Dynamic Behavior of Concrete and Seismic Engineering

Dynamic Behavior of Concrete and Seismic Engineering
اسم المؤلف
Jacky Mazars, Alain Millard
التاريخ
6 مارس 2021
المشاهدات
309
التقييم
(لا توجد تقييمات)
Loading...

Dynamic Behavior of Concrete and Seismic Engineering
Edited by
Jacky Mazars
Alain Millard
Table of Contents
Preface . xi
Chapter 1. Dynamic Behavior of Concrete: Experimental Aspects . 1
François TOUTLEMONDE and Gérard GARY
1.1. Introduction 1
1.1.1. Meaning of the word “dynamic” . 1
1.1.2. Reminders about dynamic experimentation 3
1.1.3. Identifying the behavior of concrete under fast dynamic loadings . 8
1.2. Tests in which the transient rate has little influence 10
1.2.1. Tests involving deviatoric behavior . 11
1.2.2. Tests with prevailing spherical behavior 17
1.3. Tests with transient phase conditioned interpretations 20
1.3.1. Tests involving mainly traction behavior 20
1.3.2. Tests implementing compression behavior . 25
1.4. Other tests . 29
1.4.1. Tests adaptable to an energetic approach 29
1.4.2. Validation tests on structures requiring an inverse analysis . 30
1.5. Synthesis of the experimental data on concrete and associated
materials 33
1.5.1. Data on cement paste mortar and concrete . 33
1.5.2. Data available for reinforced concrete 40
1.5.3. Data about fiber-reinforced concretes 42
1.6. Conclusion 46
1.7. Bibliography . 47
Chapter 2. Dynamic Behavior of Concrete: Constitutive Models 55
Patrice BAILLY
2.1. Dynamics of concrete structures . 55
2.1.1. Macroscopic phenomena . 55
2.1.2. Perforation 57vi Dynamic Behavior of Concrete and Seismic Engineering
2.1.3. Ejection of fragments . 58
2.1.4. Loading range 59
2.1.5. Loading path . 60
2.2. Fast dynamics applied to concrete 62
2.2.1. Impacts and waves . 62
2.2.2. Impact and shock polar curve . 66
2.2.3. Shock between two solids . 67
2.3. Scabbing . 68
2.4. Effect of a shock wave on the structure of materials 69
2.5. Modeling types 70
2.5.1. Behavior description theoretical frames . 70
2.5.2. Integrating sensitivity to the strain rate . 71
2.5.3. Elasto-plasticity and criteria . 72
2.5.4. Damage 74
2.5.5. Notion of a state law 74
2.5.6. Location limiter and time sensitivity 75
2.6. Models . 76
2.6.1. Elasticity-based model . 76
2.6.2. Models based on the theory of plasticity 77
2.6.3. Models based on damage mechanics 81
2.6.4. Model coupling damage and plasticity . 82
2.6.5. Model coupling damage and mechanics of porous media 83
2.6.6. Model deriving from a hydrodynamic approach 84
2.6.7. Endochronic models 87
2.6.8. Discrete element method . 88
2.7. Conclusion 90
2.7.1. Main features of the models 90
2.7.2. Contribution of distinct elements . 91
2.8. Bibliography . 92
Chapter 3. Seismic Ground Motion . 95
Pierre-Yves BARD
3.1. Introduction 95
3.2. Measuring seismic motions 96
3.2.1. Differences between seismological and accelerometer networks 96
3.2.2. Accelerometer networks 97
3.2.3. Accelerometer data banks . 98
3.3. Quantitative characterization of seismic movements . 98
3.3.1. Time maximum values . 98
3.3.2. Spectral characterizations . 99
3.3.3. Features of hybrid characterizations . 106
3.3.4. Caveats regarding differential motions . 107
3.4. Factors affecting seismic motions . 108
3.4.1. Spectral signature of the seismic source 109
3.4.2. Effects of propagation in the Earth’s crust . 111Table of Contents vii
3.4.3. Site effects 113
3.5. Conclusions 120
3.6. Bibliography . 121
Chapter 4. Soil Behavior: Dynamic Soil-Structure Interactions . 125
Alain PECKER
Introduction 125
4.1. Behavior of soils under seismic loading . 126
4.1.1. Influence of the nature of soils on seismic movements 126
4.1.2. Experimental description of soil behavior . 128
4.2. Modeling soil behavior . 131
4.2.1. An experimental description of elastic soil behavior (J d Js) 134
4.2.2. Linear visco-elastic models for medium strain domains
where Js d J d Jv 134
4.2.3. High strain domain non-linear models where J t Jv 141
4.3. Linear soil-structure interactions . 143
4.3.1. Illustration of the soil-structure interaction effect . 143
4.3.2. Expression of a soil-structure problem . 148
4.3.3. Superposition theorem . 151
4.3.4. Practical modeling of the soil-structure interaction 154
4.4. Non-linear soil-structure interactions . 158
4.4.1. Geometric non-linearities and uplift of the foundations . 158
4.4.2. Non-linearities of behavior 158
4.4.3. Modeling the non-linear soil-structure interaction 159
4.5. Bibliography . 161
Chapter 5. Experimental Methods in Earthquake Engineering . 165
Alain MILLARD, Pierre PEGON and Jean-Claude QUEVAL
Introduction 165
5.1. The pseudo-dynamic method . 167
5.1.1. Introduction . 167
5.1.2. History of the PSD method 168
5.1.3. The ELSA laboratory . 168
5.1.4. Comparison with shaking tables . 170
5.2. The conventional pseudo-dynamic method . 170
5.2.1. Algorithms 170
5.2.2. Implementation at ELSA . 172
5.2.3. The sub-structuration method . 174
5.2.4. Illustration 177
5.3. Continuous pseudo-dynamic method . 178
5.3.1. Continuous method principle . 178
5.3.2. Implementation at ELSA . 180
5.3.3. Sub-structuration for the continuous method 182
5.4. Final comments . 183viii Dynamic Behavior of Concrete and Seismic Engineering
5.5. Shaking table tests 184
5.5.1. Introduction . 184
5.5.2. Characteristics and performance of shaking tables 187
5.6. Laws of similarity 193
5.7. Instrumentation . 194
5.8. Loading 195
5.9. Conclusion 196
5.10. Bibliography 197
Chapter 6. Experiments on Large Structures . 201
Patrick PAULTRE and Jean PROULX
Introduction 201
6.1. Instrumentation . 202
6.2. Dynamic loads 205
6.3. Data processing . 206
6.4. Application to buildings 208
6.4.1. The slanting tower at the Montreal Olympic Stadium 209
6.4.2. Reinforced concrete building . 210
6.5. Bridge application 213
6.5.1. Pedestrian footbridge 213
6.5.2. A mixed cable-stayed/suspension bridge 215
6.6. Application to large dams . 220
6.6.1. Assessment of a response spectrum on the crown . 220
6.6.2. Study of foundation-ice-reservoir-dam interactions 222
6.6.3. Study of the effect of the water level inside the reservoirs 228
6.7. Conclusion 230
6.8. Acknowledgements . 230
6.9. Bibliography . 230
Chapter 7. Models for Simulating the Seismic Response of
Concrete Structures . 233
Didier COMBESCURE, Nicolas ILE, Jacky MAZARS and Jean-Marie
REYNOUARD
7.1. Introduction 233
7.2. Different discretization families 234
7.2.1. Global modeling 234
7.2.2. Semi-global modeling . 235
7.2.3. 2D and 3D fine models 239
7.3. Behavior laws for concrete . 240
7.3.1. Semi-empirical mixed models 240
7.3.2. Damage model . 241
7.3.3. Plasticity model for concrete . 243
7.3.4. Cyclic models for steel . 247
7.3.5. Taking construction layouts and second-order phenomena
into account . 248Table of Contents ix
7.4. A few examples with their validation through experiments . 250
7.4.1. Application of the semi-global method to a four-storey
structure . 250
7.4.2. Semi-global and local models applied to concrete walls . 253
7.5. Conclusions 269
7.6. Bibliography . 270
Chapter 8. Seismic Analysis of Structures: Improvements Due to
Probabilistic Concepts . 273
Jean-René GIBERT
8.1. Introduction 273
8.2. The modal method 274
8.2.1. Data about the seismic source 274
8.2.2. Calculation of structural responses using the modal method 277
8.3. Criticism of the modal method 279
8.4. A few reminders about random processes 280
8.4.1. Definition and characterization of a time random process 280
8.4.2. Second order characterization 280
8.4.3. Response of a linear system to random stress . 282
8.4.4. Using stochastic equations 285
8.4.5. Extrema statistics in a stationary process 286
8.5. Improvements to the modal method . 292
8.5.1. Complete quadratic combination . 294
8.5.2. Peak factor effect 295
8.6. Direct calculation of the floor spectra 297
8.6.1. Representation of non-stationary processes 297
8.6.2. Adjusting a separable process from the ORS data . 298
8.6.3. Determination of the floor spectra 299
8.7. Creation of synthetic signals and direct numerical integration 301
8.8. Seismic analysis of non-linear behavior structures . 304
8.8.1. Introduction . 304
8.8.2. Main non-linearities of seismically-loaded structures 304
8.8.3. Notion of “inelastic spectra” . 305
8.8.4. Conventional method of stochastic linearization . 310
8.8.5. Random parameter stochastic linearization . 316
8.9. Conclusion 323
8.10. Bibliography 323
Chapter 9. Engineering Know-How: Lessons from Earthquakes
and Rules for Seismic Design . 327
Philippe BISCH
9.1. Introduction 327
9.2. Lessons from earthquakes . 327
9.2.1. Pathologies linked to overall behavior . 328
9.2.2. Problems linked to local under-design . 330x Dynamic Behavior of Concrete and Seismic Engineering
9.2.3. Problems linked to construction layout . 334
9.3. The aims of anti-seismic protection standards . 336
9.3.1. Standardization of anti-seismic design . 336
9.3.2. Main objectives of anti-seismic protection . 337
9.3.3. Verification method 338
9.3.4. Capacity-design method 341
9.4. General design 344
9.4.1. Design principles 344
9.4.2. Regularity conditions . 345
9.4.3. Calculation of seismic action effects 346
9.5. Behavior coefficients 349
9.5.1. Using behavior coefficients 349
9.5.2. Structure behavior and behavior coefficients 351
9.5.3. Local ductility and behavior coefficients 352
9.5.4. Ductility classes and behavior coefficients . 352
9.6. Designing and dimensioning reinforced concrete structure elements 353
9.6.1. Regulations specific to reinforced concrete in seismic areas 353
9.6.2. Main types of reinforced concrete bracing . 354
9.6.3. Main frames . 356
9.6.4. Reinforced concrete bracing walls 359
9.6.5. Detail designing . 364
9.7. Conclusions 366
9.8. Bibliography . 366
List of Authors 369
Index
Index
A, B
Accelerogram, 98, 99, 102, 165, 186,
196, 197, 258
Accelerometer, 32, 96 – 98, 120, 121,
123, 177, 194, 194, 202, 206, 209,
211, 215, 216, 220, 221, 223
Alluvial soil, 126, 127
Arias intensity, 106, 107
Attenuation, 104, 112, 113
Beam
multi-fiber, 237, 250
multi-layer, 236, 254, 269
Brazilian test, 8, 23
C, D
Cap surface, 73, 80
Characteristic length, 76
Compaction, 7, 13, 18, 32, 56-60, 69-
71, 73, 76-78, 80-85, 87, 90, 91
Confinement, 3, 6-8, 10, 13, 17, 18,
20, 25, 27, 28, 29, 38, 41-43, 47,
61, 80, 91, 240, 331, 357-359,
361, 365
Consistent boundaries, 156, 157
Crater formation, 58
Diffraction, 108, 114, 116, 154, 155
Distinct element, 91
Ductility class, 352, 353, 355, 358
Duhamel’s integral, 101
E, F
Effective stress, 74, 86
Eigenmode, 194, 208
ELSA laboratory, 168
Eurocode, 215, 254, 262, 264, 308,
327, 336-340, 342, 347, 349, 351-
354, 357-361, 363-366
Frequency
excitation, 205, 207
loading, 42, 195
resonance, 186, 188, 189, 195,
196, 226, 276, 278, 316
G, H, I
Global model/global modeling, 234,
239
Gurson’s criterion, 83, 84
Hugoniot curve, 17
Hugoniot’s elastic limit (HEL), 63,
64,
Hydrophone, 202, 204, 223, 224
Hysteresis loop, 128, 130, 135, 138,
143, 269
Impedance, 7, 8, 20, 117, 118, 153,
154, 157, 158, 160
function, 143, 154, 157
Interaction
inertial, 150, 151
kinematic, 151, 153-155, 157374 Dynamic Behavior of Concrete and Seismic Engineering
L, M, N
Lagrange diagram, 69, 144, 145
Limit state, 39, 329, 339, 340
Liquefaction, 95, 113, 141
Local model, 253, 270
Lode’s angle, 73
Modal damping, 206, 207, 209, 210,
212, 225, 228, 278, 294
Modal method, 273, 274, 276, 277,
279, 292, 293, 297, 308
Non-drained behavior, 132
P,Q, R
p-delta effect, 249
Peak ground acceleration, 98, 253,
258
Perforation, 57, 60
Perzyna’s model, 76
Plate-plate test, 18, 57
Power spectral density, 207, 208, 281
Process
random, 279, 280, 283-285, 292,
293, 298, 301, 302, 311, 319, 320
stationary, 12, 281, 282, 286, 297,
302
Pseudo-dynamic method, 166, 167,
170, 178, 179, 234, 250
Push-over, 102, 348, 350
P-Į model, 75
Quadratic combination, 278, 279,
293-296,
Rate effect, 12, 13, 34-38, 40-43, 45,
46, 71, 72, 166
Rayleigh line, 70
Resonant column test, 134, 140
S
Scabbing, 55-58, 68
test, 3, 23, 24
Seismology, 95, 96, 103, 112, 120
Semi-local simplified models, 234
Servo-controller, 185, 186
Shaking table, 165, 166, 168, 170,
184, 187, 188, 189, 190, 193-196,
233, 234, 250, 254, 261, 279, 301
Shock
polar curve, 17, 66-68
tube, 14-16, 57
Similarity rules, 32, 255
Site effect, 96, 103, 107, 113, 117,
119, 274, 286
Soil structure interaction, 125, 126,
128, 143, 144, 147, 148, 149, 151,
154, 157-159, 196
Spectral intensity, 106
Spectral signature, 109, 117
Spectrum
floor, 279, 297, 301, 345
Fourier, 104, 105, 107, 111, 112,
117
response, 100, 102, 105, 106,
220-222, 274, 277
Stefan effect, 34
Strain rate, 4, 12, 16, 18, 24, 27, 28,
30, 39, 40, 55, 56, 61, 62, 71, 72,
76, 85, 91, 135
Sub-structuration, 159, 169, 170, 173,
174, 176, 180-182, 184
T, V, W
Thrust coefficient, 128
Timoshenko beam, 236, 237, 249
Tunneling, 58, 60
Wave
Rayleigh, 155
surface, 108, 111, 114, 116, 134,
157
volume, 111, 116, 150, 154
كلمة سر فك الضغط : books-world.net

The Unzip Password : books-world.net

تحميل

يجب عليك التسجيل في الموقع لكي تتمكن من التحميل
تسجيل | تسجيل الدخول

التعليقات

اترك تعليقاً