHAPTER 9. FLOW THROUGH ORIFICES AND MOUTHPIECES 383-453
9.1 Definition 383
9.2 Classifications of Orifices and Mouthpieces 383
9.3 Sharp-edged Orifice Discharging Free 384
9.4 Experimental Determination of the Coefficients for an Orifice 388
9.5 Flow Through Large Vertical Orifice 394
9.6 Flow Under Pressure Through Orifices 398
9.7 Flow Through Submerged (or Drowned)Orifice 398
Final Proof/24.10.2009viii Contents
9.8
9.9
Energy or Head Losses of Flowing Liquid Due to Sudden Change in Velocity
Flow Through an External Cylindrical Mouthpiece
400
407
9.10 Flow Through A Convergent Divergent Mouthpiece 411
9.11 Flow Through Internal or Re-Entrant or Borda’s Mouthpiece 413
9.12 Flow Through an Orifice or a Mouthpiece Under Variable Heads 416
9.13 Flow of Liquid From one Vessel to Another 421
9.14 Time of Emptying and Filling of a Canal Lock 423
Sumary ofMain Points 449
Problems 452
CHAPTER 10. FLOW OVER NOTCHES AND WEIRS 454-493
10.1 Introduction 454
10.2 Classification of Notches and Weirs 454
10.3 Flow Over a Rectangular Sharp-Crested Weir or Notch 455
10.4 Calibration of Rectangular Weir or Notch 458
10.5 Empirical Fomula for Discharge over Rectangular Weirs 459
10.6 Ventilation of Weirs 461
10.7 Flow Over a Triangular Weir (v-Notch Weir) or Triangular Notch (v-Notch) 463
10.8 Flow Over a Trapezoidal Weir or Notch 465
10.9 Time Required to Empty a Reservoir with Rectangular Weir 467
10.10 Effect on Computed Discharge over a weir or Notch Due to
Error in the Measurement of Head 469
10.11 Broad Crested Weir 470
10.12 Submerged Weirs 472
10.13 Spillway and Siphon Spillway 473
10.14 Proportional Weir or Sutro Weir 475
Sumary ofMain Points 490
Problems 492
CHAPTER 11. FLOW THROUGH PIPES 494-566
11.1 Introduction 494
11.2 Two Types of Flow—Reynolds’ Experiment 494
11.3 Laws of Fluid Friction 497
11.4 Froude’s Experiments 498
11.5 Equation for Head Loss in Pipes Due to Friction—Darcy-Weisbach Equation 499
11.6 Other Formulae for Head Loss Due to Friction in Pipes 500
11.7 Other Energy Losses in Pipes 502
11.8 Hydraulic Grade Line and Energy Grade Line 503
11.9 Flow Through Long Pipes 507
11.10 Pipes in Series or Compound Pipe 508
11.11 Equivalent Pipe 509
11.12 Pipes in Parallel 510
11.13 Flow Through a Bye-Pass 511
Final Proof/24.10.2009Contents 1 ix
11.14 Branched Pipes 512
11.15 Siphon 515
11.16 Loss of Head Due to Friction in Tapering Pipe 517
11.17 Loss of Head Due to Friction in a Pipe with Side Tappings 519
11.18 Time of Emptying a Reservoir Through Pipe 520
11.19 Transmission of Power Through Pipes 522
11.20 Flow Through Nozzle at the end of Pipe 523
11.21 Water Hammer in Pipes 526
11.22 Pipe Networks 531
Sumary ofMain Points 560
Problems 564
CHAPTER 12. BOUNDARY LAYER THEORY 567-600
12.1 Introduction 567
12.2 Thickness of Boundary Layer 567
12.3 Boundary Layer along a Long Thin Plate and its Characteristics 569
12.4 Boundary Layer Equations 571
12.5 Momentum Integral Equation of the Boundary Layer 574
12.6 Laminar Boundary Layer 577
12.7 Turbulent Boundary Layer 580
12.8 Laminar Sublayer 582
12.9 Boundary Layer on Rough Surfaces 582
12.10 Separation of Boundary Layer 583
12.11 Methods of Controlling the Boundary Layer 585
12.11.1 Motion of Solid Boundary 585
12.11.2 Acceleration of the Fluid in the Boundary Layer 585
12.11.3 Suction of the Fluid from the Boundary Layer 586
12.11.4 Streamlining of Body Shapes 586
Sumary ofMain Points 598
Problems 600
CHAPTER 13. LAMINAR FLOW 601-657
13.1 Introduction 601
13.2 Relation between Shear and Pressure Gradients in Laminar Flow 601
13.3 Steady Laminar Flow in Circular Pipes—Hagen-Poiseuille Law 603
13.4 Laminar Flow Through Inclined Pipes 608
13.5 Laminar Flow Through Annulus 610
13.6 Laminar Flow between Parallel Plates-Both Plates at Rest 612
13.7 Laminar Flow between Parallel Flat Plates—one Plate Moving
and Other at Rest—Couette Flow 615
13.8 Laminar Flow of Fluid in an Open Channel 619
13.9 Laminar Flow Through Porous Media 620
13.10 Laminar Flow Around a Sphere—Stokes’ Law 622
13.11 Lubrication Mechanics 623
Final Proof/24.10.2009X J Contents
13.11.1 Slipper Bearing 623
13.11.2 Journal Bearing 627
13.11.3 Properties of Lubricant 629
13.1 2 Dash-Pot Mechanism 630
13.1 3 Measurement of Viscosity—Viscometers 633
Sumary ofMain Points 653
Problems 656
CHAPTER 14. TURBULENT FLOW IN PIPES 658-700
14.1 Introduction 658
14.2 Shear Stresses in Turbulent Flow 658
14.3 Formation of Boundary Layer in Pipes—Establishment of Flow in Pipes 661
14.4 Hydrodynamically Smooth and Rough Boundaries 662
14.5 Velocity Distribution for Turbulent Flow in Pipes 663
14.6 Velocity Distribution for Turbulent Flow in Hydrodynamically Smooth and
Rough Pipes—Karman Prandtl Velocity Distribution Equation 665
14.7 Velocity Distribution Equation for Turbulent Flow in Terms of Mean
Velocity, for Smooth and Rough Pipes 669
14.8 Resistance to Flow of Fluid in Smooth and Rough Pipes 671
14.9 Types of Problems in Pipeline Designs 679
14.10 Friction in Non-Circular Conduits 679
Sumary ofMain Points 698
Problems 700
CHAPTER 15. FLOW IN OPEN CHANNELS 701-781
15.1 Introduction 701
15.2 Types of Flow in Channles 702
15.3 Geometrical Properties of Channel Section 703
15.4 Velocity Distribution in a Channel Section 705
15.5 Uniform Flow in Channles 706
15.6 Most Economical or Most Efficient Section of Channel 711
15.7 Open Channel Section for Constant Velocity at all Depths of Flow 719
15.8 Computation of Uniform Flow 721
15.9 Specific Energy and Critical Depth 722
15.10 Momentum in Open-Channel Flow-Specific Force 725
15.11 Critical Flow and its Computation 727
15.12 Application of Specific Energy and Discharge Diagrams to Channel Transitions 731
15.13 Metering Flumes 735
15.14 Determination of Mean Velocity of Flow in Channels 738
15.15 Practical Channel Sections 740
15.16 Measurement of Discharge in Rivers 741
Sumary ofMain Points 777
Problems 779
Final Proof/24.10.2009Contents 1 xi
CHAPTER 16. NON-UNIFORM FLOW IN CHANNELS 782-835
16.1 Introduction 782
16.2 Gradually Varied Flow 782
16.3 Classification of Channel Bottom Slopes 788
16.4 Classification of Surface Profiles 789
16.5 Characteristics of Surface Profiles 790
16.6 Integration of the Varied Flow Equation 796
16.7 Hydraulic Jump 800
16.8 Location of Hydraulic Jump 805
16.9 Surges in Open Channels 808
Sumary ofMain Points 833
Problems 834
CHAPTER 17. DIMENSIONAL ANALYSIS, HYDRAULIC SIMILITUDE AND
MODEL INVESTIGATION 836-891
17.1 Introduction 836
17.2 Dimensions 836
17.3 Dimensional Homogeneity 840
17.4 Methods of Dimensional Analysis 842
17.5 Outline of Procedure for Buckingham Method 846
17.6 Number of Dimensionless Groups in a Complete Set of Variables 847
17.7 Superfluous and Omitted Variables 849
17.8 Use of Dimensional Analysis in Presenting Experimental Data 850
17.9 Model Investigation 851
17.10 Similitude—Types of Similarties 852
17.11 Force Ratios—Dimensionless Numbers 855
17.12 Similarity Laws or Model Laws 857
17.13 Types of Models 860
17.14 Merits and Limitations of Distorted Models 861
17.15 Scale Effect in Models 861
17.16 Application of Dynamic Similarity to Specific Model Investigations 862
Sumary ofMain Points 888
Problems 889
CHAPTER 18. FLUID FLOW AROUND SUBMERGED
OBJECTS—DRAG AND LIFT 892-937
18.1 Introduction 892
18.2 Types of Drag 895
18.3 Dimensional Analysis of Drag and Lift 898
18.4 Drag on a Sphere 899
18.5 Drag on a Cylinder 903
18.6 Drag on a Flat Plate 909
Final Proof/24.10.2009xii Contents
18.7 Drag on an Airfoil 910
18.8 Effect of Free Surface on Drag 911
18.9 Effect of Compressibility on Drag 912
18.10 Development of Lift on Immersed Bodies 914
18.11 Induced Drag on an Airfoil of Finite Length 924
18.12 Polar Diagram for Lift and Drag of an Airfoil 927
Sumary ofMain Points
Problems
CHAPTER 19. FLOW OF COMPRESSIBLE FLUIDS
935
936
938-977
19.1 Introduction 938
19.2 Basic Relationship of Thermodynamics 938
19.3 ContinuIty Equation 941
19.4 Momentum Equation 941
19.5 Energy Equation 941
19.6 Propagation of Elastic Waves Due to Compression of Fluid, Velocity of Sound 943
19.7 Mach Number and its Significance 945
19.8 Propagation of Elastic Waves Due to Disturbance in Fluid 946
19.9 Stagnation Pressure in Ccompressible Flows 947
19.10
19.11
Flow of Compressible Fluid with Negligible Friction Through a Pipe of varying
Cross-section
Flow of Compressible Fluid in Convergent—Divergent Passages
949
951
19.12 Normal Shock Waves 956
19.13 Measurement of Compressible Fluid Flow 958
Sumary ofMain Points
Problems
CHAPTER 20. IMPACT OF FREE JETS
974
976
978-1020
20.1 Introduction 978
20.2 Force Exerted by Fluid Jet on Stationary Flat Plate 978
20.3 Force Exerted by Fluid Jet on Moving Flat Plate 981
20.4 Force Exerted by a Fluid Jet on Stationary Curved Vane 985
20.5 Force Exerted by a Fluid Jet on Moving Curved Vane 989
20.6 Torque Exerted on a Wheel with Radial Curved Vanes 997
Sumary ofMain Points
Problems
CHAPTER 21. HYDRAULIC TURBINES
1017
1018
1021-1086
21.1 Introduction 1021
21.2 Elements of Hydroelectric Power Plants 1022
21.3 Head and Efficiencies of Hydraulic Turbines 1023
21.4 Classification of Turbines 1026
21.5 Pelton Wheel 1027
Final Proof/24.10.2009Contents | xiii
21.6 Work Done and Efficiencies of Pelton Wheel 1028
21.7 Working Proportions of Pelton Wheel 1032
21.8 Design of Pelton Turbine Runner 1033
21.9 Multiple Jet Pelton Wheel 1033
21.10 Radial Flow Impulse Turbine 1034
21.11 Reaction Turbines 1034
21.12 Francis Turbine 1035
21.13 Work Done and Efficiencies of Francis Turbine 1037
21.14 Working Proportions of Francis Turbine 1039
21.15 Design of Francis Turbine Runner 1039
21.16 Draft Tube Theory 1040
21.17 Shape of Francis Turbine Runner and Development of Kaplan Turbine Runner 1042
21.18 Kaplan Turbine 1043
21.19 Working Proportions of Kaplan Turbine 1044
21.20 New Types of Turbines 1045
21.21 Governing of Turbines 1047
21.22 Runaway Speed 1050
21.23 Surge Tanks 1050
Sumary ofMain Points
Problems
CHAPTER 22. PERFORMANCE OF TURBINES
1082
1084
1087-1130
22.1 Introduction 1087
22.2 Performance Under Unit Head—Unit Quantities 1087
22.3 Performance Under Specific Conditions 1090
22.4 Expressions for Specific Speeds in Terms of Known Coefficients for Different Turbines 1093
22.5 Performance Characteristic Curves 1096
22.6 Model Testing of Turbines 1101
22.7 Cavitation in Turbines 1105
22.8 Selection of Turbines 1107
Sumary ofMain Points
Problems
CHAPTER 23. RECIPROCATING PUMPS
1127
1129
1131-1176
23.1 Introduction 1131
23.2 Main Components and Working of a Reciprocating Pump 1131
23.3 Types of Reciprocating Pumps 1133
23.4 Work Done by Reciprocating Pump 1135
23.5 Coefficient of Discharge, Slip, Percentage Slip and Negative Slip of Reciprocating Pump 1137
23.6
23.7
Effect of Acceleration of Piston on Velocity and Pressure in the Suction and
Delivery Pipes
Indicator Diagrams
1137
1143
23.8 Air Vessels 1148
Final Proof/24.10.2009xiv Contents
23.9
23.10
Multi-Cylinder Pumps
Operating Characteristic Curves of Reciprocaing Pumps
Sumary ofMain Points
Problems
1157
1157
1174
1175
CHAPTER 24. CENTRIFUGAL PUMPS 1177-1245
24.1 Introduction 1177
24.2 Advantages of Centrifugal Pumps over Reciprocating Pumps 1178
24.3 Component Parts of a Centrifugal Pump 1178
24.4 Working of Centrifugal Pump 1179
24.5 Types of Centrifugal Pumps 1181
24.6 Work done by the Impeller 1184
24.7 Head of Pump 1185
24.8 Losses and Efficiencies 1190
24.9 Minimum Starting Speed 1194
24.10 Loss of Head Due to Reduced or Increased Flow 1195
24.11 Diameters of Impeller and Pipes 1196
24.12 Specific Speed 1197
24.13 Model Testing of Pumps 1199
24.14 Pump in Series—Multi-Stage Pumps 1201
24.15 Pumps in Parallel 1202
24.16 Performance of Pumps—Characteristic Curves 1203
24.17 Limitation of Suction Lift 1206
24.18 Net Positive Suction Head (npsh) 1207
24.19 Cavitation in Centrifugal Pumps 1208
24.20 Computation of the Total Head of Pumping—System Head Curves 1209
24.20.1 Operating Point or Operating Range of a Centrifugal Pump 1210
24.20.2 Selection of a Pumping Unit 1212
24.20.3 Pumps Operated in Series 1212
24.20.4 Pumps Operated in Parallel 1213
24.21 Priming Devices 1214
24.22 Centrifugal Pump-Troubles and Remedies 1214
Sumary ofMain Points 1241
Problems 1243
CHAPTER 25. MISCELLANEOUS HYDRAULIC MACHINES 1246-1277
25.1 Introduction 1246
25.2 Hydraulic Accumulator—Simple and Differential Types 1246
25.3 Hydraulic Intensifier 1248
25.4 Hydraulic Press 1250
25.5 Hydraulic Crane 1251
25.6 Hydraulic Lift 1253
25.7 Hydraulic Ram 1254
Final Proof/24.10.2009Contents I xv
25.8 Hydraulic Couplings and Torque Converters 1257
25.9 Air Lift Pump 1259
Sumary ofMain Points 1275
Problems 1276
CHAPTER 26. ELEMENTS OF HYDROLOGY 1278-1297
26.1 Definition 1278
26.2 The Hydrologic Cycle 1278
26.3 Precipitation 1279
26.4 Measurement of Rainfall and Snowfall 1279
26.4.1 Measurement of Rainfall 1279
26.5 Mean Depth of Rainfall over an Area 1282
26.5.1 Arithmetic Mean Method 1282
26.5.2 Theissen Polygon Method 1283
26.5.3 Isohyetal Method 1284
26.6 Evaporation, Transpiration and Evapo-Transpiration 1284
26.7 Infiltration 1286
26.8 Runoff and Factors Affecting Runoff 1287
26.8.1 Factors Affecting Runoff 1288
26.9 Hydrograph 1289
26.10 Methods of Determination of Runoff 1290
Sumary ofMain Points 1296
Problems 1297
CHAPTER 27. WATER POWER ENGINEERING 1298-1321
27.1 Introduction 1298
27.2 Hydroelectric Power Development of India and The World 1298
27.3 Comparison of Thermal and Hydroelectric Power Costs 1300
27.4 Assessment of Available Power 1300
27.5 Storage and Pondage 1301
27.6 Essential Stream Flow Data for Water Power Studies 1302
27.7 Flow Duration Curve 1302
27.8 Mass Curve 1305
27.9 Types of Hydropower Plants 1307
27.10 Typical Hydroelectric Developments of India 1309
27.10.1 Bhakra-Nangal Hydroelectric Project 1309
27.10.2 Chambal Valley Development Scheme 1311
27.11 Firm (or primary) and Secondary Power 1311
27.12 Load Factor, Utilisation Factor and Capacity Factor 1311
27.13 Components of Hydropower Plants 1312
Sumary ofMain Points 1321
Problems 1321
Final Proof/24.10.2009xvi Contents
CHAPTER 28. FLUVIAL HYDRAULIC 1322-1339
28.1 Introduction 1322
28.2 Sediment Transport in Channels 1322
28.3 Sediment Properties 1323
28.4 Modes of Sediment Movement 1324
28.5 Types of Sediment Load 1325
28.6 Initiation of Sediment Motion 1325
28.7 Bed Deformations in Alluvial Streams 1329
28.8 Resistance to Flow in Alluvial Streams 1330
28.9 Design of Unlined Alluvial Channels—Kennedy’s and Lacey’s Theories 1332
28.9.1 Kennedy’s Theory 1332
28.9.2 Lacey’s Regime Theory 1333
Sumary ofMain Points 1339
CHAPTER 29. FLOW MEASUREMENT AND LABORATORY
EXPERIMENTS 1340-1346
29.1 Introduction 1340
29.2 Fluid flow Measurements 1340
29.3 Flow Visualization Techniques 1344
29.4 List of Experiments 1344
29.5 Writing of Report 1346
Multiple Choice Questions 1347
Appendix -1 (Main Relations of Fluid Mechanics in Vector Notation) 1373
Appendix – II (Comparative Study ofFlow ofIncompreessible and Compressiblefluids) 1376
Appendix – III (Some Important Conversion Factors) 1379
Appendix – IV (Source, Sink and Doublet) 1382
Appendix – V (Cavitation) 1385
Appendix – VI (Flow in Curved Channels) 1387
Appendix – VII (Control Valvesfor Pipes) 1389
Appendix – VIII (Hydraulic Transport of Solid Material in Pipes) 1392
Bibliography 1394
Author Index 1396
Index 139
Author Index
Allen, C.M., 1342
Archimedes, 3, 155
Bazin, H., 459, 709
Bernoulli, D., 293, 294, 300
Blasius, H., 672
Bourdon, E., 63
Bresse, J.A.C., 799
Chezy, A., 500, 709
Cipolletti, C., 465
Colebrook, C.F., 677
Couette, M.F.A., 616
Darcy, H., 500
Euler, L., 229, 288, 857
Francis, J.B., 459
Froude, W., 364, 498, 856
Ganguillet, E., 709
Garde, R.J., 1331
Gibson, N.R., 1342
Hagen, G.H.L., 607
Herschel, C., 305
Hugoniot, H., 959
Joukowski, M.W.,918
Kaplan, V., 1044
Karman, T.V., 906
Kennedy, R., 1333
Kutta, M. W., 918
Kutter, W.R., 709
Lacey, G., 1334
Lamb, H., 906
de Lavel, C.G.P., 955
Mach, E., 857
Magnus, H.G., 918
Manning, R., 501, 710
Moody, L.F., 677, 1105
Newton, I., 12, 286, 857
Nikuradse, J., 663
Oseen, C.W., 901
Parshall, R.L., 738
Pascal, B., 47
Pelton, L.A., 1028
Poiseuille, J.L.M., 607
Prandtl, L., 3, 317, 567
Ranga Raju, K.G., 1331
Rankine, W., 959
Rayleigh, Lord, 843
Rehbock, T., 461
Reynolds, O., 494, 658, 856
Shields, A., 1327
Stanton, T.E., 674
Stokes, G.G., 11, 622
Strouhal, V., 908
Taylor, E.A., 1342
Thoma, D., 1106
Torricelli, E., 386
Venturi, G.B., 305
Weber, W.E., 858
Weisbach, J., 500
White, C.M., 1329Subject Index
A
Absolute pressure, 48
Absolue system, 3
Acceleration, 246
convective, 247
local, 247
normal, 248
tangential, 248
Acceleration
of piston, 1138
uniform horizontal, 193
uniform rotational, 199
uniform vertical, 196
Adhesion, 14
Adiabatic process, 939
Adverse slope, 790
Air foil
drag of, 911
lift on, 919
Air vessel, 1149
Allievi formula, 530
Alternate depth, 723
Angle of attack, 920
Angular deformation, 252
Archimedes, Principle of, 155
Aspect ratio, 920
Atmosphere, equilibrium of, 40
adiabatic or isentropic, 42
isothermal, 41
polytropic, 44
standard, 46
Atmospheric pressure, 48
Avogadro’s law, 10
Average height of
protrusions, 662
B
Base units, 4
Bazin’s formula, 459, 709
Bend meter, 314
Bend, losses in, 407
Bernoulli’s equation, 293, 294, 300
Blasius formula, 672
Body force, 286
Borda’s mouthpice, 413
Boundary layer, 567, 661
laminar, 570, 577
transition, 570
turbulent, 570, 580
Bourdon gage, 63
Branching pipes, 512
Bresse’s method, 799
Broad crested weir, 470
Buckingham’s pi method, 844
Bulk modulus of elasticity, 13
Buoyancy, 155
centre of, 155
Buoyant force, 155
Butterfly valve, 1393
Bye pass, 511
C
Canal lock, 423
Capillarity, 16
Cauchy number, 857
Cavitation,
in pumps, 1209
in turbines, 1106
Celerity of elastic waves, 944
Centipoise, 11
Centistoke, 11
Centre of buoyancy, 155
Centre of pressure, 93
Centrifugal pumps, 1178
Characteristice curvres,
of pumps, 1158, 1204
of turbines, 1097
Chezy’s equation, 500, 709
Cipolletti weir, 465
Circulation, 2541398
Coefficient of
contraction, 386
discharge, 387
drag, 893
dynamic viscosity, 11
lift, 893
resistance, 388
velocity, 386
Cohesion, 14
Colebrook and White
equation, 677
Commercial pipe,
resistance of, 676
Compressible flows, 302, 939
Compressibility, 13
Conjugate depth, 802
Conservation of mass, 236
Continuity equation, 236, 942
Contraction, loss at sudden, 403
Control surface, 236
Control volume, 236
Convective acceleration, 247
Convergent divergent
mouthpiece, 411
Convergent divergent nozzle, 955
Convergent mouthpiece, 412
Correction factors,
energy, 301
momentum, 354
Couette flow, 616
Critical depth, 723
Critical flow
in channels, 728
in pipes, 495
Critical pressure ratio, 954
Critical Reynolds number, 495
Critical slope, 789
Critical velocity, 495, 723
Current meter, 739
Curved surfaces, pressure on, 103
Cylinder, drag on, 904
lift on, 915
Hydraulics and Fluid Mechanics
E
d’ Alembert’s paradox, 353
Darcy-Weisbach formula, 500
Dash-pot mechanism, 630
Deformation drag, 897
Deformation of fluid
angular, 251
linear, 251
Delivery stroke, 1134
Density, 7
Depth, alternate, 723
conjugate, 802
critical, 723
initial, 802
sequent, 802
subcritical, 723
supercritical, 724
Derived units, 5
Dimensional analysis, 837
Dimensions of physical
quantities, 837
Dimensional homogeneity, 841
Dimensionally homogeneous
equation, 841
Dimensionless numbers, 856
Discharge coefficient
of mouthpiece, 409, 414, 416
of orifice, 387, 393
of weirs, 456
Discharge meaurement
in rivers, 742
Displacement thickness, 568
Distorted models, 861
Draft tube, 1037
Drag
deformation, 897
form, 897
friction, 894
induced, 925
pressure, 894
residual, 912
total, 894
Drag coefficient, 896
effect of compressibility
on, 913
effect of free surface on, 912
of three dimensional
bodies, 900
of two dimensional
bodies, 904
Drag on, airfoil, 911
cylinder, 904
disc, 898
plate, 910
sphere, 900
Dupuit’s equation, 510
Dynamic similarity, 854
Dynamic viscosity, 11
E
Economical channel section, 712
Eddy kinematic viscosity, 659
Eddy viscosity, 659
Efficiency, Froude of
propeller, 364
hydraulic of pumps, 1195
hydraulic of turbines, 1026
manometric of pumps, 1192
mechanical of pumps, 1193
mechanical of turbines, 1026
overall of pumps, 1193
overall of turbines, 1026
volumetric of pumps, 1193
volumetric of turbines, 1026
Efficient cross-section of
channel, 712
Elastic modulus of fluids, 13
Elastic waves, 944, 947
Elbow meter, 314
Electrical analogy, 263
Electronic pressure cells, 1341
Energy correction factor, 301
Energy equation
for compressible flow, 302, 9421399
for incompressible flow, 300
Energy gradient, 506
Energy line, total, 503
Energy losses, 400, 502
Energy thickness, 569
English system units, 3
Enthalpy, 942
Entropy, 941
Entry loss, 405, 502
Equation of continuity, 236, 942
energy, 293, 302, 942
momentum, 353, 942
motion, 288
state, 9
Equilibrium of floating body, 158
neutral, 159
stable, 159
unstable, 159
Equipotential lines, 260
Equivalent pipe, 509
Equivalent sand grain
roughness, 676
Eulerian method, 229
Euler number, 857
Euler’s equation of motion, 288
Exit loss, 405, 502
Expansion, gradual, 406
sudden, 401
F
Fanno curve, 958
Flat plate, moving, 982
stationary, 979
Floating bodies, 155
Floats, 740
Flow net, 260
methods of drawing, 262
limitations of, 265
use of, 264
Flow through nozzle, 523
Fluid properties, 7
Fluids,
compressible, 40, 293, 939
Subject Index
ideal, 2, 12
Newtonian, 12
plastics, 12
real or practical, 2
thixotropic, 12
Force, due to elasticity, 287, 855
due to gravity, 287, 854
due to inertia, 287, 854
due to pressure
gradient, 287, 855
due to surface tension, 287, 855
due to turbulence, 287
due to viscosity, 287, 567, 854
Forces on immersed surfaces, 93
Forces on fixed and moving
plates, 979, 982
Form drag, 897
Francis formula, 459
Francis turbine, 1036
Free liquid jet, 317
Friction factor, 500
Friction factor diagram, 678
Froude efficiency of propeller, 364
Froude number, 856
Froude’s experiments, 498
G
Gas constant, 9
Ganguillet-Kutter Formula, 709
Gage pressure, 48
Geometric similarity, 853
Globe valve, 1393
Governing of turbines, 1048
Gradually varied flow, 783
equation, 785
integration of equation, 797
Graphical method of flow net, 262
Gravity force, 287, 855
Guide vanes, 1036
H
Hagen-Poiseuille formula, 607
Hardy-Cross method, 532
Head, manometric, 1186
piezometric, 294
potential, 294
pressure, 39, 294
static, 1186
total, 294
velocity, 294
Head loss, due to friction, 499
Head loss, due to other
causes, 400, 502
Homologous, 854
Hook gage, 1342
Hot-film anemometer, 963
Hot-wire anemometer, 962
Hydraulic accumulator, 1247
Hydraulic couplings, 1258
Hydraulic crane, 1252
Hydraulic depth, 704
Hydraulic efficiency
of pumps, 1195
of turbines, 1026
Hydraulic grade line, 503
Hydraulic gradient, 506
Hydraulic intensifier, 1249
Hydraulic jump, 801
Hydraulic lift, 1254
Hydraulic mean depth, 499, 704
Hydraulic radius, 499, 704
Hydraulic press, 1251
Hydraulic ram, 1255
Hydraulic transport of
solids in pipes, 1395
Hydrodynamically,
rough surface, 662
smooth surface, 662
Hypersonic flow, 947
I
Ideal fluid, 2, 12
Impulse momentum
equation, 351
Impulse turbine, 1024
Indicator diagram, 11441400
Induced drag, 925
Instantaneous closure
of valve, 526
Integration of Euler’s
equation, 291
Intergration of varied flow
equation, 797
Irrotational flow, 233, 252
Isentropic process, 940
Isentropic supersonic flow, 957
Isothermal process, 939
J
Jet contraction, 386
Jet, free, 317
Jet, reaction of, 357
Jet propulsion, 357
Journal bearing, 627
Jump, Hydraulic, 801
K
Kaplan turbine, 1044
Karman constant, 663
Karman-Prandtl equations, 665
Karman vortex trail, 906
Kennedy’s theory, 1333
Kinematic eddy viscosity, 659
Kinematic similarity, 854
Kinematic viscosity, 11
Kinetic energy correction
factor, 301
Kutta-Joukowski equation, 918
L
Lacey’s theory, 1334
Lagrangian method, 229
Laminar flow, 233, 601
between parallel plates, 612
in channels, 619
in circular pipes, 603
through porous media, 620
Laminar sublayer, 570, 582
Laplace equation, 256
Hydraulics and Fluid Mechanics
Large orifice, 394
de Laval nozzle, 955
Length of jump, 805
Lift, coefficient, 896
definition, 915
development, 915
due to circulation, 916
effect of compressibility, 925
on an airfoil, 919
Liquid jets, 317
List of experiments, 1345
Local acceleration, 247
Location of hydraulic jump, 806
Logarithmic velocity
distribution, 665
Long pipe, 507
Loss, due to friction, 499
due to sudden
contraction, 403, 502
due to sudden
expansion, 401, 502
in pipe fittings, 407, 503
M
Mach angle, 947
Mach cone, 947
Mach number, 857, 946
Magnus effect, 918
Manning’s formula, 501, 710
Manning’s roughness
factor, table of, 710
Manometers, 49
Manometric, efficiency, 1192
head, 1187
Mass density, 7
Measurement of
depth, 1342
discharge, 305, 742, 959
flow direction, 963
pressure, 49, 1341
rainfall, 1280
snowfall, 1283
velocity, 314, 739, 960, 1342
Metacentre, 157
Metacentric height, 157
Metric slug, 4
Metric system, 3
Micromanometer, 61
Mild slope, 789
Minor losses, 502
Mixing length, 660
Model laws, 858
Model scale ratios, 859
Models, distorted, 861
undistorted, 861
Modular limit of weir, 473
Momentum, angular, 365
correction factor, 354
equation, 351, 942
Momentum thickness, 568
Moody’s diagram, 678
Mouthpieces, 407
Multicylinder pumps, 1158
Multistage pumps, 1202
N
Nappe, 454
Navier-Stokes’ equation, 288
Needle valve, 1393
Newton number, 857
Newtonian fluids, 12
Nikuradse’s experiments, 662
Non-uniform flow, 232
in channels, 783
Normal depth, 708
No-slip condition, 567
Notch, rectangular, 455
trapezoidal, 465
V or triangular, 463
Nozzle
convergent, 952
convergent-divergent, 955
Nozzle meter, 313
NPSH, 12081401
O
Omitted variable, 850
One dimensional flow, 233
Open channels, flow in, 702
Optimum cross-section, 712
Orifice, discharge through, 384
large, 394
Orifice meter, 310
Orifice submerged, partially, 399
totally, 398
Orifice tank, 357
Oseen’s formula, 901
P
Parshall flume, 738
Pascal’s law, 47
Path line, 235
Pelton wheel, 1028
Performance, of
pumps, 1158, 1204
of turbines, 1088
Perimeter, wetted, 704
‘Pi’ method Buckingham’s, 844
Piezometer tube, 49
Piezometric head, 294
Pipe bend, force on, 355
as a meter, 314
Pipe networks, 531
Pipe, varying sections, 517, 950
Pipe with side tappings, 519
Pipes, branched, 512
Pipe, byepass, 511
Pipes in parallel, 510
Pipes in series, 508
Pipe-siphon, 515
Pipe tapering, 517
Pitot cylinder, 963
Pitot sphere, 964
Pitot static tube, 316
Pitot tube, 314, 960
Plug valve, 1393
Poise, 11
Subject Index
Polar diagram, 928
Potential flow, 257
Prandtl Glauert rule, 925
Prandtl’s boundary
layer theory, 567
Prandtl’s pitot tube, 317
Precipitation, 1280
Pressure, 36
absolute, 48
atmospheric, 48
gage, 48
total, 93
vacuum, 48
Pressure, centre of, 95
equation, 293
Pressure coefficient, 857, 948
Pressure diagram, 102
Pressure distribution around
airfoil, 912
hydrostatic, 105
Pressure drag, 897
Pressure force, 287, 855
Pressure gages, 49, 63
Pressure gradient, 601
Pressure head, 39, 294
Pressure rise due to
gradual closure of valve, 526
instantaneous closure
of valve, 526
Pressure transducers, 1341
Pressure variation, 36
Preston tube, 1344
Principle of conservation
of energy, 236
of mass, 236
of momentum, 236
Prismatic channel, 703
Properties of common fluids, 18
Propeller, 362
Propeller turbine, 1027
Propeller type currentmeter, 739
Proportional weir, 475
Pumps, air lift, 1260
centrifugal, 1178
reciprocating, 1132
R
Radial flow, 323
Rain gages, 1280
Rankine-Hugoniot equations, 959
Rapid flow in open channel, 783
Rayleigh line, 958
Rayleigh-Pitot equation, 961
Reaction turbine, 1027
Real fluids, 2
Reciprocating pump, 1132
components, 1132
Rehbock’s formula, 461
Relative equilibrium, 190
Relief valve, 1050
Residual drag, 912
Resistance coefficient, 388
Reversible process, 940
Reynolds equation, 287
Reynolds experiment, 494
Reynolds number, 495, 856
Rheology, 12
Rotameter, 313
Rotational flow, 233, 251
Rotation, pure, 251
Rough boundary, 662
Rough pipes, resistance of, 671
Runaway speed, 1051
Runoff, 1288
S
Salt dilution method, 1343
Salt velocity method, 1342
Scale effect, 862
Scale ratios for models, 853
Separation, 583
Sharp crested weir, 455
Shear velocity, 582, 608
Shear stress in turbulent flow, 6581402
Shock wave, 956
normal, 957
‘SI’ units, 4
Similarity, 853
Similitude, 853
Similarity laws for
general models, 858
pumps, 1200
turbines, 1102
Siphon, 515
Siphon spillway, 474
Slip, 1138
Slipper bearing, 623
Slopes, open channel, 789
adverse, 790
critical, 789
horizontal, 790
mild, 789
steep, 790
Smooth boundary, 662
Smooth pipes, resistance, 671
Sonic velocity, 944, 947
Specific energy, 723
curve, 724
Specific force, 726
curve, 727
Specific gravity, 8
Specific speed, pumps, 1198
turbines, 1092
Specific volume, 8
Specific weight, 7
Speed ratio, 1033
Spillway, 473
Stability of floating bodies, 158
Stagnation point, 314
Stagnation pressure, 314, 949
Stall point, 924
Stalling angle, 924
Standing wave, 737, 801
Stanton diagram, 674
Stanton tube, 1343
Starting vortex, 922
Hydraulics and Fluid Mechanics
Steady flow, 231
energy equation, 293
Steep slope, 790
Step method of integration, 797
Stokes law, 622
Streak line, 235
Stream filament, 235
Stream function, 257
Stream line, 260
Stream lined body, 897
Stream tube, 234
Strickler’s formula, 712
Strouhal number, 908
Subcritical flow, 723
Sublayer, laminar, 570, 582
Submerged, orifice, 398
weir, 472
Suction specific speed, 1107, 1209
Suction stroke, 1133
Supercritical flow, 724
Superfluous variable, 850
Surface profiles, 790
Surface tension, 14
Surges, 809
Surge tanks, 1051
System headcurves, 1210
T
Tail race, 1024
Tangential acceleration, 248
Thickness of boundary layer, 567
laminar sublayer, 570, 582
Thixotropic liquids, 12
Thoma’s cavitation
factor, 1106, 1209
Thomson’s theorem, 923
Three dimensional flow, 232
Time of emptying, 417, 467
Tip vortices, 926
Torricelli’s formula, 386
Total energy line, 503
Total head, 294
Tranquil flow, 723
Transitions, channels, 732
Transition from laminar to
turbulent flow, 495
Translation, pure, 251
Transmission of power
through pipes, 522
Transport of solids in pipes, 1395
Turbines, types, 1027
efficiency, 1024
Francis, 1036
heads, 1024
impulse, 1027
Kaplan, 1044
Pelton, 1028
performance, 1088
reaction, 1027
working proportions,
1033, 1040, 1045
Turbulent boundary
layer, 570, 580
Turbulent flow, 233, 658
velocity distribution, 663
Turbulent mixing, 659
Turbulent shear stress, 658
Two dimensional flow, 232
Types of flow, 231
U
Undistorted models, 861
Uniform depth, 708
Uniform flow, 231, 703
Unit discharge, 1090
Unit power, 1090
Unit speed, 1089
Units of measurement, 3
Universal gas constant, 9
Unsteady flow, 231V
Vacuum pressure, 48
Vapour pressure, 12
Variables, dependent, 843
independent, 843
non-repeating, 845
repeating, 845
Varied flow
gradually, 783
rapidly, 783, 801
Velocity, approach, 385, 456
critical, 495, 723
defect, 665
fluctuation, 660
gradient, 663
head, 294
local, 606
maximum, 606
shear, 582, 608
Velocity distribution
between parallel plates, 612
in boundry layer, 570
in open channels, 706
in turbulent flow, 663
Subject Index
near rough boundary, 669
near smooth boundary, 666
Velocity, measurement of,
314, 739, 960, 1342
Velocity of sound, 944, 947
Velocity of whirl, 995
Velocity potential, 256
Venacontracta, 384
Ventilation of nappe, 461
Venturi flume, 736
Venturi meter, 305
Viscometer
coaxial-cylinder, 633
capillary tube, 635
falling sphere, 637
Redwood, 637
Saybolt, 636
Viscosity
dynamic, 11
eddy, 659
kinematic, 11
Viscosity index, 630
Volumetric efficiency
pumps, 1193
I 1403
turbines, 1026
Volute casing, 1182
Vortex, free, 319
forced, 320
Rankine, 321
spiral, 323
Starting, 922
Vortex pair, 907
Vortex street, 907
Vorticity, 254
W
Wake, 895, 897, 898, 906
Water hammer, 526
Weber number, 858
Weir, broad crested, 470
Cipolletti, 465
proportional, 475
rectangular, 455
sharp crested, 455
submerged, 472
trapezoidal, 465
triangular, 463
Wetted perimeter, 704
Writing of report, 1347

كلمة سر فك الضغط : books-world.net
The Unzip Password : books-world.net

تحميل

يجب عليك التسجيل في الموقع لكي تتمكن من التحميل
تسجيل | تسجيل الدخول

التعليقات

اترك تعليقاً