Foundations of Material Science and Engineering
Third Edition
Smith, William F.
University of Central Florida
TABLE OF CONTENTS
1 Introduction to Materials Science and Engineering
2 Atomic Structure and Bonding
3 Crystal Structures and Crystal Geometry
4 Solidification, Crystalline Imperfections, and Diffusion in Solids
5 Mechanical Properties of Metals I
6 Mechanical Properties of Metals II
7 Polymeric Materials
8 Phase Diagrams
9 Engineering Alloys
10 Ceramics
11 Composite Materials
12 Corrosion
13 Electrical Properties of Materials
14 Optical Properties and Superconductive Materials
15 Magnetic Materials
Appendix A Some Properties of Selected Elements
Appendix B Ionic Radii of the Elements
Appendix C Selected Physical Quantities and Their Units
Appendix D Answers to Selected Problems
Appendix E References for Further Study
system , phase diagram
of . 411
Alclad alloys, 716
alkali metals
electronegativity of, 35-36
in glasses, 582-584
metallic bonding of . 52
allotrophy, 96-97
allotropic transformations, 96-97
alloy steels, 461
classification of, 461, 463
continuous-cooling transformation
diagram. 466. 468. 469
distribution of alloying elements.
463-464
hardcnability curves for, 466, 468
alloy-environment systems in which SCC
occurs, 705
alloying elements
approximate distribution in alloy steels,
463-464
effects on the eutcctoid temperature of
steels, 464-465
increasing the electrical resistivity of
pure metals, 739-740
alloys, 22, 131 , 173
binary, 383
casting of , 182-184
extrusion of, 188-190
ferrous and nonferrous, 7
hot and cold rolling of, 184-188
mechanical properties of, 201-205
nonequilibrium solidification
of . 390-393
oxidation of, 711
oxidation rate of, 711 -714
processing of, 182-193
solidification of, 118-128
strength of, 198-201
stress-strain curves for, 206-207
alnico alloys. 857-858, 868, 871
alternating copolymers, 290, 291
alumina ( AI2O3), 558, 563-564
aluminosilicate glasses, 583
aluminum
as an alloying element in alloy
steel, 464
calculating the P.B . ratio for, 710-711
energy-band diagram for. 743
engineering properties of, 479-480
production of , 480-481
superpure, 131
aluminum alloys, 470, 472-488
1100 aluminum alloy, 483, 484
l xxx aluminum alloys, 483, 484
2024 aluminum alloy, 483, 484
2xxx aluminum alloys. 483
3003 aluminum alloy, 483, 484
3xxx aluminum alloys, 483
5052 aluminum alloy, 483, 484
5xxx aluminum alloys, 483, 484
6061 aluminum alloy, 484, 485
6xxx aluminum alloys, 483,
484, 485
7075 aluminum alloy, 484, 485
7xxx aluminum alloys, 484, 485
casting, 484, 485-488, 491
correlation of structures and hardness
in, 478-479
in fuselage skin, 670
mechanical properties and
applications for, 484
MMCs, 652-653
precipitation strengthening
(hardening) of, 475-478
strengthening, 379-380
structures formed during the aging of ,
475-478
wrought alloys, 481
Aluminum Association system. 487
aluminum honeycomb panels, 651
aluminum -nickel (Al-Ni ) phase
diagram, 423
aluminum -nickel -cobalt alloys. See
alnico alloys
American Concrete Institute. 635
amide linkage, 324
amino resins, 341-342
amorphous polymeric material, 314
amorphous structure of glass. 581
angiosperms. See hardwoods
angular aggregate, 640
anion diffusion, 711
anions, 34, 60, 527
anisotropic alnico alloys, 857
anisotropic strength of wood, 640
annealing, 185, 229, 238
of carbon steels. 455
A 1 -4% Cu alloy
correlation of structures and
hardness in, 478-479
precipitation strengthening
(hardening) of, 475-478
structures formed during the aging of ,
475-478
abrasive materials, 577
ABS thermoplastics, 318-320
absolute-volume method. 635-636
absorption of light. 797
absorption-type inhibitors, 718
absorptivity. 822
acceptor atoms. 754
acceptor levels, 754, 786
acetals, 328-329
acetylene, 48, 49
acicular eutectic structure. 401
acidic refractories, 578, 579
acrylics, 320
acrylonitrile, 318
activation energy, 149-150, 174
calculating. 169.171-172
for scIf-diffusion, 154, 155
activation polarization, 691 , 692, 721
activation-polarization barrier, 691
activators. 802
‘”active” photons. 805
adsorption theory. 693
aerospace alloys, 13
age hardening, 379
agglomeration of particles, 547
aggregate material in concrete. 629.634
aggregates. 640. 661
aging
of an A1 -4% Cu alloy. 475
artificial, 473
curve, 474-475
effect on strength and hardness ,
474—475
in the precipitation -strengthening
process, 473
agitated oil as a quenching medium,
468, 470
air-entrained concretes, 634, 635 , 661
AIS1-SAE code, 460-461
Al^CuMg phase in an aluminum
matrix , 379, 380kiiymcciiiiyr I I I I I I U kuiuirii
annealing—Coni,
continuous, 242, 245
tor reciystallization. 238. 241-245
annealing point. 586. 594
annual growth rings, 642
anode, 676, 721
anodic dissolution, 706
anodic protection, 719-720, 722
anodic reaction, 672
anodic to hydrogen metals, 673, 674
anodically controlled corrosion
rate, 692
antifeiToinagnetism, 836, 837-838, 869
aniiftuorite crystal structure. 54 J
APF (atomic packing factor), 108
BCC unit cell. 74-75
FCC unit cel I, 75
HCP unit cell, 76
applications
aluminum alloys, 484
cast irons, 500
copper alloys. 49CM91
low-alloy steels, 470, 471
magnesium. Titanium and nickel
alloys, 509
aqueous galvanic cells, 678^679
a ramid fibers, 604, 606, 610,
659, 660
area effect, 697, 698
aromatic polyamide fibeis. See aramid
libers
Arrhenius diffusivlty plots, 169-171
Arrhenius rate equation, 152, 153, 174
Arrhenius, Svante August. 152
artificial aging, 473
as-cast Ingots. 190. 391
asphalt, 639, 661
Asphalt Institute, 639-640
asphalt mixes, 639-640, 661
A5TM grain-size number, 144
atactic stereoisomer, 300, 302, 367
atom positions in cubic unit cells, 78
atomic bonds. 59
atomic density. 93-94. 108
atomic diffusion, 154, 172
atomic mass unit (u). 22. 60
atomic masses, 22-23
atomic movements, 154
atomic numbers. 20.60
atomic orbitals. See orbitals
atomic packing factor. See APF
atomic size, 30, 31
atomic-site unit cell
for t he BCC crystal structure.
72, 73
for the FCC crystal structure, 75
for the HCP crystal structure. 76
atoms, 59
chemical bonding between, 36
electronic structure of, 24-36
structure of, 20
attenuation for optical fibers, 809
attractive force between an ion
pair, 38
austem pering, 459-460, 513
austenite, 433, 447-452, 512
austenitic stainless steels, 495, 496,
497-498, 702, 703
austenitizing, 435, 512
autocatalytic process, 699
autoclave sterilization, resistance to, 331
automobiles, composition of, II , 12, 13
avalanche effect, 766
Avogadro’s number 22, 60
axes of symmetry for wood, 642, 643
bias, 786
biased pn junction, 763
bifunctional monomer, 287, 366
billets, 430-431
binaiy alloy, 383
binary eutectic alloy systems, 394-401
binaiy eutectic copper-silver phase
diagram, 420
binaiy eutectic reaction , 400-401
binary isomorphous alloy systems,
383-385
binary monotectic systems, 406—407, 408
binaiy peritectic alloy systems, 401-406
binary peritectic iridium-osmium phase
diagram, 421
binaiy phase diagram. See phase diagrams
binders
additives, 547
removing from ceramic parts, 552
bipolar junction transistor (BJT), 767-769
bipolar transistor, 786
Bitter technique, 840, 841
bitumen, 639
BJT (bipolar junction transition ), 767-769
blister copper, 488
block copolymers, 290, 291
blooms, 430, 431
blow molding, 305-306, 307, 367
blowing glass, 588, 590
body-centered cubic crystal structure. See
BCC crystal structure
body-centered unit cells, 69
Boeing 737, fuselage structural
failure, 669-670
Bohr atom, 833
Bohr equation, 25
Bohr hydrogen atom, 25
Bohr magnetron, 835-837, 869
Bohr, Niels Henrik, 25
Boltzmann’s constant, 150, 151
bonding energies
between atoms of a particular
metal, 51, 52
for covalent bonds, 46, 47
of fourth-period metals, 53
of ionic solids, 43
—44
percentage iconic character of, 58
bonding valence electrons, 744-745
Borazon, 577
boron, diffusing into silicon wafers, 166
boron oxide (B3OI)* 582-583
borosilicate glasses, 582-583, 584-585
bottom veedies, 191
box annealing process, 242, 244
Bragg angle, 100
Bragg, William Henry, ] 01
Bragg’s law, 101
Baekeland, L. Hr , 335
Bain, Kr C., 450
bainite, 450, 513
Bakelite, 293, 335
bar magnet, 829
barium ferrites, 867
barium titanate (BaTiOO, 564-565,
566-567, 568
basal plane of HCP unit cell, 88
base
of an npn planar bipolar
transistor, 769, 771
of a transistor, 767, 768
base-centered unit cells, 69
basic refractories, 578, 579
basic-oxygen process, 429
bauxite, 480
Bayblend, 333
Bayer process, 480
BCC ( body-centered cubic) oystal
structure, 71, 72
of alnico alloys, 857
arrangement of atoms in, 72-75
brittle fracture shown by, 247
compared to FCC and HCP
sti’uctunes, 92
of iron , 842, 843
slip planes and directions for, 215,
216, 217
twinning found in, 222—223
united!, 108
BCT (body-centered tetragonal ) cystal
structure, 444
benzene molecule, 48-50
benzene ring, 49
benzene structure, 48-50
benzoyl peroxide, 285kiiymcciiiiyr IIIIIIU kuiuirii
brasses, copper-zinc* 492
Bravais, August, 69
Bravais lattices, 69
breakdown diodes
* 766-767
Brinell hardness test, 209, 2lQ
brittle fracture, 246, 274
metals and alloys, 247-248, 249
polymeric materiaIs* 362-364
brittleness
* of ceramics, 671
bulk polymerization, 296, 366
Buna S^’ (butadiene-styrene),346 __
Burgers vector, 138, 139, 140, 173
butadiene, using to produce ABS, 318
butadiene-acrylonitrile rubber* 361
butadiene-styrene rubber,360-351
butane
* structural formula for
normal, 48, 49
heat treatment, 442-461
limitations
* 461
noneutectoid
* 461-452
slow cooling, 435-442
tempering* 456
very-low-carbon* 461—462
carbon-carbon bonds
* 339
carbon-carbon composites, 603-604
carbon-carbon double bonds, 282, 339
carbon-containing molecules, covalent
bonding in, 48
carbon-fiber-epoxy composite
material, 10, 15, 614
carbon-fiber-reinforced-epoxy resins*
614-616
carbonization stage for PAN
fibers
* 608-609
carburized steel parts, manufacture
of, 161
carburizing* 260
carrier concentrations
extrinsic semiconductors
* 755
intrinsic and extrinsic
semiconductors, 756-758
case hardening of steel, 161-165
cast aluminum alloy groups, 487
cast copper alloys* classification of* 489
cast ingots, producing with a fine
grain size* 128
cast irons
* 498-506
chemical composition ranges for* 499
mechanical properties and applications
of, 500
properties of, 498
types of, 499, 500
cast monotectic alloy of Cu-36% Pb*
407, 408
cast products, 183
casting alloys* 183
aluminum, 485-487
magnesium, 507
catalysts, using in chain
polymerization, 284—285
catastrophic oxidation, 713
cathode
* 676 * 721
cathode reactions for aqueous galvanic
celts, 679
cathodic hydrogen reduction on a metal
surface, 691-692
cathodic polarization* 721
cathodic protection, 718-719, 722
cathodic reaction, 672
cathodic to hydrogen metals, 674
cathodically controlled corrosion rate* 693
cathodic-anodic area ratio, 697, 698
cathodoluminescence, 803—804
cation diffusion
* 711
cation-anion divacancy* 137
cations, 34, 60, 527
cavitation damage* 707-708
CDA (Copper Development Association)*
488
* 489
Celcon, 329, 333
cellulose, 645
cellulose molecule
* 645 * 647
cellulose-filled mea and melamine
compounds, 342
celt-wall ultrastructure of
wood
* 644-646* 647
cement clinker
* 630
cement paste in concrete* 629
cementite, 432, 433, 457, 512
central core glass, 810
centrifugal casting* 588
ceramic abrasive materials
* 577
ceramic ball bearings and races* 10
ceramic coating* 716
ceramic compounds
critical superconducting
temperatures for* 815
ionic and covalent bonding in, 526
ceramic materials, 8-9, 10, 17, 523-524,
591, 592
forcapacitators, 564-565
corrosion control and, 716
deformation of
* 570-57 ]
electrical properties of * 559-562
factors affecting the strength
Of, 572, 573
fatigue failure of* 576
forming products* 547-552
future trends in usage, 14-15
grain boundaries, 143-144,
145
* 146
insulator, 560-561, 562-564
introduction to
* 524-525
mechanical properties of, 570-571
processing of, 546-554, 592
properties of, 524, 591-592
thermal properties of, 577-580
toughness of, 572-574
traditional and engineering, 554—559
ceramic parts* manufactured by
isostatic pressing* 549
ceramic phase diagram of the
Al20r$i02 system, 41 ]
ceramic refractory materials, 577-579
ceramic semiconductors, 565-566
ceramic tile insulation for the space
shuttle orbiter
* 580* 581
ceramic whiskers
* 656
ceramic-matrix composites (CMCs),
656-658
Ceratec ball bearing and races, 525
C- 17 transport plane*
carbon-fiber-epoxy composite
material used for, 10, 15
c/a ratio for an ideal HCP crystal
structure, 76
calcium fluorite (Cah’2) crystal stmcture*
539-541
calcium halophosphate, 803
cambium layer, 640, 641, 661
capacitance* 560* 593
capacitors* 559* 564-565 * 593
f carbide forms
* 457
carbon
covalent bonding by* 46—48
interstitial diffusion in iron
* 156
interstitial solid solution in iron,
134—136
carbon black, 345
carbon content
of annealed steels
* 249* 250* 251
effect On the martensitetransformation start temperature,
442, 443
of steel
* 429
carbon dioxide lasers, 807, 808
carbon fibers, 604, 606, 659, 660
mechanical properties compared to
aramid and glass* 610
producing from polyacrylonitrile
(PAN) precursor material 608-609
for reinforced plastics* 606* 608-609
carbon gradients in test bars of
plain-carbon steel, 163
carbon steels, 93-94, 253, 431, 513. See
also iron-carbon binary alloys
annealing and normalizing* 455-456
classification
* 460—461
effect of tempering temperature* 458kiiymcciiiiyr I I I I I I U kuiuirii
cesium chloride (CsCI), 529, 530—^3 3
chain polymer 366
chain polymerization, 282-284, 366
chain silicate structure, 544
charge carriers, effect of ionized
impurity concentration on, 758-759
charge densities in extrinsic
semiconductors, 756
charged panicles in extrinsic
semiconductors, 756
Charpy V-notch specimen, 249
chemical attack on a material by its
environment, 670
chemical bonding, 36
chemical formula, obtaining the
simplest, 23
chemical polymerization processes, 295
chemical reactivity, 32, 34-36
chemical vapor deposition (CVD)
process, 778, 780
chemically strengthened glass, 591
chemically tempered glass, 594
chip capacitors, 565
chopped strands, 606, 608
chrome mask, 775
chrome plate, 716
chromium (Cr)
as an alloying element in ahoy
steel, 464
antiferromagnetism exhibited by, 837
in stainless steel, 494
chromium carbide precipitation
mechanism, 702-704
cis-1 ,4 polyisoprene, 343, 367
cladded metal structures, 651-652
coatings, applied to metals to prevent or
reduce corrosion, 716-717
cobalt (Co)
Curie temperature of, 838
ferromagnetic properties of, 834-835
COK (cube-on-edge) material, 849
coercive force, 847, 856, 868, 870
coherent laSeT beam, 805
coherent precipitate, 476
coherent radiation, 804
cold ductility of he-Cr-Co alloys, 862
cold plastic deformation, 226-227
cold rolling
aluminum, 481
metal sheet, 184-185, 187, 188, 189
cold working
increasing the tensile strength of
unalloyed copper, 226, 227
of metals, 229
cold-formmg processes, 547
cold-setting thermosets, 333
collector
of an npn planar bipolar transistor,
769, 771
of a transistor, 767, 768
color television screen
phosphorescence, 803-804
columbium in alloy steel, 464
columnar grains, 125, 126, 173
competition among materials, 11-13
complementary circuits, 780
Complementary Metal Oxide
Semiconductor (CMOS)
devices, 780-781
completely reversed stress cycle,
256-257, 258
components of a phase diagram, 417
composite materials, 9-10, 17, 603-658,
com piessive strength
ceramic materials, 570
concrete, 633, 634-635
pure-cemeut compound pastes, 632
wood, 648
compressive stresses, 567, 568, 590
concentration galvanic cel Is, 681-683
concentration polarization, 692-693, 721
concrete, 629-630, 659, 661
aggregates for, 634
compressive strength of , 633, 634-635
mixing water for, 634
prestressed , 638-639
reinforced and prestressed, 637-638
concrete mixtures, 635-639
condensation polymerization, 293,
294, 295
condensed phase rule, 383
conduction band, 743, 785
conductivity, 733, 734
congniently melting compound, 412
constructive interference, 101
consumption of electrons, 672
continuous annealing process
for low-carbon sheet steel, 242, 245
schematic diagram of, 242, 245
continuous casting of steel ingots, 127
Continuous pultrusion process, 629
continuous strands, 606, 608
continuous wave carbon dioxide
laser, 808
continuous-cooling transformation
diagram, 513
for A IS I 4340 alloy steel, 466, 468, 469
for a eutectoid plain-carbon
steel, 452-454
continuous-fiber reinforced CMCs, 656
continuous-fiber reinforced
MMCs, 652-653
continuous-strand fiberglass
roving, 627
continuous-wave (CW ) lasers, 806
cooling curves, constmcting an
equilibrium phase diagram
from, 385
coordination number (CN), 527, 528,
529, 592
copolymerization, 317, 366
copolymers, 290-293, 366
copper (Cu)
calculating the electrical resistivity of
pure, 739
calculating the volume density
of, 92-93
electrical resistivity of, 739-740
general properties of, 488
high-purity, 131
clamshell or “beach’* marks, 254
classes of materials, 6
clays
chemical composition of, 554, 555
in traditional ceramics, 554
659
closed-moId processes for
fi bePrei nforced-plaStic, 627-629
definition of, 604
fibeT-reinforced – piastic, 612-621
fibers for reinforced-plastic, 604,
606-612
future trends in usane, 15
introduction to, 604, 605
open-mold processes for
fi bePreinforced-plaStic, 622-626
types of, 10
composition base for a ternary phase
diagram, 414
compound semiconductors, 781-784
compounds, added to PVC, 314
compression molding, 306-308, 367
compression, producing
fi bepreinforced plastics, 627
cleavage planes, 246, 247
closed-die forging, 190, 192
closed-moId processes for
fiber-re inforced-plastic composite
materials, 627-629
close-packed directions, 107
close-packed planes, 107, 216
close-packed structures, 90, 91
C-M (covalent-metai litivities), 52-53
CMCs (ceramic-matrix composites),
656-658
CMOS (Complementary Metal Oxide
Semiconductor) devices, 780-781
CN (coordination number), 527, 528, 529,
592
Co, cobalt
coarse aggregates, 634, 661kiiymcciiiiyr I I I I I I U kuiuirii
as a principal alloying element,
483, 485
production of, 488
copper alloys, 488-493
Cl 0200, 492-493
C26000, 490, 492
C28000, 490, 492
classification of, 488-489, 490-^91
con elation of structures and hardness
in, 478-479
mechanical properties and applications
of 490-491
precipitation strengthening
( hardening) of, 475-478
structures formed during the aging of,
475-478
Copper Development Association (CDA),
488, 489
copper matrix, stabilizing
superconductor wire, 8 )9-820
copper-beryllium (Cu-Be ) alloys, 493
copper-lead (Cu-Pb) phase
diagram, 407, 408
copper-nickel (Cu-Ni ) phase diagram, 384
copper-silver (Cu-Ag) phase diagram, 420
copper-tin (Cu-$n) bronzes, 493
copper-zinc (Cu-Zn)
alloys, 492-493
phase diagram, 409-411
core electrons, 741
core losses, reducing in magnetic
materials , 849
cored a with encasement by the ft phase,
406, 407
cored structure, 390, 391, 392, 417
corrals, 67
corrosion, 669-67 ] , 721
coatings applied to metals to prevent or
reduce, 716-717
controlling or preventing, 714-720
definition of, 670
fatigue, 260
at or near grain boundaries, 684
rates (kinetics), 686-695
reactions, 690-691
resistance, 494, 700, 715
types of, 696-701
corrosive fluid
decreasing the velocity of, 718
on a metal surface, 707
corrosive ions, reducing the
concentration of, 718
corundum (Al20.d crystal structure, 541
Coulomb, Charles Augustin, 38
coulombic forces, 37, 38, 40
Coulomb’s law, 38-39
coupled zinc and steel , 697
covalent bonding, 44, 59, 61
by carbon, 46-48
in carbon-containing molecules, 48
in diatomic molecules, 45-46
in fluorine, 46
in the hydrogen molecule, 44-45
covalent bonds, 37
covalent-metalIitiv jties
COM values), 52-53
Ci’, See chromium
crack bridging mechanism, 656, 657
crack deflection mechanism, 656
crack growth on planes of high tensile
stress, 259
crack growth rate, 262
crack initation in the fatigue process, 258
crack propagation, 362-363, 576
crack tip, stress maximized at , 251
crazes in glassy thermoplastics, 362-363
creep, 274
of metals, 266-268
of polymeric materials, 358-360
creep curves
for metals, 267
plotting, 268-269
creep modulus, 359-360
creep rate, 267, 268, 274
creep (stress)-rupture strength, 274
creep strain of polystyrene,
358-359
creep tests, 268-270
creep-resistant alloys, 270-273
creep-rupture test, 270, 27 ]
crevice corrosion, 700-702
cristobatite, 545, 546
critical angle of incidence for total
internal reflection of light, 796—797
critical cooling rate, 454
critical cuiTent density, 822
critical held Ht-, 815-816, 822
critical radius
of a nucteus, 173
versus undercooling, 122-124
critical (minimum ) radius ratio, 528-529,
crystal orientation, effect on the
magnetization of ferromagnetic
materials, 842
crystal planes
in cubic crystals, 107
determining atomic densities on, 93—94
distance between, 85
in HCP unit cells, 87
crystal structures, 68, 108
analysis of , 97-107
determining atomic densities in
various directions, 95
effect on diffusion, ] 59
of elemental metals, 71
Ke-C martensite, 444-445
unit cells, 107
using x-ray diffractometer data to
determine, 105
x-ray diffraction analysis of , 101-107
crystal systems, 69
crystal line imperfections, 136-149
crystalline lattice, diffusion of
atoms in, 154
crystalline materials, 68
crystalline polymeric materials, 325
crystalline regions with a higher
refractive index, 800-801
crystalline solids, 68
cry stalline structure of metals, 7
crystallinity (in polymers),
353-354, 367
crystallite arrangemeats for partly
crystalline thermoplastic
materials, 299
crystal tographic direction indices, 78
crystallographic planes, Miller indices
for 82
crystallographically equivalent
directions, 79
crystals
growth in liquid metal, 125
solidification of singte, 128-131
CsCl (cesium chloride)
crystal structure, 530-531
radius ratio for, 529
Cu, See copper
Cu-Be (copper-beryllium) alloys, 493
cube-on-edge (COB) grain-oriented
material, 849
cubic boron nitride, 577
cubic crystal planes, indices
for, 82, 108
cubic magnetic materials,
magnetostriction in, 845
cubic soft ferrites, composition and
stjucture of, 864
cubic structure for zirconia, 574, 575
592
critical resolved shear stress for
metal single crystals, 216, 218, 219
critical temperature Tt, 8 ) 5, 822
cross-linking, 336, 366
crossplied quasi-isotropic lamminate plies
for a composite material, 615
crystal, 108
crystal directions, 107
crystal imperfections, 159, 172
crystal lattices
interstitial sites in, 535-537
specific directions in, 78kiiymcciiiiyr I I I I I I U kuiuirii
cubic system, 69, 70, 84
cubic unit cells
atom positions in, 78
diffraction conditions for 103—105
direction vectors in, 80
directions in, 78-81
Miller indices for crystallographic
planes in, 82
Cu-Ni equilibrium phase diagram, 385
cup-and-cone ductile fracture, 247
Curie temperature, 566, 593, 838, 870
current density, 736
current flow in superconductor, 817-818
current-carrying conductors, magnetic
fields produced by, 830
current-voltage characteristics of a
pn junction diode, 764
cutting tools, ceramic, 523-524
Cu-Z.n phase diagram, 409-411
CVD (chemical vapor deposition )
process, 778, 780
CWCO? (continueus-wave) carbon
dioxide lasen 808
cyclic stresses, 256-258
Cycovin, 333
Czechralski method
* 130-131
depletion regions in an NMOS
device, 773
design engineer, 2
destructive interference, 99
dezincification, 708, 709
DH (double heterojunction) GaAs
laser, 808
diamagnetism, 833—834, 869
diamond, cubic structure
* 47-48, 744
diamond-cone identer, 209
diatomic molecules, electron-pair
covalent bonds, 45-46
die casting of aluminum, 487
dielectric constant, 559-561, 593
dielectric loss, 559, 562
dielectric strength , 561-562, 593
ceramic materials, 561-562, 593
general-purpose plastic materials*
310-311
selected engineering
thermoplastics, 323
selected thermoset plastics* 334, 335
dielectrics, 559-562, 593
diffracting planes in cubic crystals, 104
diffraction. Sec x-ray diffraction
diffuse-porous hardwood, 644, 646
diffusing species, concentration of, 159
diffusion, 154-157
coefficient, 157
equation, 168-172
mechanism, 158
processes, 161-168
technique, 775, 777
diffusion less transformation, 444
diffusivity, 157-158, 174
dimensionless units for engineering
strain, 196
dimples indicative of ductile fracture, 248
diode lasers, 808-809
dipolar magnetism* 830
dipole bonds, 37, 60, 61
dipole moments* 54-55
dipoles, 37, 55-57, 60
direct chemical attack on ceramics and
polymers* 670-671
direct extmsion, 189, 190
direct voltage* converting alternating
into, 765
direct-chill casting* 127* 481
directional bonding, 59
directions in cubic unit cel Is, 78-81
discontinuous (whisker) CMCs, 656
discontinuous MMCs, 653, 654, 655
disk ceramic capacitors, 564, 565
dislocation density, 226-227
dislocations
* 172* 173* 213-215
cellular wall pattern of, 213, 215
in crystalline solids, 138-141 , 142
observing on a transmission electron
microscope, 139-141
piling up against grain boundaries, 225
domain rotation , 839, 840
domain wall
* 843-844
energy, 843-844, 870
movement
* 840* 841
domains
of closure
* 845
of laths
* 442
donor impurity atoms* 751
donor levels
* 752, 786
dopants, 755, 774^-777
doping
effect on carrier concentrations in
extrinsic semiconductors
* 755-758
of extrinsic silicon semiconductor
materials
* 754—755
double heterojunction (DH) GaAs
laser, 808
DP (degree of polymerization), 283-284,
285, 366
drain casting, 551
drain in an NMOS device, 771, 772
drift velocity, 730, 736
drive-in diffusion step, 777
dry pressing, 548, 549, 592
drying of ceramics, 552
dsp hybridized bonding, 52
ductile cast iron, 500, 501-503,
504, 513-514
ductile fracture
of a metal, 246-247, 248, 274
of polymeric materials, 364
ductile metal, structural changes in the
fatigue process, 258-260
ductile-brittle transition temperature for
noncTystaltine thermoplastics, 298
ductility of metals, 204
d orbitals, 32, 34
deaeration, 718
debye units, 55
decarburizing, 260
deciduous trees, 641
decomposition products, 473-474
deep drawing, 193
deformation
ceramic materials, 570-571
metal, 193-194
deformation mechanisms in polymeric
materials, 352, 353
deformation twinning, 222, 230
degree of polymerization (DP), 283-284,
285, 366
degrees of freedom, 417
delocalized valence electrons, 741, 742
Delrin, 329
demagnetized iron bar, 830-831
demagnetizing curves for hard
magnetic materials, 854, 855
dendrites, 118
densely packed crystal structures, 71
densities
generaUpmpose thennoplasties, 310
selected engineering
thermoplastics, 323
selected theTmoset plastics, 334, 335
vulcanized natural rubber, 345
K (electrical) glass, 606, 659
early-strength portland cements, 632
earlywood ring, 642
earth’s crust and atmosphere, materiats
from, 2, 3
easy magnetization directions,
842, 843
eddy currents* 848-849* 867* 870
HDFAs (erbium-doped optical fiber
amplifiers), 814
edge crack, 251
edge dislocation, 138, 173, 213, 214
HDS (electrodynamic suspension), 828
elastic constants for isotropic
materials
* 198kiiymcciiiiyr I I I I I I U kuiuirii
elastic deformation, 193, 230, 352, 353
deforming thermoplastics by, 351
maximum , 202
elastic modulus, 98, 201-202, 230
elastic modulus equations, 6 ) 7-62 ]
elastomers (rubbers), 280,
343-351 , 367
electric current
* 785
electric current density* 785
electric dipole moment* 54, 566* 567
electrical conduction
in elemental intrinsic
semiconductors
* 746-749
energy-based model for, 741-743
in intrinsic semiconductors, 744-745
in metals, 730, 732-740, 784
electrical conductivity* 733* 734* 785
of an extrinsic semiconductor, 759-761
as a function of reciprocal absolute
temperature for intrinsic
silicon, 750
of selected metals and nonmetals
* 733
electrical conductor, 785
electrical forces, converting into
mechanical responses, 569
electrical insulating compounds* 336
electrical insulators, 733, 785
electrical neutrality of ionic solids, 43
electrical porcelain, 556, 558, 562-563
electrical properties
ceramics, 559-562
materials, 729-784
selected compound semiconductors*
781, 782
electrical resistance, 785
electrical resistivity, 733, 737-740, 785
electrochemical corrosion of
metals, 671-674
electrochemical potential of the Zn-Cu
galvanic cell, 675-678
electrochemical reactions, 671-672
electrode half-cell potentials for metals*
672-674
electrode kinetics of corrosion
reactions, 690-691
electnodynamic suspension (KDS), 828
electrolytic cell, using to produce
aluminum , 480
electrolytic tough-pitch (BTP)
copper, 488, 489
electromagnetic spectrum* light
and, 792-794
electromagnetic suspension (BMS), 828
electromotive force series, 721
electron and hole mobilities, 747-748
electron charge cloud* 20* 27* 28*
730, 732
electron configurations * 60
carbon atom, 46
elements, 30, 32, 33
fourth-period metals, 53
electron flow in a metal wrte,
736-737
‘”electron gas+1 of delocalized valence
electrons, 51
electron lens system in a transmission
electron microscope, 142
electron microscope. See SBM
electron shell , 60
electron spin quantum number, 29, 59
electron-dot notation, 45, 46
electronegative elements* 34
elect^negativity* 35-36
electronic materials, 10-11 , 15-16, 17
electronic structure
of atoms
* 24-36
chemical reactivity and, 32, 34—36
of multielectron atoms, 29-32
electronic structure-chemical property
relationships for metals
and nonmetals, 36
electron-pair bonds, 44
electrons, 20, 59, 785
consumption of, 672
drift velocity of, 736-737
energies associated with, 25
magnetism and, 833
maximum number for each principal
atomic shell , 29-30
quantum numbers of, 28-29
subenergy levels of, 29
electroplating, 687^689
electropositive elements, 34
elements
electron configurations of, 30, 32, 33
electronegative, 34
electropositive, 34
identified by atomic number, 20
ionic radii of
* 879-880
most common in the earth‘s crust and
atmosphere, 3
oxidation numbers for, 34, 35
periodic table of , 20-21
properties of selected, 877-878
relative atomic sizes of, 30, 31
elongation, 345-346
embryos, 120, 173
emf. electrochemical potential
emitter
of an npn planar bipolar transistor,
769, 771
of a transistor, 767, 768
empirical rate laws for oxidation, 712
BIVIS (electromagnetic suspension ), 828
emulsion masks
* 775
emulsion polymerization, 295, 296
encasement phenomenon, 405-406
end-quench hardenabiiity
test, 465-466
endurance limit in an SN plot, 256
energy
versus separation distance for a pair of
metal atoms, 52
versus separation distance for
oppositely charged ions, 41
energy bands, 74 ] , 742
energy gap for silicon, 746, 747
energy product, 871
energy-band diagrams
for an insulator, 743
for intrinsic elemental
semiconductors, 746, 747
for metallic conductors, 742, 743
energy-band model, 741-744, 785
engine applications, ceramic materials
for, 9
engineering alloys, 511
engineering ceramics, 14, 524, 556,
558-559. See also ceramic
materials
engineering designs, plastic materials in,
280-281
engineering materials. See materials
engineering metats. See also metals
physical properties and costs
of, 506
engineering plastics. See also plastics
competition with metals* 14
engineering strain, 195-196, 230,
See also strain
engineering stress, 194—195, 230,
See also stress
calculating, 206-208
engineering stress-strain, 201, 230
comparing for selected alloys, 206-207
engineering thermoplastics, 322-333, See
also thermoplastics
entanglement of a linear polymer
287, 288
environment, metal fatigue strength
and, 260
environmental conditions, changing to
reduce corrosion, 718
epoxide group, chemical structure of, 338
epoxies* 659
epoxy resins, 337-339, 612, 613, 614
equiaxed grains, 118, 120, 125, 126, 173
equilibrium* 417* 762—763
‘”equilibrium grain size*'” 553* 554
equilibrium interatomic distance, 45
equilibrium phase, 477, 478kiiymcciiiiyr I I I I I I U kuiuirii
equilibrium phase diagrams, 417.
See also phase diagrams
from liquid-solid tooling CUTVCS, 385
for pure iron, 380 s 381
equilibrium precipitate, 474
equipment design effect on corrosion
prevention, 7 ] 7
erbium -doped fiber, 834
erbium -doped optical fiber amplifiers
(EUFAs), 814
erosion corrosion, 707
error function (erf ) for kick’s second
law, 161
ester linkage, 330, 339
ethane, structural formula for, 48, 49
ethylene
chain polymerization of, 287-284
forming a linear polyester, 340
free-radical chain polymen nation
of, 284
molecule, 282, 283
structural formula for, 48, 49
FTP copper, 488, 489
eutectic composition, 394-395, 418
eutectic point, 394, 395, 418
eutectic reaction, 394, 395, 418
invariant reactions in the Fe-Fe
.^C
phase diagram, 434-435
eutectic reactions, 409
eutectic structures, illustrations of, 401
eutectic temperature, 395, 418
eutectoid (plain carbon steel), 512
eutectoid cementite (Fe^C), 432,
441, 512
eutectoid ferrite, 437, 441
eutectoid a ferrite, 512
eutectoid plain-carbon steel
continuous-cooling transformation
hardenability diagram, 452 plot—454 , 466, 467
isothermal transformation (IT) diagram
for, 447-451
slow cooling of, 435-437
eutectoid reactions, 409, 435
eutectoid steel , 435
eutectoid temperature of steels, 464—465
evergreen trees, 641
exchange energy, 84}, 870
exhaustion range, 760
exothermic reaction, 150
extensometer, 200
extrinsic semiconductors, 751
carrier concentrations in, 756-758
charge densities in, 756
doping of, 754-755
effect of doping on carrier
concentrations in, 755-758
effect of temperature on the
electrical conductivity of, 759-761
n-type, 751-752, 753
p-type, 752-754
extruder, 306
extrusion, 229, 304-305, 306
of ceramic materials, 552
of metals and alloys, 188-190
of plastics, 367
extrusion ingots, 127, 182
Fe-C martensites
formation of, 442
hardness and strength of. 445
‘Lap —446
lattice, 445, 446
microstructure of, 442-444
structure on an atomic scale, 444
Fe-Cr phase diagram, 494
Fe-Cr-Co alloys, 860-862, 871
Fe-Fe^C phase diagram
alloying elements effect on the
eutectoid temperature, 465
invariant reactions in, 434
—435
solid phases in, 432
feldspars, 546, 554, 555
ferrimagnetism, 838, 869
a ferrite, 433, 512
3 ferrite, 380, 434
ferrites, 838, 863, 869
ferrite-stabilizing elements, 465
ferritic malleable iron, 505
ferritic stainless steels, 494-495, 496, 497
ferroelectric ceramics, 566-569
ferroelectric domains, 566^567
ferroelectric material, 593
ferromagnetic domains, 839-846
ferromagnetic elements, magnetos!rictive
behavior of, 845
ferromagnetic materials, 829, 832,
868, 869
magnetic domains in, 839
magnetization and demagnetizaiton of,
846-847
ferromagnetism, 834-835, 838, 869
ferrous alloys, 7, 17, 428, 511
ferrous metals, 7, 17
Ferrosdure, 867
fiber pullout, 657
fiberglass-polyester composites, 614
fi berg Iass-rei nforced po I yester
resins, 613-614
fiberglass-reinforcing material , 10, 606,
fabrication of MOS integrated circuits,
777-780
face-centered cubic structure, See FCC
crystal structure
face-centered unit cells, 69
face-centered-cubic structure, 51
fan bypass section of a gas-turbine
engine, 8
farad (F), 560
Faraday, Michaet, 687
Faraday’s equation of general
chemistry, 687^688
fatigue, 274
of metals, 254-260
testing, 261
fatigue crack growth, 274
correlation with stress and crack
length, 261-263
as a function of the stress-intensity
factor, 262-263
Tate of, 260-266
versus stress-in tensity factor range
plots, 263-264
fatigue failures, 254, 274
of ceramics, 576
fatigue life, 274
calculating, 264-266
determining, 254-256, 257
fatigue properties of carbon
(graphite)-epoxy composite
material, 614, 615
fatigue strength of a metal or alloy, 260
fatigue striations, 259-260
fatigue test, 254, 255-256
FCC (face-centered cubic) crystal
structure, 71, 72, 215-216,
217, 218
arrangement of atoms in, 75-76
compared to HCP> 90-92
of cubic soft ferrites, 864
—865
of ionic crystals, 536
metals, 218, 223
unit celt, 69, 108, 537
Fe, See lion
Fe
.
iC (iron carbide), 432
607
fiber-reinforced plastics, 15, 659
fiber-reinforced-plastic composite
materials, 612-621, 659
closed-moId processes for, 627-629
matrix materials for, 612-613
open-mold processes for, 622-626
fibers
in hardwood trees, 644
for reinforced-plastic composite
materials, 604, 606-612
fibrous composite materials, 10
Fick, Adolf Fugen, 158
Kick’s first law of diffusion, 158, 172, 174
kick’s second law of diffusion, 159-16 ] ,
172, 174kiiymcciiiiyr I I I I I I U kuiuirii
field-effect transistor 770
filament network, 818
filament winding, 625-626 , 660
filament x-ray tube, 98
fillers, 315, 367
fine aggregates, 634, 661
fine-grain structure for metals
and alloys, 126
finely dispersed precipitate, 473
firedays, 679
firing, 546, 593
fixed internat thermostats, 332
fiat dies, 191
fiat glass, 588
flaws in processed ceramics, 572
fiint , 555
float glass, 688, 689, 594
fluorescence, 802, 822
fluorescent lamp, 802-803
fluorine, covalent bonding in , 46
fluorite structure, 540
fiuoroplastics, 321-322
flux density, 831
fiux in steady-state diffusion, 157
fluxoids, 818, 823
folded-chain modet, 299
folded-chain stimcture, 300
forging, 181, 190-191 , 192, 229
forming
ceramic products, 547-552
methods for glasses, 588
forward bias, 786
forward-biased pn junction
diode, 763-765
fosterite, 563
fracture, 246
in ceramic polycrystals, 572
of metals, 246-254
of polymeric materials, 362-364
fracture toughness ( Kich 251-254
equation, 573-574
test, 252, 572-573
values for ceramic materials, 572-573
fractured surfaces of metals, 148, 149
free electrons, 50, 730, 732
free radicals, 284
free-radical chain polymerization of
ethylene, 284
freezing temperature, 120
Frenkel, Yakov Ilyich, 137
Frenkel imperfection, 137, 173
fretting corrosion, 708
fringed-micelle model , 299
full annealing, 238, 455
fully stabilized zirconia, 574
functionality of a monomer, 287, 366
fused alumina (aluminum oxide ), 577
fused silica glass, 584, 585
fuselage, structural failure of, 669-670
glass plate
absorption of light by, 798-799
reflectance, absorption, and
transmittance of light by, 799-800
reflection of light from a single surface
of, 798
glass preforms, 812
glass reference points, 594
glass transition temperature, 298-299,
365, 367, 581-582, 593
glasses, 580-581 , 592, 593
alkali metals in, 582-584
compositions of, 584-686
forming methods foT, 588
intermediate oxides in, 583
percent transmittance versus
wavelength, 800
structuie of, 582-584
viscous deformation of, 586-588
glass-fiber reinforcing mats, 606, 608
gIass-fiberoeinforced u nsaturated
polysters, 341
glass-forming oxides, 582-583, 593
glass-moditying oxides, 583, 584, 594
glassy copolymeT, 319
glassy polymeric materials, 362
globular eutectic structure, 401
goniometer, 102
Goodyear, Charles, 344
GP zones, 473-474. to also
precipitation zones
GP1 zones, 475-476, 477
GP2 zones, 476, 477, 478
graft copolymers, 290, 291
grain boundaries, 125, 141, 143-144,
172, 173
compared to domain walls, 843
comosion at or near, 684
effect on the strength of metals,
223—224, 225
grain boundary diffusion, 174
grain growth of a cold-worked metal
structure, 238
grain refiners, 125, 128
grain shape changes with plastic
deformation, 224-225
grain size of polycrystalline metals,
144
— 147
grain structure
formation of, 118, 119, 120
of industrial castings, 125-128
grain-gTain-boundary eIectrochem ica l
cells, 684-685
grain-oriented iron-silicon sheets,
849, 850
grains, 125, 173
grain-size numbers, 144, 173
Ga (gallium ), 168
GaAs (gallium arsenide), 782-784
lasers, 808-809
MHSFFTs, 783
gage length, 196
gain in MO$FTK.T devices, 772
gallium (Ga), 168
gallium arsenide (GaAs), to GaAs
galvanic cells, 674-686, 721
with acid or alkaline electrolytes,
678-679
concentration, 681-683
corrosion of single electrodes,
679-681
created by differences in composition,
structure, and stress, 683-686
with electrolytes that are not one molar,
677-678
galvanic corrosion, 696-697, 698
galvanic series, 694-695, 721
galvanically similar metals, 717
galvan tzed steel, 696
gas carburizing, 161-165
gas turbine blades, 128-129
gas-phase Gnipol process, 296-297
gate in an NMOS device, 771, 772
Ge (germanium), 748
gears general , manufacturing attack corrosion , 427 , 696 —428 , to atso
uniform corrosion
general reaction for the chain
polymerization of
ethylene, 282-284
generat-purpose phenolic motding
compounds, 336
generat-purpose thermoplastics,
309-322
Getb, 811
geometric arrangement of ions in an ionic
solid, 43
germanium (Ge), 748
Gibbs, Josiah Willard, 382
Gibbs phase rule, 382-383, 417
glass fibers, 604, 659
mechanical properties compared to
aramid and carbon, 611
production of, 606, 607
properties of, 606
for reinforcing plastic resins, 606,
607, 608
reinforcing thermoplastics, 357
glass intermediate oxides, 594
glass phase of ceramic products, 553kiiymcciiiiyr I I I I I I U kuiuirii
gram-mole, 22
graphite, 501, 542-543
graphitization of white irons, 505-506
graphitization treatment for PAN
fibers, 609
gray cast iron, 409, 500, 501, 502, 513
Greek alphabet, 882
green condition of living trees, 648
ground state, 26, 27, 60
growth rings in a softwood tree, 642
gutta-percha, 344
gymnosperms, softwoods
heat treatment
plain-carbon steels, 442-461
white irons, 505
heat-resistant phenolic molding
compounds, 336
heat-treatable wrought aluminum
alloys, 483^185
heavily cold-worked metal, 238-239, 240
Heisenberg, Werner Karl, 27
Heisenberg’s uncertainty principle, 27, 60
hemiceltulose, 645
heterogeneous nudeation, 124-125, 173
Hevea brasiliensis tree, 343
hexa (hexamethylenetetramine), adding to
phenolic resin, 335-336
hexagonal close-packed structure. See
HCP ciystal structure
hexagonal ferrites, 867-868
hexagonal system, 69, 70, 71
hexamethylenetetramine (hexa), adding to
phenolic resin, 335-336
high critical temperature
superconducting oxides, 820-822
high electrical insulating compounds, 336
high-alloy cast irons, 499
high high- -alumina alumina (refractories A^O.O insulator , 579 , 547, 548
high-carbon steels, 46 ) , 462
high-current, high-field superconductor
technology, 819
high-density polyethylene (HDPE-i),
311-312
chain structure of, 312
compared to low-density, 354
high-impact-strength phenolic molding
compounds, 336
high-purity copper, 131
High-Speed Civil Transport (HSCT), 2-4
high-strength hollow cylinders, 625-626
high-temperature reusable-surface
insulation ( HRS0 tile material,
580, 581
HRS1 (high-temperature
reusable-surface insulation ) tile
material, 580, 581
HSCT (High-Speed Civil Transport ), 2-4
Hume-Kothery, William, 383
Hume-Rotheiy solid solubility rules,
383-384
hybrid orbital, 61
hybridization, 4M7, 61
hydration reactions, 632^633, 661
hydrocarbons, 48
hydrogen atom, 2-4—28
hydrogen bond, 56, 61, 325-326
hydrogen embrittlement, 489, 492
hypereutecfic compositions, 395-396, 418
hypereutectoid steel, 435, 439-442, 512
hypoeutectic compositions, 395-396, 418
hypoeutectoid steel, 435, 437-439,
451-452, 512
hysteresis energy Iosses, 847-848, 870
hysteresis loops, 846, 847, 868, 870
of hard magnetic materials,
853-854, 856
for soft and hard magnetic material,
847, 848
half-cell standard electrode potentials,
672-673
hammer forging, 190
hand lay-up process, 622, 660
hard ferrites, 867-868, 871
hard glass, 587
hard magnetic materials, 828, 847,
853-862, 868, 871
properties of, 853-856
selected magnetic properties of, 856
hard magnetization directions, 842, 843
halienability, 465-470, 513
hardening of portland cement, 632-633
hardness, 208-210, 230
versus aging time curves, 478-479
compared to hardenability of
steel, 465
of iron-carbon martensites, 458
hardness tests, 208-210
hard-sphere unit cell
for the RCC crystal structure, 73
for the HX crystal structure, 75
for the HCP crystal structure, 76
hardwood trees, 661
hardwoods (angiosperms), 641, 644, 659
HCP (hexagonal dose-packed) crystal
structure, 71 , 73
arrangement of atoms in, 76-77
basal plane, 88
basal slip planes, 211
compared to PCC, 90-92
crystal planes in unit cells, 87-88
direction indices in unit
cells, 88-89
of magnesium, 506, 507
metals, 222, 247
obtaining the volume of unit cells, 77
slip planes and directions for, 215
unit cells, 108
HDPEr high-density polyethylene
heartwood, 641, 659, 661
heat of fusion, 120
heat stabilizers adding to PVC, 314, 315
III-V semiconductor compounds, 781
IIS (International Space Station), 1-2, 4
11-VI semiconductor compounds, 781
imide linkage in polyetherimide, 332
immobile ions, 756
impact strengths
general-purpose plastic materials, 310
selected engineering
thermoplastics, 323
selected thermoset plastics, 334, 335
impact styrene, copolymers of, 317
impact testing, 249-251
imperfections and detects in crystal
lattices, 136-149
impurity atoms, 686, 751-752
impurity diffusion, ] 6(M 68
incident angle, 794, 795
incoherent precipitate, 476, 478
incoherent radiation, 804
incongruently melting compound, 412
indenters, 208
index of refraction, 794-796, 822
indices
for crystal planes in HCP unit
cells, 87-88
for cubic crystal planes, 108
of a family or form, 79
indirect extrusion, 189, 190
induced channel in an NMOS device, 773
induction, 83 ]
hole, 785
motion of, 745, 746, 747-748
positively charged, 745
homogeneous nucleation, 1 IS, 120, 121 ,
172-173
homogenization , 39 ) , 393
homogenized aluminum ingots, 481
homojunction GaAS laser, SOS
homopolymers, 290, 316, 366
honeycomb sandwich structures, 651
Hooke’s law, 202
hot forming, 547
hot pressing, 550
hot rolling, 184, 186, 187, 48 )
hot working, 229kiiymcciiiiyr I I I I I I U kuiuirii
industrial days, 554, 555
industrial ferrites, 867, See also ferrites
industrial polymerization, 294-297 ,
See also polymerization
industrial refractories, 577, 5^ also
refractory (ceramic) material
InGaAs/lnP PIN photodiode, 813
JnGaAsP laser transmitter 809
InGAsP double heterojunction laser diode
transmitter, 813
inhibitors, adding to decrease
corrosion, 718
injection molding, 303-304, 305, 367
producing tiber-neinforced
plastics, 627
for thermosetting compounds, 309
inner bark layer 640, 641
inorganic coatings, 716
insulator blank in isostatic pressing
mold, 549
insulators, energy-band model
for 743-744
ion arrangements in ionic solids, 42-43
ion concentration cells, 681-683
ion diffusion, 712, 713-714
ion implantation technique, 777
ion pair
interionic energies for, 41-42
interionic forces for, 38-41
net force between an, 39
ion-concentration cell, 721
ionic bonding, 37-38, 781-782
ionic bonds, 37, 59, 61
ionic crystals
bonding energies of, 43-44
dense packing of ions in, 527-529
electrical neutrality of, 43
ion arrangements in, 42-43
point defects in, 137
radii of selected elements, 42
radii of the elements, 879-880
ioutcally bonded ceramics, deformation
of, 571
ionic-covalent mixed bonding, 57-58
ionization energy, 27, 60
ionization process, 37
ionized impurity concentration, 758-759
ions, packing together in a solid, 43
iridium-osmium phase diagram, 421
a iron, 380
y iron , 380, 444, 445
iron (Fe)
altotropic crystalline forms of, 96-97
Curie temperature of, 838
ferromagnetic properties of, 834-835
production of, 428, 429
rusting of , 670, 680
iron alloys, ferrous alloys
o iron BCC structure, 445
iron carbide (Fe-jC), 432 r See also FejC
y iron F’CC crystal structure, 444, 445
iron-carbon binarv aliovs, 43K See also
w w
carbon steels
iion-carbon martensites, hardness of, 458
iron-chromium (Fe-Cr) phase
diagram, 494
i ron-ch rom i u m-cobait (he-Cr-Cu)
magnetic alloys, 860-862, 871
iron-chromium-nickel system, 416
iron-iron carbide (be-Fe^C) phase
iron-nickel diagram(be , 431 -Nil—phase 432, 434 diagram , 465 ,
402, 403
iron-silicon alloys, 849, 850
iron-silicon magnetic alloys, 870
island silicate structures, 543
—544
isomorphous binary alloy system, 384
isomorphous phase diagrams, 417
isomorphous systems, 383, 417
isostatic pressing, 548-550, 592
isostrain conditions, 617-619
isostrain loading, 621
isostress conditions, 619-621
isostress loading, 621
isotactic isomer, 367
isotactic polypropylene, 301
isotactic stereoisomer, 300, 302
isothermal decomposition of austenite,
447-452
isothermal section* 414
isothermal transformation (IT)
diagmm, 513
for a eutectoid plain-carbon
steel, 447
—451
for a hypoeutectoid steel, 45 }—452
for noneutectoid piain-carbon
steel, 451-452
isothermal transformations, 448-449
isotropic behavior, 197
£ zod impact test, 310, 311
intensity
of luminescence, 804
of magnetization, 831
interatomic distance, 45, 72
intergranular brittle fracture, 248
intergranular corrosion, 497,
702-704, 721
intergranular fractured surface, 148, 149
interionic energies, 41-42
mterionic forces, 38-41
intermediate compounds, 412-413
intermediate metastable precipitate, 474
intermediate oxides in glasses, 583
intermediate phases, 409-4 ] 1 , 418
intermetallic compounds, 815
International Space Station (ISS), 1-2, 4
interplanar spacing in cubic crystal
structures, 85
interstices, 134
interstitiat diffusion, 174
interstitial mechanism, 154, 156—157, 172
interstitial sites in crystal lattices,
535-537
interstitial solid solutions, 134
—136, 173
interstitiatcy, 136, 137, 173
intrinsic semiconductors, 744-751,
756-758, 785
effect of temperature on, 749-751
energy-band diagram for, 746, 747
invariant point , 382
invariant reactions, 395, 407, 409,
417, 418
inverse spinel ferrites, 865-867
inverse spinel structure, 864, 865,
869, 871
Jominy hardenability test , 465, 513
K electrons, 98-99
kaolinite, 545, 546
Kevlar, 610, 616, 660
keyed steel shaft, fatigue failure of,
254, 255
Kio See fracture toughness
Kirkendall effect, 156
Knoop hardness test, 209, 210
lake asphalt, 639
lamella, 300
lamellar continuous-fiber-plastic matrix
composite, 617-621
lamellar eutectic structures, 403, 402
lamellar pearlite, 436, 440
laminate, 660
laminate ply (lamina), 660
laminated (stacked-sheet) structure, 849
lamination of carbon-fiber-epoxy
material, 614, 615
large-scale integrated (1 -51)
microelectronic circuits, 769
Larsen-Miller (LM.) parameter
equation, 271-273
lasers, 804-806, 822
applications for, 808
types of, 806-809
latewood ring, 642
latex, 343
lath mariensites, 442* 443, 444* 457kiiymcciiiiyr I I I I I I U kuiuirii
lattice constants
RCC crystal structure metals, 72
FCC crystal structure metals, 72
HCP crystal structure metals, 73
unit cell, 68, 69
lattice energies of ionic solids, 43-44
lattice planes within a crystal
structure, 82
lattice point 108
lattice vectors, 68-69
LL3PK flow-density polyethylene),
311-312
leaching, 708-709, 721
lead glass, 585-586
lead-tin (Pb-Sn) equilibrium phase
diagrams, 39M00
lead-tin alloys, 394^00
leakage current, 763, 764
lehr, 588
lever rule, 386-390, 418
Lexan, 327, 333
light
loss factor, 559, 562
low-alloy steels, 461-470, 471, 511
low-density polyethylene (LDPE),
311-312
lower bainite, 450
lubricants, adding to PVC, 314, 315
lubricating properties of graphite, 542
Lucite, 320
lumen, 644, 662
luminescence, 802, 804, 822
magnetic-field exclusion in the
superconducting state, 816, 817
magnetism
in rare earth alloys, 858-859
types of, 833-838
magnetite fh’eAO, 565-566, 838
magnetization, 831, 869
magnetocrystal Iiue anJsotropy
energy, 842-843, 870
magnetostatic energy, 841-842, 870
magnetostriction, 844, 845, 870
magnetostrict!ve energy, 844—846, 870
majority carriers, 755, 786
majority-carrier devices, 773
malleable cast irons, 500, 503-506, 514
manganese (Mu)
as an alloying element in alloy
steel, 463
antiferromagnetism exhibited by, 837
in most plain-carbon steels, 46 )
as the principal alloying element of
3xxx aluminum alloys, 483
manganese-zinc-ferrite, 867
martempering (marquenchiug),
458-459, 513
martensite finish temperature, 442
martensite structure of martempered
steel, 458
martensites, 442-446, 457, 512
martensitic malleable iron, 506
martensitic stainless steels, 495, 496, 497
Mass Action law, 755
mass continuous polymerization
processes, 296
material replacement changes, 11
materials
classes of , 6
competition among, 11—13
definition of, 2, 16
future trends in usage, 13-16
knowledge spectrum, 5
optical properties of , 792
production and processing of, 3
search for new, 4
—5
selecting corrosion-resistant, 714—715
types of, 6-11
materials engineering, 5-6, 16
materials science, 5-6, 16
matrix materials for fibeweinforcedplastic composite materials,
612^613
maximum elastic deformation, 202
maximum energy product, 854—855
estimating, 856
measuring progress in
permanent-magnet quality, 860
maximum magnetic permeability, 832
Mach ] , 4
macroscopic form of Ohm’s law, 735
macroscopic galvanic cells, 674-676
maglev trains, 827-828
magnesium (Mg)
in 5xxx aluminum alloys, 483
in 6xxx aluminum alloys, 483, 485
in 7xxx aluminum alloys, 485
energy-band diagram for, 743
magnesium alloys, 506-508
classification of, 506
mechanical properties and
applications of, 509
magnesium-nickel (Mg-Nt ) phase
diagram, 412
magnetic annealing, 853, 854, 871
magnetic domains, 835, 839, 868, 870
magnetic exchange interaction
energy, 836
magnetic fields, 829-830, 869
applying to ferromagnetic
materials, 839, 840
magnetic induction, 830^831, 869
magnetic levitation of vehicles, 820
magnetic materials, 868
eddy -current losses in, 867
reducing core tosses, 849
types of, 828
magnetic moments
in inverse spinel ferrites, 865-867
of single unpaired atomic electrons,
835-837
magnetic permeability, 831-833, 869
of nickel-iron alloys, 851-853
magnetic properties of superconductors,
815-817
magnetic quantum number 29, 59
magnetic saturation, 866
magnetic susceptibility, 833, 834, 869
magnetic units, 831
magnetically hard ferrites, 867-868
magnetically levitated (magtev)
trains, 827-828
magnetically soft ferrites, 864-867
magnetic-core memories, 867
absorption, transmission, and
reflection of , 797-801
attenuation, 822
electromagnetic spectrum
and, 792-794
loss in optical fibers, 809-810
refraction of, 794
—797
light refraction, 796-797
lignin, 640, 645, 661
line imperfections,^ dislocations
linear absorption coefficient, 798
linear density, 95, 108
linear polymers, branching of, 288
linear rate law for oxidation, 712-713
linear unsaturated polyester, 340
It near- low-density polyethylene
(LLDPK), 312
liquation, 391 , 393, 417
liquid glass phase, 554
liquid metals, 118-125
liquidus, 384, 417
LLDPE (linear-low-density
polyethylene ), 312
LrMr parameter, 271-273
local anodes, 672, 679-680
local cathodes, 672, 679-680
local oxidation process, 780
logarithmic rate law for oxidation,
712, 713
long glass, 587
longitudinal axes (I.), 642, 643
longitudinal parenchyma, 644
longitudinal tracheids, 644
loose network in simple silica glass,
582, 583kiiymcciiiiyr I I I I I I U kuiuirii
metallic glasses, 849-851
production of, 85 l, 852
properties of, 851, 852
metallic impurities in a metal or alloy* 686
metallic solid solutions, 13 3 —136
metallic-covalent mixed bonding, 58-59
metallic-ionic mixed bonding, 59
metallocene catalysts 301
metal-matrix composite materials
( MMCs), 652-655
metals, 6-8, 16
absorption and reflection of light
by, 797-798
allotnopic crystalline forms of some, 96
bonding energies and melting points of
fourth period, 52
casting of, 182-184
corrosion control of, 714-715
corrosion of , 670
creep of, 266-268
critical superconducting
temperatures foT, 815
deformation of, 193-194
ductility of, 204
electrical conduction in, 730, 732-740,
metal-semiconductor field-effect
transistors (MESKETs), 783
methane, 48, 49
methyl ethyl ketone ( IVIEK.)
peroxide, 340
methylene cross-linkages, 335
Mg. See magnesium
MgAl204. Sue spine) Crystal structure
microcracks, 248
microelectronic integrated circuits, 730,
731, 773-781
microelectronic planar bipolar
transistors, 769-770, 771
microelectronic planar field-effect
transistors, 770-773
microelectronics, 769-781
microfarad, 560
microfibrils, 646, 647, 662
microprocessor, 731, 761
microscopes
optical microscope, 143, 144, 145, 146
SKM (scanning electron microscope),
147-149
STM (scanning tunneling microscope),
67-68
TKM (transmission electron
microscope), 139-141, 142
microscopic form of Ohm’s law, 735
microscopic galvanic cells
comosion of single electrodes, 679-681
existing in metals or alloys, 683-686
Miller indices
for crystallographic planes in cubic unit
cells, 82-87
of diffracting planes for BCC and ECC
lattices, 104-105
Miller notation system, 82
Mitler, Wiliiam Hallowes, 82
Miller-Bravais hexagonal crystal
structure direction indices, 89
Millerdfiravais indices, 87
minimum creep rate, 268
minimum energy between a pair of
oppositely charged ions, 41
minority carriers, 755, 786
mixed bonding, 57-59, 60
mixed dislocations, 138, 139, 140, 173
mixed state fora superconductor, 817
MMCs (metal-matrix composites),
652-655
Mn , See manganese
mobile charge carriers, 756
mobilities of electrons and holes,
747-748
mode I testing, 252
modified chemical vapor deposition
(MCVD) process, 810-813
maximum-use temperature
selected engineering
thermoplastics, 323
selected thermoset plastics, 334, 335
thermoplastic materials, 311
MCVD process for producing optical
glass fibers, 810-813
mean Stress, 257
mechanical failure, 572
mechanical properties
AISI-SAE type plain-carbon
steels, 461, 462
aluminum alloys, 484
carbon, aramid, and glass
fibers, 610-612
cast irons, 500
ceramics, 570-571
copper alloys, 490-491
low-alloy steels, 470, 471
magnesium, titanium and nickel
alloys, 509
metal-matrix composite materials, 653
metals and alloys, 201-205
SiC whisker reinforced ceramic
matrix composites, 656
mechanical strength of wood, 648-650
medium-carbon steels, 461, 462
Meissner effect, 816, 817, 822
melamine-formaldehyde, 341-342
melting compounds, 412
melting points
fourth-period metals, 53
ionic solids, 43-44
noble gases, 56
simple ceramic compounds, 526
melt-processible thermoplastics, 324
Merlon, 327
mers, 366
MESEETs (metal-semiconductor
field-effect transistors), 783
metal alloys, 7. See also alloys
metal billet in direct extrusion, 190
metal oxide semiconducting
compounds, 565
metal oxide semiconductor field-effect
transistor (MOSEKT), 764, 771
metal single crystals
critical resolved sheer stress,
216, 218, 219
plastic deformation of, 210-223
metallic bonding, 50-54, 59
It- r
metallic bonds, 37, 61, 730
metallic coatings, 716
metallic crystal structures, 71
metallic elements, 7
metallic glass material, 828
metallic glass ribbon, 828
784
electrical resistivity of, 737-740
electrochemical corrosion of, 671-674
electrode half-cell potentials
for, 672-674
electronic structure-chemical
property relationships, 36
energy-band mode] for, 741—743
evaluating the strength of, 198-201
examining fractured surfaces
of, 148, 149
extrusion of , 188-190
factors affecting the recrystall Nation
process in, 242
fatigue of , 254-260
fracture of, 246-254
future trends in usage, 13
hot and cold rolling of, 184-188
hot and cold working of , 229
identifying grain boundaries, 143-144,
145, 146
mechanical properties of, 201-205
oxidation of, 709-714
oxidation rate of , 711-714
passivation of, 693-694
processing of , 182-193
solidification of, 118-128
solubsolution strengthening
of, 227-229
strengthening by cold working,
226-227
stress and strain in, 193-198kiiymcciiiiyr I I I I I I U kuiuirii
modulus of elasticity, 202, 230, 619
moisture content of wood, 646, 648
mole, 22
molecular mass, 781
molecular weight for thermoplastics,
286^287
molybdenum
as an alloying element in alloy
steel, 464
x-ray spectrum emitted, 98, 99
Monel 400 alloy, 509, 510
mouodmic structure forzircoma,
574, 575
monodinic system, 69, 70, 71
monomers, 282, 287, 366
monotectic reaction, 407, 409, 418
MOS integrated circuits, 777-780
MOSF’KT (metal oxide semiconductor
field-effect transistor), 764, 771
mutlite, 411
multiatom metal crystals, 51
multidirectional laminate, 660
muttidirectional laminate plies, 615
multielectron atoms, 29-32
multimode optical fiber, 810, 81 I
multiphase alloys, higher corrosion rates
for, 685
multiple-impression dies, 190, 192
multiple-phase electrochemical cells,
685-686
Muntz metal, 490, 492
MX semiconducting compounds, 781
neodymium-iron-boron magnetic
alloys, 859-860, 861
neod ymiu m-yttrium-al um inum-garnet
( Nd:YAG ) laser, 807, 808
neoprene. See polychloroprene
Nernst equation, 677-678
Nernst, Walter Hermann, 677
net energy between a pair of oppositely
charged ions, 41-42
net magnetic moments in inverse spinel
ferrites, 865-867
network modifiers, 583, 584
network polymerization, 293, 294
neutrons, 20
nickel ( Ni)
as an alloying element in alloy
steel, 463
Curie temperature of, 838
ferromagnetic properties of, 834-835
nickel alloys, 509, 510-511
nickel-base superatloys, 12, 510-511
nickel-iron alloys ( Ni-Fe), 851-853
nickel-iron magnetic alloys, 870
nickel-vanadium (NS-V ) phase
diagram, 424
nickel-zine-fenite, 867
nitriding, 260
Nitrile or Buna N* (butadieneacrylonitrile), 346
nitrite rubbers, 347
nitrogen ( N)
covalent bonding in, 46
in the main chains of
thermoplastics, 356
nitrogen methanol carburizing,
161-163
NMOS, 771
field-effect transistor, 771-772, 773
integrated circuits, 778
noble gases, 32, 34
melting and boiling points of , 56
noble-gas atoms, election charge cloud
distribution in, 55
nodular or spherulitic graphite cast iron.
See ductile cast iron
non -close-packed plane, 216
noncrystalline linear polymers, 287—288
noncrystalline structure of metallic
glasses, 849-850
noncrystalline thermoplastics
glass transition temperature for, 298
solidification of, 297-298
nondirectional bonding, 51 , 59
nondirectional ionic bond, 43
nonequilibrium solidification of alloys,
390-393
nonequilibrium solidus, 391
noneutectoid plain-carbon steels,
isothermal transformation
diagrams for, 451-452
nonferrous alloys, 7, 17, 428, 511
nonferrous metals, 7, 17
non-heat treatable wrought aluminum
alloys, 482-483
nonlameliar eutectoid structure, 450
nonmetallic elements, 7
nonmetal lie materials, corrosion control
and, 715-716
non-steady-state conditions, 174
non-steady-state diffusion, 159-161
normal (w-) butane, structural formula for,
48, 49
norma) spinel ferrites, ion arrangements
and net magnetic moments, 866
normal spinel structure, 871, See aiso
spinel crystal structure
normal state for a superconductor, 817
normalizing, 455—456
Noryl, 328
notched impact strength, 310
novolac resin, cross-linking (curing)
of, 336
npn planar bipolar transistor, 769,
770, 771
npn-type bipolar junction transistor,
767, 768
NTC thermistor 565
n-type (negative type) semiconductors,
751-752, 753, 760, 785
majority- and minority-carrier
concentrations, 755
n-type material, 762
n-type MOSF’KT, See NMOS
nuclear magnetic imaging systems, 820
nucleating agent, wetting by liquid
metal, 124
nucleatiou, 118, 119
heterogeneous, 124-125
homogeneous, 118, 120
reverse magnetic domain, 859, 861
nucleation sites, grain structure and, 125
nuclei, 172
nylons (polyamides), 324-327
Nr See nitrogen
+mT
NaCl (sodium chloride)
calculating the density of, 533
crystal structure, 531-535
ion pair, 37-38
radius ratio for, 529
NaCMype structure, 571
nanoscale heterostructures, 730
Natta, Giulio, 301
natural aging, 473, See also aging
natural clay, 556
natural rubber, 343
—346
Nd:YAG laser, 807, 808
necking, 203, 204
negative edge dislocation, 138
negative exchange energies, 836
negative ions. See anions
negative magnetic effect, 833-834
negative oxidation number, 34, 35
negative polarity, assigned to the
annode, 676
negative temperature coefficient
thermistor, 565
O, See oxygen
octahedral coordination of the NaCl
structure, 531, 532
octahedral interstitial sites, 535, 536
cubic soft ferrites, 864
—865
F’CC crystal structures, 592
Ohm’s law, 732—735
oil. See adtated oil
one-dimension defects. See dislocationskiiymcciiiiyr I I I I I I U kuiuirii
open-die forging, 190, 191
open-mold processes for
fiber-reinforced-plastic compos ite
materials, 622-626
optical communication, 822
optical fibers, 809-814
fabrication of, 810-813
light loss in, 809-810
optical microscope, 143, 144, 145, 146
optical plastics, refractive indices for, 796
optical properties of materials, 792
optical waveguide, 822
optical-fiber communication systems,
809, 813-814
orbital letters for electron
configurations, 30
orbitals, 19-20, 29, 60
3-D image of, 20
order of writing for electron
configurations, 32
onderofthe diffraction, 101
organic binders, removing from ceramic
pans, 562
organic coatings, 716^717
organic peroxides, decomposing into free
radicals, 284-285
orthorhombic cell, 300
orthorhombic system, 69, 70, 71
outer bark layer, 640, 641
outer clad glass, SlO
oxidation
catastrophic, 713
mechanisms of, 711 , 712
of metals, 709-714
process, 780
oxidation numbers for the
elements, 34, 35
oxidation rates (kinetics), 711-714
oxidation-reduction reactions, 671-672
oxide films, protective, 709-711
oxide-film theory, 693
oxygen (0)
availability as a factor in galvanic
corrosion, 697
covalent bonding in, 46
removing to reduce corrosion, 718
oxygen lance in the basic-oxygen
process, 429
oxygen-concentration cells, 683, 684, 721
oxygen-free high-conductivity (OFHC)
copper, 492-493
parallel-plate capacitor, 559-561
paramagnetism, 834, 869
parenchyma, 644, 662
parison, 305-306
partial anneal, 238
partially stabilized zinconia ( PS/0, 574,
575, 576
particulate composite materials, 10
particulate reinforced MMCs, 653
partly crystalline thermoplastics
solidification of , 297, 299
structure of, 299-300
pascals, converting psi to, 195
passivation, 693-694, 721
passive metal, polarization curve of a, 694
Pauli exclusion principle, 29, 59, 60, 741
Pauli, Wolfgang, 29
Pauling, I dnus Carl, 58
PR, ratio, 709-711, 721
Pb-Sn alloy, slow cooling of, 395, 396
Pb-Sn phase diagrams, 394-400
PRT (polybutylene terephthalate),
329-330
PCTFH (polychJorotrifluoroethylene), 322
PR See polyethylene
pearlite, 436, 438, 512
pearlitic gray cast iron, 685
pearlitic malleable iron, 505
pendant atomic groups, 354-355
penetration action of corrosion, 717
percentage iconic character of
bonding, 58
periodic table of the elements, 20-21
peritectic reaction, 401-406, 409, 418,
434-435
peritectoid reactions, 409
permanent mold casting, 183, 184,
185, 486-487
permeability of free space, 831, 832
perovskite (CaTiCRl crystal structure,
541-542
perovskite cubic unit cells in YBasCuiOy,
copper-silver (Cu-Ag), 420
copper-zinc (Cu-Zn), 409—411
with intermediate phases, 409—411
iridium-osmium (Jr-Os), 421
iron (Pe), 380, 381
iron-chromium (Fe-Cr), 494
iron-iron carbide (F’e-Ke^C), 431-432,
434
—435, 465
iron-nickel (Fe-Ni), 402, 403
isomorphous, 417
lead-tin (Pb-Sn ), 394^00
magnesium-nickel ( Mg-Ni ), 4 l 2
nickel-vanadium ( Ni-V), 424
number of components of , 417
of pure substances, 380-382
silver-platinum ( Ag-Pt ), 403-405
titanium-aluminum (Ti-Al), 425
titanium-nickel (Ti-Ni), 412-413
ZrO2-Mg0, 574, 575
phase rule, condensed, 383
phenolic resins, 335
phenolic thermosetting materials,
335-337
phenylene oxide-based resins, 328
phenylene rings, 328
introducing into the main polymer
chain, 356-357
in PRT, 330
of polysulfone, 330
Phillips process, 312
phonons, 737
phosphor bronzes, 493
phosphorescence, 802, 822
phosphors, 802, 803
phosphorus impurity atom, 752
photolithography, 773-774, 776
photoluminescence, 802-803
photonic crystal fiber, 791-792
photons, 24, 60, 792, 794, 801, 805
photoresist, 773-774, 776
phthalate esters, used as plasticizers
for PVC, 314
picofarad, 560
piezoelectric compression
accelerometer, 569
piezoelectric effect, 567-569, 593
piezoelectrics, 559, 569
pig iron, 428, 429
pigments, adding to PVC, 315
14pigtaiT selector, 129
Pilling-Bedworth (HR,) ratio,
709-711, 721
PIN diode photodetector, 809
PIN photodiode, 813
pith, 641
pitting corrosion, 697-700, 721
plain-carbon steels. See carbon steels
820
persistent slipbands, damage along, 259
PHT ( polyethylene terephthalate),
329-330
phase, 380, 417
phase boundary, 380
phase diagrams, 380, 416
Al30rSi02 system, 411
aluminum-nickel (Al-Ni), 423
binary eutectic copper-silver, 420
binary peritectic iridium-osmium, 421
characteristics of invariant reactions,
407, 408
copper-lead (Cu-Pb), 407, 408
copper-nickel (Cu-Ni), 384, 385
PAN precursor fibers, 608
para positions of the phenylene ring, 330
parabolic rate law for oxidation, 712,
713-714kiiymcciiiiyr I I I I I I U kuiuirii
planar density, 93-94, 108
planar pn junction, 762
planar process, 755
planar-type bipolar transistor,
769-770, 771
Planck, Max Hrnst, 24
Planck ‘s equation, 24, 69
planes of a family or form, S3
plastic deformation , 193-194, 362, 363
deforming thermoplastics by, 362
dislocation arrangement changes
with, 226
effect on grain shape and dislocation
arrangements, 224-226
of metal single crystals, 210-223
of polycrystal line metals, 223-227
plastic materials
deformation and strengthening
of, 361-368
effect of temperature on the strength of,
367-368
processing of, 302-309
plastic resins
glass fibers for reinforcing, 606,
607, 608
loading into hot molds, 306
plastic strain, 202, 848
plastically deformed metals, 238-246
plasticized polyvinyl chloride, 316
plasticizers, 367
adding to PVC 314, 316
plastics, 280
advantages for engineering
designs, 280^281
classes of , 280
transparency of, 800^801
plate, 182
plate glass, 688
plate martensite, 442-443, 444
Plexiglas, 320
plies, 623
Plunkett, RJ., 321
PMMA. See polymethyl methacrylate
(PMMA)
pn junction, 762-766, 786
pn junction diodes, 762
applications for, 766-767
at equilibrium, 762-763
forward-biased, 763-766
reverse-biased, 763, 764
point defects, 136^137
Poisson s ratio, 197, 198
polarization, 693, 691
polarization curve of a passive
metal, 694
polyacrylonitrile, 317-318
polyamides (nylons), 324-327
polybutylene terephthalate ( PRT),
329-330
polycarbonates, 327
polychloroprene (neoprene), 346,
347-348
polychloroprene elastomers, 348-361
polychlorotrifluoroethylene (PCTKK), 322
polycrystatline metals, 126
grain size of, 144-147
plastic deformation of, 223-227
polycrystatline structure, 173
polydimethyl siloxane* 360
polyester resins, 612, 613
polyesters, 669
polyetherimide, 32-33
polyethylene (PH)’ 282, 311-313
crystallization of, 300
tensile stress-strain curves for
low-density and high-density, 364
types of, 311
polyethylene terephthalate (PPT),
329-330
polygonization , 239
polyisoprene rubber, adding
sulfur to, 360
polymer alloys, 333
polymer chains
average molecular mass of, 353
of natural rubber, 343-344
spontaneous growth in chain
polymerization, 285
polymeric (plastic) materials, 8, 17
brittle fracture of, 362-364
containing phenylene rings, 367
creep and fracture of, 358-364
ductile fracture of, 364
fracture of, 362-364
future trends in usane, 13-14
limited use for corrosion
Control, 716-716
stress relaxation of, 360-361
polymeric solid material, 280
polymerization, 366
industrial methods, 294-297
reactions, 282-294
polymers, 280, 282, 287-288
polymethyl methacrylate (PMMA),
320-321
effect of temperature on, 357-358
tensile stress versus strain curves
for, 352
polymorphism, 107, 109, See also
allotrophy
polyolefin polymerization, metallocene
catalysts and, 301
polyoxy methylene (acetal ), 356, See also
acetals
polyphenylene sulfide (PP$), 331-332
polypropylene, 300, 302, 316
polystyrene, 316-317, 368-359
polysulfone, 330-331
polytetrafluoroethytene (PTFB), 321
polyvinyl chloride (PVC), 314-315
polyvinyl chloride-polyvinyl acetate
Copolymer, 291-293
population inversion, 806, 807, 822
porcelain coating, 716
pores in brittle ceramic materials,
572, 573
Portland cement, 629, 630-633, 661
chemical composition of, 631
hardening of, 632-633
production of* 630
types of, 631-632
positive edge dislocation, 138
positive exchange energies, 836
positive ions, fee’ cations
positive oxidation number, 34
positive polaTity, assigned at the
cathode, 676
positive-ion cores, 61, 730
of the Si or Ge atoms, 744
—745
of sotid metals, 50
posttensioned (prestressed)
concrete, 638-639
potash (potassium ) feldspar, 565
potentiostat, 719
powder method of x-ray diffraction
analysis* 101-103
PPS (polyphenylene sulfide), 331-332
precipitation clustering, 457
precipitation hardening, 379, 496
precipitation strengthening (hardening)
of an AU4^ Cu alloy, 475—478
of a generalized binary aluminum alloy,
472-473
precipitation zones, 473-474 r See also GP
zones
precursors* 608
predeposit diffusion step, 775
preforms* 812
prepreg, 660
prepreg carbon-fiber-epoxy material*
623, 624
press forging* 190
pressing
ceramic particulate raw materials, 548
glass* 588
pressure-temperature (PT) phase
diagram of water, 380
pressure-temperature equilibrium phase
diagrams, 380
pretensioned (prestressed ) concrete* 638*
639, 661kiiymcciiiiyr I I I I I I U kuiuirii
pHrncjry alpha, 396
primary atomic bonds, 37, 59
primary fabrication of wrought
aluminum alloys, 481
primary phase, 418
primary recrystaliization, 240—241
primary wall, 644-645, 647
y pri me, 5 ] 0
principal atomic shells, maximum
number of electi ons for, 29-30
principal crystal structures of elemental
metals, 71
principal quantum number, 25, 26,
28, 59
prism planes of HCP unit cel Is, 88
pmcess annealing, 455
proeutectic o’, 396
pToeutectic phase, 418
proeutectoid cementite (FeiC), 439,
440, 512
proeutectoid ferrite, 437, 438
proeutectoid a ferrite, 512
propagation step in chain
polymeration, 285
Rroperzi method for casting, 126
protective oxide films, 709—711
protons, 20
psi , converting to pascals, 195
R$Z (partially stabilized zirconia), 574,
575, 576
PTKE (polytetrafluoroethylene), 321
p-type semiconductors, 752-754, 786
majority- and minority-carrier
concentrations, 755
saturation range, 760
pultrusion process, 629, 661
pumping a laser, 805
pure substances, phase diagrams
of, 380-382
PVC (polyvinyl chloride), 314-315
PYC homopolymer, 314
PW 4000 aircraft turbine engine, 7, 8
Pyrex glass, 585
P7T ceramics, 569
quenching mediums, water compared to
agitated oil, 468, 470
repulsive force between an ion pair, 39
resolved shear stress, 220-221
retarding energy for the formation of solid
particles, 121
reverse bias, 786
reverse magnetic domain , nucleation of,
859, 861
reve^e-biased pn junction diode,
763, 764
rhombohedral system, 69, 70, 71
rigid polyvinyl chloride, 315
ring silicate structure, 544
ring-porous hardwood, 644, 645
‘‘ripple in the rug'” analogy, 2 ]3, 2 ]4
road paving, asphalt mixes designated for,
639-640
rock asphalt, 639
Rockwell C hardness measurements,
465-466
Rockwell hardness test, 209, 210
rodlike eutectic structure, 401
rotating-beam test, 254, 255-256
rotation of domain magnetization,
839, 840
rovings, 606, 607, 660
RrR , Moore reversed -bending fatigue
machine, 257
RrR , Moore reversed-bending fatigue test,
254, 255-256
rubber fe also elastomer
adding to polystyrene, 317
content of ABS plastics, 319
vulcanization process for, 344
rubbery particles in a copolymer of
styrene-acrylonitrile, 320
ruby laser 805-807. atno lasers
rule of mixtures for binary
composites, 618
rusting of iron, 670, 680
Ryton, 331
radial axis, 642, 643
radiation, stimulated emission
of, 804-806
radius ratios, 527-529, 592
random copolymers, 290
range of stress, 257
rapid quenching, formation of Pe-C
martensite by, 442
rare earth alloys, 858-859, 860, 868
rare earth magnetic alloys, 871
rate laws for oxidation, 712
rate processes in solids, 149-154
raw materials, converting into steel
product forms, 431, 432, 433
ray (transverse) parenchyma, 644
reciprocaling-screw injection-moId ing
machine, 303-304, 305
recoveiy of cold-worked metals, 238,
239-240, 241 , 242, 274
recrystatlization of cold -worked metals,
238, 240-246, 274
rectification, 765
rectifier diodes, 765-766, 786
reduction reaction, 672
refining operation for aluminum,
48(M8l
reflection of light, 797
reflectivity, 798
refraction of light , 794—797
refractive indices foT selected materials,
795-796
refractory (ceramic ) material , 411,
577, 593
reinforced concrete, 638, 661
reinforced plastics
carbon fibers for, 606, 608-609
composite materials, 610-612
reinforcements, increasing the strength of
thermoplastics, 357
reinforcing plastic resins, aramid
fibers for, 610
relative atomic mass, 22
relative atomic sizes, 30, 31
relative permeability, 832, 869
relative-size factor in solid -solution
strengthening, 228
relaxation time, 360, 361, 736
relaxation time constant, 804
remanent induction, 847, 868, 870
remanent magnetic induction of hard
magnetic materials, 853-854, 856
remanent magnetization, 870
repeated stress cycle, 257, 258
S (high-strength) glass, 606, 660
SAN resins, 318
sand casting, 486
sandwich structures, 650-652
sapwood, 641, 659, 661
saturation induction, 847, 852, 868, 870
saturation magnetization, 866
saturation range, 760
SBR (styrene-butadiene rubber), 346, 347
scalping, 481
scanning electron microscope (SKM),
147-149
scanning tunneling microscope (STM),
67-68
scavenger-type inhibitors, 718
quantized energy of elections, 59
quantum corrals, 67
quantum mechanics, 24, 60
quantum numbers, 28-29, 59, 60
quartz, 545, 555
quenching
of an A1-4% Cu alloy, 475
for a plain-carbon steel 456
in the precipitation-strengthening
process, 473
rapid , 442kiiymcciiiiyr I I I I I I U kuiuirii
SCC (stresscorrosion cracking ) ,
704-707
Schmid +s Law, 218-221
Schottky imperfection, 137, 173
screw dislocation, 138, 139, 140, 173
seawater, gatvanic series for metals and
alloys exposed to flowing, 694-693
secondary atomic bonds, 37, 39
secondary bonding, 34—67, 60
secondary wall, 643, 647
self-diffusion , 134, 133, 174
self-interstitial point defect, 136, 137
SBM (scanning electron microscope),
147-149
semiconductor devices, 761-769
semiconductor lasers, 808-809
semiconductors, 733, 744, 783, 801
semiconfinuousty cast ingot, 118
sensitized condition of austenitic
stainless steels, 702, 703
S-glass fibers. to S glass
shear strain, 197, 198, 230
shear stress, 197-198, 230
calculating resolved, 220-221
edge dislocation producing slip under,
213, 214
shearing force, 198
sheet, 182
sheet glass, forming, 388
sheet ingots, 127, 182
hot rolling of, 184, ] 86, 187
sheet structures of silicates, 544
—545
sheet -molding compound (SMC), 661
sheet-molding compound (SMC) process,
627-628
short glass, 587
short-range order in solid-solution
strengthening, 228
shrinkage of wood, 650
SI unit prefixes, 882
SiC, See silicon carbide
siemens (S), not used in this book, 733
silica, 545, 546, 555
glass, 809
refractories, 579
slurry in mild-steel pipe, 707
in traditional ceramics, 334
silica-based glasses, 582
si lica-1eucite-m ul Iite phase-eq u i I ibrium
diagram, 556, 557
silicate glasses, reflection, absorption, and
transmission oflight by, 798-800
silicate minerals, ideal compositions
of, 346, 547
silicate networks, 343-346
silicate structures, 543-546, 547
silicate tetrahedron, 543
si ticon
as an alloying element in 6xxx
aluminum alloys, 483, 485
as an alloying element in alloy
steel, 463
as an alloying element in aluminum
casting alloys, 487
density and atomic mass of, 748
electrical charge transport in the crystal
lattice of, 745-746
electrical conductivity of, 750-751
electrical resistivity of intrinsic,
748-749
mobilities of electrons and holes
in, 758-759
physical properties of, 748
silicon carbide (SiC), 559, 577
fibers, 656, 657-658
whisker addition to alumina, 636
silicon chips, 10, ] I
silicon diode rectifiers, 766
silicon nitride (Si.iN+), 338-339
silicon semiconductors, doping, 755
silicon single crystals, 129-130
silicon wafers, 166
— 168, 769, 770
Silicone (polysiloxane), 346
silicone rubbers, 349-350
silver-platinum binary equilibrium phase
diagram, 403-406
simple unit cells, 69
single crystals, solidification of,
128-131
single invariant peritectic reaction, 403
single-crystal silicon carbide
whiskers, 654
single-crystal silicon ingots, I3(M3 I
single-crystal turbine blades, 128,
129, 130
single-mode optical fiber, 810, 811
single-phase alpha brasses, 492
sintered alumina, 564
sintering, 548, 553, 554, 555, 592, 593
S1O2, See silica
slabs, 430
slag-forming fluxes, 429
slip, 230, 330
compared to twinning, 22 ] , 222
slip casting, 550-552, 592
slip lines, 211, 224
slip planes, 21 ] , 213
slip systems, 215-216, 230
slip vector, 138, 139, 140, 173
slipband crack growth in the fatigue
process, 258-259
slipband extrusions, 239
slipband intrusions, 239
slipbands, 2 ] 1-212, 230
slow cooling
60% Pb-40% Sn alloy, 395-397
plain-carbon steels, 435-437
SMC (sheet-molding compound), 661
SMC (sheet-molding compound) process,
627-628, 661
Sm-Co magnets, 859
SN curves for high-carbon steel and highstrength aluminum, 254, 256, 257
Snell’s law oflight refraction, 796-797
soda-time glass, 584, 585
sodium atom, electronic structure of, 74 ]
sodium chloride, to NaCI
sodium, energy-band diagrams for,
742, 743
soft ferrites, 864-867, 871 , See also
magnetically soft fenites
soft glass, 587
soft magnetic materials, 828, 847-853,
868, 870
desirable properties for, 847, 848
energy losses for, 847-849
softening point, 586, 594
softwood trees, 661
softwoods (gymnosperms), 641,
642-644, 659
solenoid
magnetic field created by, 830
placing a demagnetized iron bar
inside, 830-831
solid casting, 551
solid phases
in region the Fe of-stability Fe^C phase of, diagram 384 , 432—434
separate and distinct for iron, 380
solid solubility, conditions favorable for
extensive, 132
solid solutions, 131, 173, 409
solid state, rate of atomic movement
in, 149
solidification
of an alloy, 118
of crystalline and glassy
(amorphous) materials, 582
of metals, 118-128
of single crystals, 128-131
solids
diffusion in, 154
effect of temperature on diffusion
in, 3 68- ] 72
rate processes in, 149-154
solid-solution hardening, 230
solid-solution strengthening, 227
solid-state diffusion, industrial
applications of, 161-168
solid-state reactions, 154
solid-state ruby laser, 805-806, 807kiiymcciiiiyr I I I I I I U kuiuirii
solidus, 384, 418
solute atoms, substituting for parent
solvent atoms, 131-132
solution heat treatment
of an AU4% Cu alloy, 475
in the precipitation-strengthening
process, 472-473
solution polymerization, 295, 366
solutionizing, 472-473
solvus, 418
source in an NMOS device, 771 , 772
space lattices, 68, 69, 107, 108
space shuttle orbiter, ceramic tile
insulation for, fiSO, 581
space station, 1-2, 4
spark plug insulator, manufacturing, 550
spdf ‘notation for electron
configurations, 30
specific tensile modulus, 660
specific tensile strength, 660
spectral lines, wavelengths and
intensities of, 25
spherical nodules in ductile cast iron,
502-503
spheroidite, 457, 513
spherulitic graphite cast iron.
See ductile cast iron
spherulitic structure
of low-density polyethylene, 300, 301
in nylon 9, 6, 325
spin directions
for an electron, 29
of unpaired electrons in d orbitals,
32, 34
spin quantum number, 29, 59
spinel crystal structure, 541, 864-865, 871
spinel ferrites, ion arrangements and net
magnetic moments, 866
split transformation, 454
spontaneous magnetization, 835
spray lay-up, 660
spray-dried pellets of high-alumina
ceramic body, 547, 548
spray-up process for producing fiberreinforced-plastic shells, 622-623
stabilization stage for PAN fibers,
60S, 609
stabilized condition of stainless steel
alloys, 704
stable nuclei, forming into liquid
metals, 118-125
stages of crack growth, 259-260
stainless steel, 494-498
composition of the commercially most
important, 416
corrosion resistance of, 715
crevice corrosion of, 701
effect of stress on the creep rate of, 270
pitting in, 698-699
types of, 494
stainless steel weld, intergranular
corrosion of, 703
standard half-cell potentials of selected
metals, 673-674
comparing to density for reinforcing
fibers, 611-612
of metals, 223-224, 225, 227-229
strengthening
thermoplastics, 352-357
thermosetting plastics, 357
stress, See also engineering stress
effect on the creep rate of stainless
steel, 270
stress amplitude, 258
stress concentration, 260
stress coirosion, 721
stress cycles, parameters of fluctuating,
257-258
stress ratio, 258
stress relaxation of polymeric
materials, 360-361
stress relief, 455
stress-corrosion cracking (SCO, 704-707
stress-intensity factor, 251, 252, 263
stress-rupture test. See creep-rupture test
stress-strain diagrams
for carbon, arumid, and glass
fibers, 610
for vulcanized and unvulcanized
natural rubbers, 346
striations. See fatigue striations
strong bonds. See primaiy atomic bonds
strontium ferrites, 867
structural clay products, 556
structural isomers, 344
styrene, 318
styrene-acrylonitrile (SAN)
thermoplastics, 318
styrene-butadiene rubber (SBR ), 346, 347
subatomic particles, 20
subenergy levels of an electron, 29
subrings, 642
subsidiary quantum number 28, 59
substitutional diffusion, 154-156, 174
substitutional solid solutions,
131-134, 173
sulfone linkage, 330
sulfur
adding to synthetic rubbers, 350-351
cross-linking in rubber molecules, 345
superconducting, 822
materials, 792, 814-822
state, 814-815
superconductivity, 814
superconductors
current flow and magnetic fields
in, 817-818
high-current, high-field, 818-820
magnetic properties of, 815-817
superpure aluminum, 131
supersaturated solid solution, 473-474
states, 742
steady-state conditions, 174
steady-state creep, 267
steady-state diffusion, 157-159
steatite porcelains, 563
steel
anodic to tin, 696
case hardening of, 161-165
cladding with a thin layer of stainless
steel, 716
continuous casting of ingots, 127
cooling rates in long round bars, 468,
469-470
handenability of , 465-470
hot-and cold-rolling of slabs, 430-431
lowering the carbon content of, 429
product forms, 431, 432, 433
production of, 428-431
recycling, 430
rods in reinforced concrete, 638
shadow mask, 803
—804
tendons in prestressed concrete, 638
wire drawing, 191
zinc anodic to, 696
stepwise polymerization, 293, 294, 366
stereoisomerism in thermoplastics,
300-301
stereoisomers, 300, 367
stereospecific catalyst, 367
stiffness, comparing to density for
reinforcing fibers, 611-612
stimulated emission of radiation, 804-806
^stimulated” photons, 805
STM (scanning tunneling microscope),
67-68
straight-line notation, 46
strain, 195, See also engineering strain
strain fields, surrounding
dislocations, 139
strain hardening, 230, 273-274, See also
cold working
strain point, 586, 594
strain-hardened metal, compared to nunstrained, 238
strain-hardened subdivisions for wrought
aluminum alloy temper designations,
482
strands of glass fibers, 606, 607
strength
of ceramic materials, 572, 573kiiymcciiiiyr I I I I I I U kuiuirii
surface condition as a factor affecting
metal fatigue strength, 260
surface energy, ] 20, 3 2 ]
surface roughness as a factor affecting
metal fatigue strength, 260
suspension polymerization,
295-296, 366
swage dies, 191
syndiotactic isomer, 367
syndiotactic stereoisomer, 300, 302
synergistic plastic alloys, 14
synthetic elastomers, 345-346
synthetic fibers, reinforcing plastic
materials, 604
synthetic rubbery, 346-348
system, 417
tensile strengths, 660. See also ultimate
tensile strength
calculating for a composite. 619
of carbon libers produced from PAN
precursor material , 609
of ceramic materials, 570
compared to tensile modulus for
reinforcing fibers, 611-612
of general-purpose
thermoplastics, 310
for selected engineering
thermoplastics, 323
for selected thermoset plastics,
334, 335
of vulcanized natural rubber compared to
synthetic elastomers, 345
tensile stress-strain curves for
single-costal and polycrystalline
copper, 223-224
tensile test, 198-201
terminal phases, 409, 4 J 8
terminal solid solutions, 394
termination step in chain
polymerization. 286
ternary phase diagrams, 413-416
Tesla, Nikola. 831
tetragonal structure for zirconia, 574, 575
tetragonal system, 69, 70, 71
tetragonality. 442
tetrahedral covalent bonding. 47-48
tetrahedral interstitial site in the FCC
crystal structure, 592
tetrahedral interstitial sites. 535. 536
in cubic soft ferrites, 864-865
THA (total hip arthoplasty), 279-280
thermal component of electrical
resistivity, 737
thermal conductivities, 577, 578
thermal energy, randomizing effects
of, 838
thermal properties, 577-580
thermal treatments, 552-554
thermally sensitive resistor.
See thermistor
thermally tempered glass. 594
thermistor, 565, 593
thermoforming, 305, 306
thermoplastic materials
increasing crystallinity in, 353-354
processes used for, 303-306
thermoplastic polyesters, 329-330
thermoplastics, 280, 365
average molecular weight, 286-287
deformation mechanisms, 351-352
engineering, 322-333
fracture mode, 362
general-purpose, 309-322
stereoisomerism, 300-301
strengthen!ns, 352-357
thermosets, to thermosetting plastics
thermosetting materials, processes used
for 306-309
thermosetting plastics, 280, 333-342,
357, 366
thermostats
* fixed internal, 332
three-phase invariant reactions, 406
Tir to titanium
tie line, 385, 418
timber See wood
time-dependent strain , to creep
tin, steel anodic to, 696
tin bronzes, 493
tin plate, used for the “tin can,1’ 697
Titanic, steel used in the construction of ,
237-238
titanium (Ti)
as an alloying element in alloy
steel, 464
high critical resolved shear stress, 218
titanium alloys, 508-510
titanium-aluminum (Ti-Al) phase
diagram, 425
titanium-nickel (Ti-Ni) phase diagram,
412-413
total hip arthroplasty (THA ),
279-280
toughness, 248-251, 572-574
tough-pitch copper, 488
tow of fibers, 609, 660
tracheids, 643, 644, 659, 662
traditional ceramic materials, 524
traditional ceramics, 554
—556
trans- 1 ,4 polyisoprene, 344, 368
transducer, 593
transfer molding, 308-309, 367
transformation toughening of panSally
stabilized zirconia (P$Z), 574-576
transformed cores, decreasing eddycunent energy tosses in, 849
transgranular brittle fracture, 247
transgTanular fractured surface, 148
transmission electron microscope (TKM),
139-141, 142
transmission of light, 797
transmittance of light, 799-800
trees, layers in cross section of, 640-641
triaxial bodies, changes occurring in the
structure of, 556, 557
triaxial porcelains, 556
triaxial state of stress, 248
triaxial whitewares, chemical
Compositions of, 556
talc, 545
tangential axis, 642, 643
tape-wound magnetic cores, 853
Teflon , 321
THM (transmission electron
microscope), 139-141, 142
temper carbon , 504
temper designations for wrought
aluminum alloys, 482
temperature
effect on diffusion, 159
effect on diffusion in solids, 168—172
effect on feiTomagnetism, 838
effect on impact energy, 249, 250
effect on intrinsic semiconductivity,
749-751
effect on the electrical conductivity of
extrinsic semiconductors, 759-761
effect on the electrical resistivity of
selected metals, 737-739
effect on the strength of plastic
materials, 357
effect on the viscostiy of commercial
glasses, 586
lowering to reduce corrosion, 718
relationship with the critical
magnetic field Hc, 815
temperature resistivity coefficients, 739
tempered glass, 588, 590-591
tempered martensite, 458
tempered martensitic malleable iron, 506
tempering, 456
effect on corrosion resistance, 685-686
microstructural changes in
martensite upon, 457
of a steel , 513
tendons in prestressed concrete, 638
tensile modulus, 611-612, 660kiiymcciiiiyr I I I I I I U kuiuirii
tricalcium silicate hydrate 632
triclinic system, 69, 70, 71
triplymite, 545
trifunctional monomer 287
triple points, 380, 382
trivalent boron impurity atom, 752-754
true strain, 207, See also engineering
strain
true stress, 207, See also engineering
stress
true stress-true strain curve, 207-208
tungsten as an alloying element in alloy
steel, 464
turbostratio graphitelike fibrils, 609
twinning, 221
two-component system, 383
two-dimension defects, 136
two-metat corrosion, 696-697
two-stage (novolac) phenolic
resins, 335
type I superconductors, 816, 822
type II superconductors, 816-817, 823
upper balnite, 450, 696-^697
urea-formaldehyde, 341-342
UTS (ultimate tensile strength), 203—204,
206, 230
UV radiation, 774, 776
wafers, silicon single ciy/stal, 769, 770
water
graphical representation of the phases
of, 380, 381
as a quenching medium.468.470
water molecules, hydrogen bonding
between, 56-57
weak bonds. See secondary atomic bonds
weight balances, deriving lever-rule
equations using. 386-387
weight percent of each pure metal in a
ternary al loy, 414-415
weight percentages, converting weight
fractions to, 388
weld decay, 703-704, 721
welding robots, 11
wetting action of epoxy resins. 338
whisker additions in discontinuous-liber
reinforced MMCs, 654, 655
whiskers, ceramic, 656
white cast irons, 499, 501, 513
white Irons, heat treatment of. 505
whiteware products. 556
wire bar ingots. 182
wire drawing. 191-193. 229
wood (timber). 640-650. 659. 661
macrostructune of, 640-642
mechanical strength of. 648-650
properties of, 646, 648-650
shrinkage of, 650
wood cell, principal constituents of, 645
wood rays, 641 , 644, 662
wood vessel. 662
workability of concrete, 635
working point, 586, 594
woven fiberglass fabrics, 614
woven roving, 606
wrought alloy products, 3 82
wrought aluminum alloys, 481-485
classification of. 481
heat-treatable, 483-485
non-heat-treatable, 482-483
temper designations for, 482
wrought copper alloys, 489, 490-49 J .
492-493
wrought magnesium alloys, 506-507
vacancies, 136, 172, 173
at equilibrium in a metallic crystal
lattice, 151
vacancy diffusion, 154, 155. See also
substitutional diffusion
vacancy mechanism, 154-156, 172
vacancy-interstitialcy pair, 137
vacuum bag molding, 660
vacuum bag-autoclave process, 623-625
vacuum casting, 552
vacuum-auger-type extrusion
machine, 552
valence band, 785
valence electrons, 61
in the energy-band model* 741* 784
in metallic solids, 50, 730, 732
in semiconductors, 744-745
valence energy bands in sodium
metal
* 742
valence-electron density distribution, 45
Valox, 333
van der Waals bonds (forces), 55
vanadium as an alloying element in altoy
steel, 464
vapor bubbles, pressures produced by,
707-708
veedies, 191
very-low-carbon plain-carbon steels,
461, 462
vessel elements, 644
vessets in hardwoods, 644
Vickers hardness test, 209, 210
vinyl chloride and vinyl acetate
monomer^* 291-293
vinyl polymers* 288-289
vinylidene polymer, 289
vinyl-type polymers, producing, 296
viscoelastic behavior, 359
viscous deformation of glasses,
586-588
viscous flow, 359
visible light, 792
vitrification
* 553-554* 592* 593
voids between atoms in a crystal
structure, 91
volume density, 92-93, 108
volume diffusion
* 174
volume (or bulk ) free energy* 121
vulcanization, 344-345, 348-351 , 368
UUem, 332
ultimate ductile failure, 260
ultimate tensile strength (UTS), 203-204,
206, 230
ultrasonic cleaning apparatus* 569
ultraviolet radiation, 774, 776
unalloyed copper, 489, 492
undercooling
versus critical radius
* 122-124
required for homogeneous
nucleation, 120
unfilled cast polyester and epoxy
resins, 613
uniaxial stress, applying to a long metal
bar, 229
uniaxial tensile force, 194
uniaxial tensile stress, acting on a metal
cy linder, 218-219
unidirectional Kevlar 49 fiber-epoxy
composite, 616
unidirectional laminate, 660
unidirectional laminate plies, 615
uniform corrosion, 696
measuring, 688-689
rate of, 687
unit cells, 68, 69, 107, 108
unsaturated bonds, 48-50
unsaturated molecule
* 282
unsaturated polyester and epoxy
resins, 612
unsaturated polyesters, 339-341
UO2 (uranium oxide), 539, 540
X rays
producing diffracted or reinforced
beams of, 99-101
producing for diffraction purposes, 98-99
xenon flash lamp, high-imensity input
from, 805
Xenoy. 333kiiymcciiiiyr I I I I I I U kuiuirii
x-ray diffraction
analysis of crystal structures, I0 I- I 07
for cubic unit cells, 104
determining the distance between
atoms, 72
recorder chan, ] Q2
x-ray diffractometer, 102, 105
x-ray emission spectrum, 98, 99
x-ray tube, 98
Young’s modulus, 202
yttrium-alumin um-garnet, 807
anodic to steel, 696
determining the standard emf of, 673
electrode kinetic behavior in acid
solutions, 690-691
low critical resolved shear stress, 218
as a principal alloying element in 7xxx
aluminum alloys, 485
zinc blende (ZnS) crystal structure,
537-539
zinc HCP unit cell, 77
zinc single crystal, showing slipbands, 211
Zircoa (zirconium dioxide), 525
zirconia 559, 574, 575
zener breakdown, 766
xener diodes, 766-767
zeno-dimension point defects, 136
Ziegler catalyst, 367
Ziegler, Karl, 301
Ziegler process, 312
zigzag configuration of a polyethylene
YAG crystal, 807 chain, 287
YBU^CUA crystal structure, 820-821
yield strength, 202-203, 230
Young, Thomas, 202
zinc (Z.n)
additions reducing the electrical
conductivity of copper, 739, 740
كلمة سر فك الضغط : books-world.net
The Unzip Password : books-world.net
تحميل
يجب عليك التسجيل في الموقع لكي تتمكن من التحميل
تسجيل | تسجيل الدخول