Fundamentals of Engineering Science and Technology

Fundamentals of Engineering Science and Technology
اسم المؤلف
Prof.dr. Turhan Koyuncu
التاريخ
28 يناير 2023
المشاهدات
428
التقييم
(لا توجد تقييمات)
Loading...

Fundamentals of Engineering Science and Technology
First Edition
Prof.Dr. Turhan KOYUNCU
University of Adiyaman, Faculty of Technology,
Department of Energy Systems Engineering,
Adiyaman, Turkey
viii
TITLE PAGE . i
DEDICATION . ii
ABOUT BOOK . iii
ABOUT AUTHOR . v
ACKNOWLEDGEMENTS vii
CONTENTS . viii-xxxi
1.1 Science 32
1.2 Scientist 32
1.3 Knowledge 32
1.4 Know-How 33
1.5 Brain 33
1.6 Mind 33
1.7 Intellect 33
CONTENTS
CHAPTER 1 SOME DEFINITIONSix
1.8 Intelligence 33
1.9 Artificial Intelligence 34
1.10 Reason 34
1.11 Philosophy 34
1.12 Logic 34
1.13 Logy 34
1.14 Thinking 35
1.15 Think Tank 35
1.16 Teamwork 35
1.17 Engineer 35
1.18 Engineering 36
1.19 Reverse Engineering 37
1.20 Technician 37
1.21 Technical Person 37
1.22 Engine (Heat Engine) 38
1.23 Internal Combustion Engine (ICE) 38
1.24 External Combustion Engine (ECE) 38x
1.25 Machine 39
1.26 Motor 40
1.27 Electric Motor 40
1.28 Generator 40
1.29 Technology 40
1.30 Hi-Tech 40
1.31 Robot 41
1.32 Nano-Tech 41
1.33 Industry 41
1.34 Heat 42
1.35 Temperature 42
1.36 Heat Pump 43
1.37 Cooling Machine 43
1.38 Refrigerator 44
1.39 Device 46
1.40 Heat Exchanger 47
1.41 Solar Thermal Collector 47xi
1.42 Photovoltaic (PV) 48
1.43 Photovoltaic Cell (PV Cell or Solar Cell) 48
1.44 Fluid Pump 49
1.45 Light 50
1.46 Lighting 50
1.47 Automotive 50
1.48 Automobile 51
1.49 Vehicle 52
1.50 Electric Vehicle 52
1.51 Solar Vehicle 53
1.52 Hybrid Vehicle 54
1.53 Fuel Cell 54
1.54 Nuclear Battery (Atomic Battery) 54
1.55 Design 56
1.56 Project 56
1.57 Feasibility 57
1.58 5 Problem Solving Steps (ADAMB) 57xii
1.59 5 Golden Steps for becoming Powerful (RSTIP) 58
1.60 Predictions for Future Technology 58
2.1 SI Units, Quantities, Symbols &Conversions 63
Practical Example 2.1 70
Practical Example 2.2 72
Practical Example 2.3 74
Practical Example 2.4 76
Practical Example 2.5 77
Practical Example 2.6 78
Practical Example 2.7 79
Practical Example 2.8 80
Practical Example 2.9 81
Practical Example 2.10 83
CHAPTER 2 SI UNITSxiii
3.1 Dimension, Length, Area & Volume 85
Practical Example 3.1 86
Practical Example 3.2 87
Assumed Example 3.1 88
4.1 Mass & Density 90
Practical Example 4.1 90
Practical Example 4.2 91
5.1 Speed & Velocity 93
Practical Example 5.1 95
Practical Example 5.2 96
Practical Example 5.3 97
CHAPTER 3 DIMENSION, LENGTH, AREA & VOLUME
CHAPTER 4 MASS & DENSITY
CHAPTER 5 SPEED & VELOCITYxiv
Practical Example 5.4 99
Practical Example 5.5 100
Assumed Example 5.1 101
Assumed Example 5.2 102
6.1 Acceleration 104
Practical Example 6.1 104
Practical Example 6.2 106
6.2 Gravity 107
Assumed Example 6.1 107
Assumed Example 6.2 110
7.1 Force & Weight 113
Practical Example 7.1 114
Practical Example 7.2 115
CHAPTER 6 ACCELERATION & GRAVITY
CHAPTER 7 FORCE & WEIGHTxv
Practical Example 7.3 117
Practical Example 7.4 118
Practical Example 7.5 118
Assumed Example 7.1 119
Assumed Example 7.2 121
Assumed Example 7.3 122
8.1 Pressure 124
Practical Example 8.1 125
Practical Example 8.2 127
Practical Example 8.3 128
Practical Example 8.4 129
8.2 Anemometer 130
Practical Example 8.5 131
CHAPTER 8 PRESSURE & ANEMOMETERxvi
9.1 Pascal’s Machine . 133
Practical Example 9.1 134
9.2 Archimedes’ Principle 135
Practical Example 9.2 136
Practical Example 9.3 140
Practical Example 9.4 141
10.1 Introduction 143
10.2 First Law of Thermodynamics (Principle of Conservation of
Energy) 143
Practical Example 10.1 143
Practical Example 10.2 144
Practical Example 10.3 145
Practical Example 10.4 146
Practical Example 10.5 147
CHAPTER 9 PASCAL’S MACHINE & ARCHIMEDES’ PRINCIPLE
CHAPTER 10 FUNDAMENTAL LAWSxvii
10.3 The Second Law of Thermodynamics 148
Practical Example 10.6 151
Practical Example 10.7 153
11.1 Definitions 155
11.2 Forms of Energy 155
11.3 Energy Conversions 155
11.4 Potential Energy 156
Practical Example 11.1 157
Practical Example 11.2 158
Practical Example 11.3 159
Practical Example 11.4 161
Practical Example 11.5 162
11.5 Kinetic Energy 164
Practical Example 11.6 165
Practical Example 11.7 166
CHAPTER 11 ENERGY, WORK & POWERxviii
Practical Example 11.8 167
Practical Example 11.9 168
11.6 Kinetic Energy of Rotation 169
11.7 Exergy (Work Potential) Associated with Kinetic and Potential
Energy 170
Practical Example 11.10 170
Practical Example 11.11 172
11.8 Mechanical Energy 175
11.9 Mechanical Work 176
11.10 Mechanical Storage 178
11.11 Shaft Work . 180
Practical Example 11.12 181
Practical Example 11.13 182
11.12 Spring Work . 183
Practical Example 11.14 184
11.13 Gravitational Work 185
Practical Example 11.15 185
11.14 Accelerational Work 186xix
Practical Example 11.16 187
11.15 Boundary Work 188
Practical Example 11.17 190
Practical Example 11.18 191
Practical Example 11.19 193
Practical Example 11.20 194
11.16 Adiabatic (Isentropic, Reversible) Process 195
11.17 Pressure Energy 197
Practical Example 11.21 198
Practical Example 11.22 199
11.18 Pressure Head 200
11.19 Electric Energy 201
Assumed Example 11.1 205
Assumed Example 11.2 206
11.20 Summarization of Basic Principles of Energy, Work & Power
208
Practical Example 11.23 210
Practical Example 11.24 212xx
Practical Example 11.25 213
Practical Example 11.26 215
Practical Example 11.27 217
Practical Example 11.28 218
12.1 Momentum 220
Practical Example 12.1 221
Practical Example 12.2 222
12.2 Torque 223
Practical Example 12.3 225
Practical Example 12.4 225
13.1 Power Transmission 227
Practical Example 13.1 228
Practical Example 13.2 230
CHAPTER 12 MOMENTUM & TORQUE
CHAPTER 13 POWER TRANSMISSIONxxi
Practical Example 13.3 231
14.1 Definition 234
14.2 Pulley 234
Practical Example 14.1 235
14.3 Lever 236
Practical Example 14.2 237
14.4 Force Ratio, Movement Ratio and Efficiency for Simple
Machines 238
Practical Example 14.3 239
15.1 Heat 241
15.2 Enthalpy, Sensible Heat & Latent Heat 242
15.3 Heat Transfer 246
Practical Example 15.1 261
15.4 Heat & Work 262
CHAPTER 14 SIMPLE MACHINE
CHAPTER 15 HEAT & TEMPERATURExxii
15.5 Temperature 264
Practical Example 15.2 265
Practical Example 15.3 267
Practical Example 15.4 268
15.6 Saturation Temperature (Boiling Point) & Saturation Pressure
270
15.7 General Gas Laws 274
16.1 Natural and Forced Behavior of Energy 278
16.2 Some Needed Basic Reminders 282
16.3 Heat Engines 284
16.4 The Carnot Heat Engine 291
Practical Example 16.1 292
16.5 Heat Pumps & Cooling Machines 295
16.6 Coefficient of Performance (COP) 313
Practical Example 16.2 315
Practical Example 16.3 316
CHAPTER 16 HEAT ENGINES, HEAT PUMPS &
COOLING MACHINESxxiii
Practical Example 16.4 317
Practical Example 16.5 319
Practical Example 16.6 320
17.1 Efficiencies of Energy Conversions 323
17.2 Efficiencies of Combustion Equipments 324
Practical Example 17.1 329
Practical Example 17.2 332
Practical Example 17.3 334
17.3 Efficiencies of Mechanical and Electrical Devices 336
Practical Example 17.4 338
Practical Example 17.5 340
Practical Example 17.6 341
Practical Example 17.7 342
Practical Example 17.8 343
Practical Example 17.9 345
CHAPTER 17 EFFICIENCY & PERFORMANCExxiv
Practical Example 17.10 346
Practical Example 17.11 347
18.1 Basic Electrical Concept 349
Practical Example 18.1 350
Practical Example 18.2 351
Practical Example 18.3 352
Practical Example 18.4 352
18.2 Potential Difference and Resistance 353
18.3 Factors Affecting Resistance 356
Practical Example 18.5 356
18.4 Ohm’s Law 357
Practical Example 18.6 357
Practical Example 18.7 218
Practical Example 18.8 358
18.5 Faraday’s Law 358
CHAPTER 18 ELECTRICITY & CHARGExxv
18.6 Fleming’s Rules 359
18.7 Ampere’s Law 360
18.8 Kirchhoff’s Current Law 361
18.9 Series Electric Circuit Networks 362
Practical Example 18.9 364
18.10 Parallel Electric Circuit Networks 365
Practical Example 18.10 368
18.11 Series-Parallel Combination Electric Circuit Networks . 369
Practical Example 18.11 369
18.12 Integrated Electric Circuits (Networks) 372
18.13 Quantity of Electricity : Electrical Energy and Power 372
Practical Example 18.12 374
Practical Example 18.13 374
Practical Example 18.14 375
Practical Example 18.15 376
Practical Example 18.16 377
Practical Example 18.17 378xxvi
Practical Example 18.18 378
Practical Example 18.19 379
18.14 Direct Current (D.C.) and Alternating Current (A.C.) . 380
18.15 Resistance and Conductance 380
Practical Example 18.20 382
18.16 Conductors and Insulators 383
18.17 Basic Electrical Measuring Instruments 384
18.18 Electric Motors and Generators 385
18.19 Electricity Consumption of Some Devices 386
18.20 The Timer Clock 390
Practical Example 18.21 391
Practical Example 18.22 393
18.21 Piezoelectric 394
Practical Example 18.23 396
Practical Example 18.24 396
18.22 Electrolysis of Water 396
Practical Example 18.25 397xxvii
Practical Example 18.26 399
18.23 Charge 400
Practical Example 18.27 400
Practical Example 18.28 401
18.24 Electrical circuit symbols 403
19.1 Viscosity 404
Practical Example 19.1 406
19.2 Friction 407
19.3 Coefficient of Friction 408
Practical Example 19.2 409
Practical Example 19.3 410
Practical Example 19.4 411
19.4 Friction Losses in Pipe Flow 412
Practical Example 19.5 422
Practical Example 19.6 423
CHAPTER 19 VISCOSITY, FRICTION & CORROSIONxxviii
19.5 Corrosion 428
Practical Example 19.7 429
20.1 Substances 431
20.2 Strength / Stress of Materials 432
20.3 Some Types of Stress . 435
Practical Example 20.1 435
Practical Example 20.2 436
Practical Example 20.3 438
Practical Example 20.4 440
21.1 Wave, Wavelength, Frequency & Velocity 442
Practical Example 21.1 443
21.2 Sound Waves & Their Characteristics 444
21.3 Electromagnetic Radiation 445
CHAPTER 20 SUBSTANCES & STRENGTH / STRESS OF
MATERILAS
CHAPTER 21 WAVE & RADIATIONxxix
Practical Example 21.2 447
22.1 Optic Fiber & Light Rays 448
22.2 Reflection / Refraction 451
23.1 Design for Sustainability 454
23.2 Innovation Methods & TRIZ 454
24.1 Economic Analysis of Energy 461
24.2 Simple Payback Period of Energy Systems 462
Practical Example 24.1 464
Practical Example 24.2 466
24.3 Economic Viability of Energy Projects 470
Practical Example 24.3 471
CHAPTER 22 OPTIC FIBER, LIGHT RAYS & REFLECTION /
REFRACTION
CHAPTER 23 SUSTAINABILITY & INNOVATION
CHAPTER 24 ECONOMIC ANALYSISxxx
Practical Example 24.4 473
24.4 Cost of Solar Energy 475
Practical Example 24.5 479
Practical Example 24.6 482
24.5 Life Cycle Cost of Energy 483
Practical Example 24.7 485
25.1 Basic Working Principle of Human Body 487
25.2 Energy Requirements of Human Body 489
Practical Example 25.1 500
Practical Example 25.2 502
Practical Example 25.3 504
Practical Example 25.4 505
Practical Example 25.5 506
Practical Example 25.6 506
25.3 Healthy Body Weight and BMI 507
CHAPTER 25 BASIC RULES FOR HEALTHY LIFExxxi
25.4 Healthy Nutrition and Food Pyramids 509
25.5 Healthy Eating Plate & Healthy Eating Pyramid 518
25.6 Antioxidants 521
25.7 Dieting . 523
25.8 Decreasing of Body Activities and Common Causes of Death
524
REFERENCES . 528-550
INDEX . 551-567551
ABSORBED DOSE 72
ACCELERATION 70
ACCELERATION WORK 186
ADIABATIC PROCESS 195
ALTERNATING CURRENT (A.C.) 380
AMPERE 350
AMPERE’S LAW 360
ANEMOMETER 130
ANGULAR ACCELERATION 104
ANGULAR VELOCITY 93
ANTIOXIDANTS 521
ARCHIMEDES’ PRINCIPLE 135
AREA 86
INDEX
A552
ARTIFICIAL INTELLIGENCE 34
ATOM 349
AUTOMOBILE 51
AUTOMOTIVE 50
BELT 227
BIRD SCARER 401
BODY MASS INDEX (BMI) 507
BOUNDARY WORK 188
BOYLE’S LAW 274
BRAIN 33
CALORIES OF SOME SERVINGS 449
CARNOT EFFICIENCY 265
CARNOT HEAT ENGINE 291
B A C A553
CHAIN 227
CHARGE 350, 400
CHARLE’S LAW 275
COEFFICIENT OF PERFORMANCE (COP) 313
COMBINED ELECTRIC CIRCUIT 369
COMPRESSIVE STRESS 437
CONDUCTANCE 380
CONDUCTION 246
CONDUCTORS 383
CONVECTION 246
COOLING MACHINE 43, 295
CORROSION 428
COST OF SOLAR ENERGY 475
COULOMB 349
CURRENT 349
CURRENT LAW 361554
DALTON’S LAW 276
DECIMAL PREFIXES 69
DENSITY 90
DESIGN 56
DEVELOPMENT 454
DEVICE 46
DIETING 523
DIMENSION 85
DIRECT CURRENT (D.C.) 380
ECONOMIC ANALYSIS 461
ECONOMIC VIABILITY 469
EFFICIENCY 172, 323
EFFICIENCY OF COMBUSTION EQUIPMENTS 324
D B E B555
EFFICIENCY OF ELECTRICAL DEVICES 336
EFFICIENCY OF MECHANICAL DEVICES 336
ELECTRIC MOTOR 40, 385
ELECTRIC VEHICLE 52
ELECTRIC RESISTANCE 72
ELECTRIC ENERGY 201, 372
ELECTRICITY 349
ELECTRICAL CIRCUIT SYMBOLS 403
ELECTRICAL MEASURING INSTRUMENTS 384
ELECTRICITY CONSUMPTION OF SOME DEVICES 379, 386
ELECTRIC POWER 372
ELECTROLYSIS OF WATER 396
ELECTROMAGNETIC RADIATION 445
ELECTRON 349
ENERGY 208, 278
ENERGY CONSERVATION PRINCIPLE 143
ENERGY CONVERSIONS 155556
ENERGY FORMS 155
ENGINE (HEAT ENGINE) 38
ENGINEER 35
ENGINEERING 36
ENTHALPY 242
EXERGY 170
EXTERNAL COMBUSTION ENGINE 38
FARADAY’S LAW 358
FEASIBILITY 57
5 PROBLEM SOLVING STEPS (ADAMB) 57
5 GOLDEN STEPS FOR BECOMING POWERFUL (RSTIP) 58
FIRST LAW OF THERMODYNAMICS 143, 282
FLEMING’S RULES 359
FLUID PUMP 49
FOOD CALORIE 489
F557
FOOD PYRAMIDS 509
FOOD SERVING SIZES & EQUALS 498
FORCE 71, 113
FREQUENCY 72
FRICTION 407
FUEL CELL 54
GAINLESS ENERGY 170
GAS LAWS 274
GEAR 227
GENERATOR 40, 385
GRAVITATIONAL WORK 185
GRAVITY 107
HEALTHY BODY WEIGHT 507
G B H B558
HEALTHY EATING PLATE 518
HEALTHY EATING PYRAMID 518
HEALTHY NUTRITION 509
HEAT 42, 241
HEAT EXCHANGER 47
HEAT ENGINE 284
HEAT PUMP 43, 295
HEAT TRANSFER 246
HEAT & WORK 262
HI-TECH 40
HORSEPOWER (HP) 83
HUMAN BODY ACTIVITY DECREASING 524
HUMAN BODY ENERGY CONSUMPTION 496
HUMAN BODY ENERGY REQUIREMENT 489
HUMAN BODY NEEDED CALORIES 492
HUMAN BODY NEEDED DAILY ENERGY CALCULATION 500
HUMAN BODY WORKING PRINCIPLE 487559
HUMAN DEATH CAUSES 524
HYBRID VEHICLE 54
INDUSTRY 41
INNOVATION 454
INNOVATION METHODS 454
INTEGRATED ELECTRIC CIRCUIT 372
INTELLECT 33
INTELLIGENCE 33
INTERNAL COMBUSTION ENGINE 38
INSULATORS 383
KILOWATT (kW) 83
KINETIC ENERGY 164
KINETIC ENERGY OF ROTATION 169
I B K B560
KIRCHHOFF’S CURRENT LAW 361
KNOW-HOW 33
KNOWLEDGE 32
LATENT HEAT 242
LENGTH 86
LEVER 236
LIFE CYCLE COST OF ENERGY (LCC) 483
LIGHT 50
LIGHTING 50
LIGHT RAYS 448
LINEAR ACCELERATION 104
LINEAR VELOCITY 93
LOGIC 34
LOGY 34
LOSSES IN PIPE 412
L B561
MACHINE 39
MASS 90
MASS DENSITY 71
MECHANICAL ENERGY 175
MECHANICAL STORAGE 178
MECHANICAL WORK 176
MIND 33
MOMENTUM 220
MOTOR 40
NANO-TECH 41
NEUTRON 349
NUCLEAR BATTERY (ATOMIC BATTERY) 54
M B N B562
OHM’S LAW 357
OPTIC FIBER 448
PARALLEL ELECTRIC CIRCUIT 365
PASCAL’S MACHINE 133
PERFORMANCE 323
PHILOSOPHY 34
PHOTOVOLTAIC CELL (PV CELL OR SOLAR CELL) 48
PHOTOVOLTAIC (PV) 48
PIEZOELECTRIC 394
POTENTIAL DIFFERENCE 353
POTENTIAL ENERGY 156
POWER 71, 208
POWER TRANSMISSION 227
O B P B563
PREDICTIONS FOR FUTURE TECHNOLOGY 58
PRESSURE 71, 124
PRESSURE ENERGY 197
PROJECT 56
PROTON 349
PULLEY 234
RADIATION 246
REALISTIC POWER 170
REASON 34
REFLECTION / REFRACTION 451
REFRIGERATOR 44
RESISTANCE 353, 356, 380
REVERSE ENGINEERING 37
ROBOT 41
R B564
SATURATION PRESSURE 270
SATURATION TEMPERATURE 270
SCIENCE 32
SCIENTIST 32
S CURVE 456
SECOND LAW OF THERMODYNAMICS 148, 282
SENSIBLE HEAT 242
SERIES ELECTRIC CIRCUIT 362
SHAFT WORK 180
SHEAR STRESS 439
SI DERIVED UNITS 66
SIMPLE MACHINES 234
SIMPLE PAYBACK PERIOD (SPP) 462
SI SEVEN BASE UNITS 64
SI SUPPLEMENTARY UNITS 65
S B565
SI UNITS 63
SOLAR THERMAL COLLECTOR 47
SOLAR VEHICLE 53
SOUND WAVES 444
SPEED 93, 95
SPRING WORK 183
STRENGTH / STRESS OF MATERIALS 432
SUBSTANCES 431
SUSTAINABILITY 454
SUSTAINABLE DEVELOPMENT 454
TEAMWORK 35
TECHNICIAN 37
TECHNICAL PERSON 37
TECHNOLOGY 40
TEMPERATURE 42, 264, 282
T B566
TENSILE STRESS 435
THINKING 35
THINK TANK 35
TIMER CLOCK 390
TORQUE 71, 223
TRIZ 454
UNAVAILABLE ENERGY 170
VEHICLE 52
VELOCITY 70, 93, 95
VOLUME 86
VOLUME DENSITY 71
VOLTAGE 353
VISCOSITY 404
U B V B567
WAVE 442
WAVE FREQUENCY 442
WAVE LENGTH 442
WAVE VELOCITY 442
WEIGHT 113
WORK 208
W B

كلمة سر فك الضغط : books-world.net
The Unzip Password : books-world.net

تحميل

يجب عليك التسجيل في الموقع لكي تتمكن من التحميل
تسجيل | تسجيل الدخول

التعليقات

اترك تعليقاً