Computer-Generated Phase-Only Holograms for 3D Displays – A Matlab Approach

Computer-Generated Phase-Only Holograms for 3D Displays – A Matlab Approach
اسم المؤلف
غير معروف
التاريخ
3 مايو 2021
المشاهدات
734
التقييم
(لا توجد تقييمات)
Loading...

Computer-Generated Phase-Only Holograms for 3D Displays – A Matlab Approach
Peter Wai Ming Tsang
Contents
Preface page ix
Acknowledgments xi
1 Introduction to Digital Holography 1
1.1 Basic Concept of Holography 1
1.2 Optical Recording in Practice 5
1.3 Photography 6
1.4 Recording Setup in Optical Holography 7
1.5 Computer-Generated Holography 12
1.5.1 Point-Based Method 14
1.5.2 Layer-Based Method 16
1.6 Reconstruction of Digital Hologram 17
1.7 Capturing Digital Hologram of a Physical Object 19
1.7.1 Capture of Digital Off-Axis Hologram 19
1.7.2 Phase-Shifting Holography 21
1.7.3 Optical Scanning Holography 25
1.7.4 Non-diffractive Optical Scanning Holography 27
1.8 MATLAB Simulation 29
1.8.1 Simulation of Generating a Hologram with the Point-Based Method 29
1.8.2 Simulation of Capturing an Off-Axis Hologram 31
1.8.3 Simulation of Capturing a Digital Fresnel Hologram with Four-Step Phase-Shifting
Holography 34
1.9 Summary 34
Exercises 37
References 38
2 Fast Methods for Computer-Generated Holography 40
2.1 Introduction 40
2.2 Realization of CGH with Fourier Transform 41
2.3 Direct Look-Up Table Method 42
2.4 Novel Look-Up Table Method 44
2.5 The Line Scanning Method 46
2.6 The Split-Look-Up-Table (S-LUT) Framework 472.7 Compressed Look-Up-Table Method 49
2.8 Wavefront Recording Plane Method 50
2.9 Interpolated WRP Method 55
2.10 The Warped WRP Method 56
2.11 MATLAB Simulation 61
2.11.1 Simulation of Computer-Generated Hologram with the WRP Method 62
2.11.2 Simulation of Computer-Generated Hologram with the Downsampled WRP
Method 62
2.11.3 Simulation of Computer-Generated Hologram with the WWRP Method 69
2.12 Summary 69
Exercises 73
References 74
3 Generation of Phase-Only Fresnel Hologram 76
3.1 General View on Holographic Display System 76
3.1.1 Dual SLM Holographic Display System 76
3.1.2 Split SLM Holographic Display System 77
3.1.3 Amplitude-Only SLM Holographic Display System 78
3.2 Iterative Method for Generating Phase-Only Holograms 79
3.2.1 Generating Phase-Only Hologram for a Single-Depth Image 79
3.2.2 Enhanced IFTA: Mixed-Region Amplitude Freedom Method 81
3.2.3 Noise Reduction with IFTA Multiple Frame Averaging 83
3.2.4 Generating Phase-Only Hologram of a Multi-Depth Object with IFTA 85
3.3 Non-iterative Method for Generating Phase-Only Hologram 87
3.3.1 Random Noise Addition 88
3.3.2 Edge-Enhanced Noise-Addition Method 89
3.3.3 One-Step-Phase-Retrieval 90
3.3.4 Patterned Phase-Only Hologram 92
3.3.5 Sampled Phase-Only Hologram 93
3.3.6 Edge-Enhanced Sampled Phase-Only Hologram 96
3.3.7 Complementary Sampled Phase-Only Hologram 97
3.3.8 Binary Phase-Only Hologram 98
3.4 MATLAB Simulation 99
3.4.1 Simulation of Generating a Phase-Only Hologram with IFTA 100
3.4.2 Simulation of Generating a Phase-Only Hologram with the MRAF 100
3.4.3 Simulation of Generating a Phase-Only Hologram of a Two-Layer Object
(Double-Depth Image) with the Noise-Addition Method 106
3.4.4 Simulation of Generating a Phase-Only Hologram of a Two-Layer Object
with the PPOH Method 109
3.5 Summary 109
Exercises 110
References 111
vi Contents4 Conversion of Complex-Valued Holograms to Phase-Only Holograms 113
4.1 Introduction 113
4.2 Complex Amplitude Modulation 114
4.3 Double-Phase Macro-Pixel Hologram 116
4.4 Uni-directional Error Diffusion 121
4.5 Bi-directional Error Diffusion 123
4.6 Localized Error Diffusion 125
4.7 Converting a Complex-Valued Hologram to a Binary Phase-Only Hologram with Direct Binary
Search 127
4.8 MATLAB Simulation 129
4.8.1 Simulation of Converting a Complex-Valued Hologram into a Phase-Only
Hologram with the CAM Method 129
4.8.2 Simulation of Converting a Complex-Valued Hologram into a Phase-Only
Hologram with the Double-Phase Macroblock Method 132
4.8.3 Simulation of Converting a Complex-Valued Hologram into a Phase-Only
Hologram with the UERD Method 135
4.8.4 Simulation of Converting a Complex-Valued Hologram into a Phase-Only
Hologram with the BERD Method 138
4.8.5 Simulation of Converting a Complex-Valued Hologram into a Binary Phase-Only
Hologram with the DBS Method 141
4.9 Summary 141
Exercises 145
References 145
5 Applications of Phase-Only Hologram in Display, Holographic Encryption, and
Steganography 147
5.1 Introduction 147
5.2 Holographic Projection and Display 147
5.2.1 Spatial Light Modulator 148
5.2.2 Holographic Projection 150
5.2.3 Holographic Display 150
5.3 Holographic Encryption 151
5.3.1 Optical Cryptography 153
5.3.2 Double Random Phase Optical Encryption 154
5.3.3 Single Random Phase Holographic Encryption 155
5.3.4 Enhanced Single Random Phase Holographic Encryption 160
5.3.5 Multiple-Image Holographic Encryption with Arnold Transform 163
5.4 Holographic Steganography 168
5.4.1 Data Embedded Error Diffusion Hologram 169
5.4.2 Image Embedded Error Diffusion Hologram 172
5.5 MATLAB Simulation 176
5.5.1 Simulation of the SRPE Method 176
Contents vii5.5.2 Simulation on the ESRPE Method 179
5.5.3 Simulation of Multiple-Image Holographic Encryption with Arnold Transform 183
5.5.4 Simulation of Generating a DEED Hologram that Embeds an Image 186
5.6 Summary 190
Exercises 190
References 191
Index
Index
amplitude constraint, 80, 82–83, 86, 100, 104
amplitude-only SLM, 76–78
arithmetical circle algorithm, 47
Arnold transform, 155, 163–167, 176, 183–186,
190–191
Arrizón, V., 118, 146
Awatsuji, Y., 24
beam splitter, 5, 8, 21, 150
BERD (bi-directional error diffusion), 114,
123–125, 129, 138, 145, 158
Bessel function, 115–116, 130
bi-directional error diffusion (BERD), 114,
123–125, 129, 138, 145, 158
binary phase-only hologram (BPOH), 98, 110, 114,
127–129, 141–142, 145
block truncation coding (BTC), 172–174, 191, 193
BPOH (binary phase-only hologram), 98, 110, 114,
127–129, 141–142, 145
Bragg, 3, 38
Bresenham, J., 47, 74
Bresenham’s line algorithm, 47
Brown, B.R., 12, 38
BTC (block truncation coding), 172–174, 191, 193
Buckley, E., 90, 111
CAM (complex amplitude modulation), 114,
115–117, 121, 122, 129–130, 142, 144–145,
183, 187
CGH (computer-generated holography), 12–14, 19,
34, 40–41, 42, 70–73, 92, 113
chosen plaintext attack (CPA), 154–157, 161
ciphertext, 152–157, 158, 161–162, 191
circular directrix. See directrix.
C-LUT, 49–50
complementary sampled phase-only hologram
(CSPOH), 97
complex amplitude modulation (CAM), 114,
115–117, 121, 122, 129–130, 142, 144–145,
183, 187
compressed look-up table, 49–50
computer-generated holography (CGH), 12–14, 19,
34, 40–41, 42, 70–73, 92, 113
conversion to phase-only hologram methods
bi-directional error diffusion (BERD), 123
complex amplitude modulation (CAM), 114
direct binary search (DBS), 127
double phase macro-pixel hologram, 116
localized error diffusion (LERD), 125
uni-directional error diffusion (UERD),
121
CPA (chosen plaintext attack), 154–157, 161
cryptography, 147, 151–153, 190
CSPOH (complementary sampled phase-only
hologram), 97
data embedded error diffusion (DEED), 169–172,
176–177, 186–187, 191, 193
DBS (direct binary search), 98–99, 110, 112, 114,
127–129, 141–142, 145, 146
decryption key, 152–153
DEED (data embedded error diffusion), 169–172,
176–177, 186–187, 191, 193
Denisyuk, Y., 7, 38
depth cues, 3
digital holography, xi, x, 114, 146, 147
Dirac impulse, 154
direct binary search (DBS), 98–99, 110, 112, 114,
127–129, 141–142, 145, 146
directrix, 51
disparity, 1, 3, 7, 151
double-depth image, 15
double-phase hologram, 118–121, 145
double-phase-only hologram (DPH),
118–121, 145
double random phase encoding (DRPE), 154–157,
190–191
downsampled WRP (DS-WRP), 54
DPH (double-phase-only hologram), 118
DRPE (double random phase encoding), 154–157,
190–191
dual SLM holographic display, 76
edge-enhanced noise addition, 89
edge-enhanced sampled phase-only hologram
(EESPOH), 96–97EESPOH (edge-enhanced sampled phase-only
hologram), 96–97
encryption key, 152–158, 161–162, 190
enhanced single random phase encryption (ESRPE),
160, 161–163, 176–177, 179–180, 190, 192
error diffusion, 114, 121–127, 135–138, 145,
158–161, 162, 169–172, 174–177, 183
ESRPE (enhanced single random phase encryption),
160, 161–163, 176–177, 179–180, 190, 192
fill factor, 148–149
Florence, J.M., 118, 146
Floyd–Steinberg, 121–122, 126, 145, 175, 191
Fourier cell, 118
four-step PSH, 21–24, 25
fractional Fourier transform, 155
free space impulse response, 65, 68, 73, 102, 104,
106, 108–109, 127–128, 131, 133–134,
136–137, 144, 158, 179, 182, 186, 188
Fresnel zone plate (FZP), 31, 33–34, 44–47, 50–51,
65, 68, 72–73, 102, 104, 106, 108–109, 131,
133–134, 136–137, 141, 144, 179, 182,
186–187
FZP (Fresnel zone plate), 31, 33–34, 44–47, 50–51,
65, 68, 72–73, 102, 104, 106, 108–109, 131,
133–134, 136–137, 141, 144, 179, 182,
186–187
Gabor, Denis, 3, 38
GCD (grid-cross downsampling), 95, 163–165, 167,
191, 193
gelatin emulsion, 6
Gerchberg, R.W., 79, 110, 111, 114
Gerchberg–Saxton algorithm (GSA), 79, 110, 114
GPU (graphical processing unit), 41, 52, 125
graphical processing unit (GPU), 41, 52, 125
grid-cross downsampling (GCD), 95, 163–165, 167,
190–191
grid-cross lattice, 94, 97, 111, 165, 167, 186
grid-cross pattern, 97
GSA (Gerchberg–Saxton algorithm), 79, 110, 114
hologram, 3
hologram capture
non-diffractive optical scanning holography,
27–29, 37
off-axis hologram, 19
optical scanning holography, 25–29, 37, 113,
190–191
phase-shifting holography, 21–22, 29, 34–35,
37–38, 144
holographic display, ix–x, 38, 109, 113–145, 150
holographic encryption, 147, 151, 153–155, 160,
163, 190, 192
holographic projection, 147, 149–150, 190
holographic steganography, 168
holography
digital, xi, x, 114, 146, 147
optical, 1, 3, 6–7, 11–12, 14, 19, 34–38, 40, 78
horizontal light modulation factor, 48–49
Hsueh, C., 118, 146
IFTA (iterative Fourier/Fresnel transform
algorithm), 79–88, 100, 110, 113
IFTA multiple frame averaging (IFTA-MFA), 83
integrated sampled phase-only hologram (ISPOH),
164, 166–168, 191
interference pattern, 4, 8, 21
interferograms, 21–25, 34–35
interpolated wavefront recording plane (IWRP),
55–56
isotropic point sources, 4
ISPOH (integrated sampled phase-only hologram),
164, 166–168, 191
iterative Fourier transform algorithm (IFTA),
79–88, 100, 110, 113
iterative Fresnel transform algorithm, 100,
110, 113
IWRP (interpolated wavefront recording plane),
55–56
Javidi, B., 154, 191–192
Juday, R.D., 118, 146
known plaintext attack (KPA), 153, 154–157
Korpel, 26, 39
KPA (known plaintext attack), 153, 154–157
Laplacian kernel, 97
layer-based method, 14, 16–18, 20, 23, 34, 41,
69–73
LCoS (liquid crystal on silicon), 13, 76, 148–149,
150
Leith, E., 7, 38
Leportier, T., 112, 146
LERD (localized error diffusion), 114, 125, 146,
192
light utilization efficiency, 148–149
line scanning method (LS), ix
liquid crystal on silicon (LCoS), 13, 76, 148–149,
150
Liu, J.-P., 24, 39, 77, 112, 145–146, 193
localized error diffusion (LERD), 114, 125, 146,
192
Lohmann, A.W., 12
look-up-table methods
compressed look-up table, 49
direct look-up table, 42
novel look-up table, 44
split look-up table, 47
LS method, 47
macro-pixel, 42, 74, 116–121, 134, 145
Makowski, M., 77, 111
Index 195Matoba, O., 39
mean and standard deviation, 172
mixed-region amplitude freedom (MRAF), 81–84,
100–103, 110
monochromatic light, 1, 2
morphological dilation, 90
MRAF (mixed-region amplitude freedom), 81–84,
100–103, 110
multiple-image holographic encryption, 163, 167,
183
ND-OSH. See non-diffractive optical scanning
holography
N-LUT, 45–46, 74
noise-addition method, 89–91, 92–94, 106
noise region, 82–83, 103
non-diffractive optical scanning holography, 27–29,
37, 39
novel look-up table, 45–46, 74
numerical reconstruction, 18, 159, 162
off-axis hologram, 8–10, 19–21, 29, 31–32, 37, 76,
78, 115, 125, 160–162, 167, 179–180
one-step phase shifting holography, 25
one-step phase retrieval (OSPR), 90–92, 110
optical encryption, 153–155, 191–192
optical holography, 1, 3, 6–7, 11–12, 14, 19, 34–38,
40, 78
optical interference, 4
optical reconstruction, 9, 18, 124, 149, 167
optical recording, 5–6
optical scanning holography (OSH), 26–29, 37, 113,
190–191
OSH (optical scanning holography), 26–29, 37, 113
OSPR (one-step phase retrieval), 90–92, 110
Pan, Y., 38, 47, 146
parallel phase shifting hologram (PPSH), 24–25
Park, M.C., 112, 146
patterned phase-only hologram, 92–94, 100, 109
peak-signal-to-noise-ratio (PSNR), 116, 131
persistence of vision, 85, 91–92, 98
PFP (principal fringe patterns), 45–47
phase reservation and compression, 155, 192
phase shifting hologram (PSH), 21–25, 29, 34–35,
37
phase-only Fourier hologram, 79, 81
phase-only hologram (POH), 100–103, 106–111,
113–145, 150–151, 155–164, 167–170,
176–177, 183
phase-only hologram generation
iterative methods
direct binary search (DBS), 98
Gerchberg–Saxton algorithm (GSA), 79
IFTA multi-depth object, 85
IFTA multiple-frame averaging (IFTA-MF), 83
iterative Fourier/Fresnel transform algorithm
(IFTA), 80
mixed-region amplitude freedom (MRAF), 81
non-iterative methods
complementary sampled phase-only hologram
(CSPOH), 97
edge-enhanced noise addition, 89
edge-enhanced sampled phase-only hologram
(EESPOH), 96
one-step phase retrieval (OSPR), 90
patterned phase-only hologram, 92
random noise addition, 88
sampled phase-only hologram, 93
phase-shifting holography (PSH), 21–22, 29,
34–35, 37–38, 144
photographic film, 1, 6–9, 10–12, 19, 37, 78, 147
photographic films, 6
photography, 1, 6–7, 34
photon counting, 155, 192
pinhole, 6–7
pinhole camera, 6–7
pixel pitch, 74, 148
point-based method, 14–17, 29–30, 34–37, 40–41,
52, 69
Poon, T.-C., 24, 26, 39, 75, 111, 112, 121
PPSH (parallel phase-shifting hologram), 24–25
principal fringe patterns (PFP), 45–47
PSH (phase shifting hologram), 21–25, 29, 34–35,
37
random noise addition, 88
randomized lens-phase function, 155, 192
reflection, 1–2
refraction, 1–2
Refregier, P., 154, 191
sampled phase-only hologram, 93–97, 110, 164,
191, 192
Sanchez-de-la-Llave D., 118, 146
Sawchuk, A., 118, 146
Saxton, W.O., 79, 110, 111, 114
SBP (space–bandwidth product), 78, 150
scattering, 1–2, 69, 88–91
selective interpolation algorithm, 25
Shimobaba, T., 51, 74–75
Siemion, A., 77, 111
signal region, 82–83, 100–103, 110
silver halide, 6
single random phase encryption (SRPE), 155–157,
159–160, 163, 176–177, 190
SLM (spatial light modulator), 12–13, 76–78, 85,
109, 118, 145, 148–151
S-LUT, 47–50, 74
Snell’s law, 1
Song, H., 78, 111
space–bandwidth product (SBP), 78, 150
196 Indexspatial light modulator (SLM), 12–13, 76–78, 85,
109, 118, 145, 148–151
split SLM holographic display, 77
split look-up-table method, 47–50, 74
SPOH, 93–97, 110, 164, 191, 192
SRPE (single random phase encryption), 155–157,
159–160, 163, 176–177, 190
steganography, 147, 168, 190, 192
Stolz, C., 76, 111
symmetric encryption, 153
three-step PSH, 24, 25
Tsang, P.W.M., 29, 75, 121, 111–112, 145–146,
192–193
Tudela, R., 76, 111
twin image, 9–10, 11, 19–21, 78
two-step PSH, 24
UERD (uni-directional error diffusion), 114,
121–125, 129, 135, 138, 159, 162, 176–177,
183
uni-directional error diffusion (UERD), 114,
121–125, 129, 135, 138, 159, 162, 176–177,
183
Upatnieks, J., 7, 38
vertical light modulation factor, 48–49
virtual image, 3, 9–11, 19–21, 78, 150–151
virtual window, 50–51
warped wavefront recording plane (WWRP),
56–58, 60–62, 69–70, 73
Waters, J., 12, 190–191
wavefront recording plane (WRP), 51–74
wavefront recording plane (WRP) methods
basic WRP, 50
downsampled WRP, 54
interpolated WRP, 55
warped WRP, 56
WRP (wavefront recording plane), 51–74
WWRP (warped wavefront recording plane),
56–58, 60–62, 69–70, 73
Xia, P., 25, 39
Yamaguchi, T., 75
Yang, Z., 46, 74
Yoshikawa, H., 75
zero-order beam, 9–10, 11, 19–21, 78, 125
Zhu, L., 77, 111
كلمة سر فك الضغط : books-world.net

The Unzip Password : books-world.net

تحميل

يجب عليك التسجيل في الموقع لكي تتمكن من التحميل
تسجيل | تسجيل الدخول

التعليقات

اترك تعليقاً