Biomaterials Science – An Introduction to Materials in Medicine

Biomaterials Science – An Introduction to Materials in Medicine
اسم المؤلف
Buddy D. Ratner and Allan S. Hoffman
التاريخ
المشاهدات
394
التقييم
(لا توجد تقييمات)
Loading...
التحميل

Biomaterials Science – An Introduction to Materials in Medicine
Edited by
Buddy D. Ratner and Allan S. Hoffman
Center for Bioengineering and
Department of Chemical Engineering
University of Washington
Seattle, Washington
Frederick J. Schoen
Department of Pathology
Brigham and Women’s Hospital
and Harvard Medical School
Boston, Massachusetts
Jack E. Lemons
Departments of Biomaterials and Surgery
School of Dentistry and Medicine
University of Alabama at Birmingham
Birmingham, Alabama
CONTENTS
Contributors ix 2.6 Ceramics, Glasses, and Glass-Ceramics 73
Preface xi LARRY L. HENCH
Biomaterials Science.- An Interdisciplinary 2.7 Nafural Materjals 84
Endeavor IOANNIS v. YANNAS
BUDDY D. RATNER 1
2.8 Composites 94
HAROLD ALEXANDER
PART I
MATERIALS SCIENCE AND 2.9 Thin Films, Grafts, and Coatings 105
ENGINEERING BUDDY D. RATNER AND ALLAN S. HOFFMAN
CHAPTER 1 Properties of Materials 2.10 Fabrics 118
SHALABY W. SHALABY
1.1 Introduction 11
JACK E. LEMONS
2.11 Biologically Functional Materials 124
ALLAN S.HOFFMAN
1.2 Bulk Properties of Materials 11
FRANCIS W. COOKE
PART II
1.3 Surface Properties of Materials 21 PART II
BUDDY D RATNER BIOLOGY, BIOCHEMISTRY,
CHAPTER 2 Classes of Materials Used in Medicine AND MEDICINE
2.1 Introduction 37 CHAPTERS Some Background Concepts
ALLAN S. HOFFMAN
3.1 Introduction 133
BUDDY D. RATNER
2.2 Metals 37
JOHN B. BRUNSKI
3.2 Proteins: Structure, Properties, and Adsorption
2.3 Polymers 50 to Surfaces 133
SUSAN A. V1SSER, ROBERT W. HERGENROTHER, THOMAS A. HORBETT
AND STUART L.COOPER
3.3 Cells: Their Surfaces and Interactions with
2.4 Hydrogels 60 Materials 141
NIKOLAOS A. PF.PPAS JEFF M. SCHAKENRAAD
2.5 Bioresorbable and Bioerodible Materials 64 3.4 Tissues 147
JOACHIM KOHN AND ROBERT LANGER FREDERICK J. SCHOEN
Vvi CONTENTS
CHAPTER 4 Host Reactions to Biomaterials and
Their Evaluation
4.1 Introduction 165
FREDERICK .). SCHOEN
4.2 Inflammation, Wound Healing, and the Foreign
Body Response 165
JAMES M. ANDERSON
4.3 Immunology and the Complement System 173
RICHARD J. JOHNSON
4.4 Systemic Toxicity and Hypersensitivity 188
KATHARINE MERRITT
4.5 Blood Coagulation and Blood—Materials
Interactions 193
STEPHEN R. HANSON AND LAURENCE A.HARKER
4.6 Tumorigenesis and Biomaterials 200
FREDERICK J. SCHOEN
4.7 implant-Associated Infection 205
ANTHONY G. GRISTINA AND PAUL T. NAYLOR
CHAPTER 5 Testing Biomaterials
5.1 Introduction 215
BUDDY D. RATNER
6.4 Mechanical Breakdown in the Biological
Environment 267
CARL R. McMILLIN
6.5 Pathologic Calcification of Biomaterials 272
YASHWANT PATHAK, FREDERICK J. SCHOEN, AND ROBERT J. LEVY
CHAPTER 7 Application of Materials in Medicine
and Dentistry
7.1 Introduction
JACK E. LEMONS
7.2 Cardiovascular Applications
PAUL DIDISHEIM AND JOHN T. WATSON
283
283
7.3 Nonthrombogenic Treatments and Strategies 297
SUNG WAN KIM
7.4 Dental Implants
JACK E. LEMONS
7.5 Adhesives and Sealants
DENNIS C. SMITH
7.6 Ophthalmologic Applications
MIGUEL F. REFOJO
7.7 Orthopedic Applications
J. LAWRENCE KATZ
5.2 In Vitro Assessment of Tissue Compatibility
SHARON I. NORTHUP
215 7.8 Drug Delivery Systems
JORGE HELLER
346
5.3 In Vivo Assessment of Tissue Compatibility 220
MYRON SPECTOR AND PEGGY A. LALOR
5.4 Testing of Blood—Materials interactions 228
STEPHEN HANSON AND BUDDY D. RATNER
5.5 Animal Models 238
BRAD H. VALE, JOHN E. WILLSON, AND STEVEN M. NIEMI
CHAPTER 6 Degradation of Materials in the
Biological Environment
6.1 Introduction 243
BUDDY D. RATNER
6.2 Chemical and Biochemical Degradation of
Polymers 243
ARTHUR J. COURY
6.3 Degradative Effects of the Biological Environment
on Metals and Ceramics 260
DAVID F, WILLIAMSAND RACHEL L, WILLIAMS
7.9 Sutures
DENNIS GOUPIL
356
7.10 Burn Dressings 360
JEFFREY B. KANE, RONALD G. TOMPK1NS, MARTIN L.YARMUSH,
AND JOHN F. BURKE
7 . 1 1 Bioelectrodes
LOIS S. ROBBLEE AND JAMES D.SWEENEY
7.12 Biomedical Sensors and Biosensors
PAUL YAGER
CHAPTER 8 Artificial Organs
8.1 Introduction
FREDERICK J. SCHOEN
8.2 Implantable Pneumatic Artificial Hearts
KEVIN D. MURRAY AND DON B. OLSEN
8.3 Extracorporeal Artificial Organs
PAUL S. MALCHESKY
400CONTENTS vii
PACT III 9.7 Correlations of Material Surface Properties with
PRACTICAL ASPECTS Biological Responses
OF B1OMATER1ALS
9.8 Implant Retrieval and Evaluation 451
CHAPTE CHAPTER 9 R 9 Implant Implant s ansd anDevice d Device s • J s AMES M. ANDERSON
CHAPTER 10 New Products and Standards
9.1 Introduction 415
FREDERICK J. SCHOEN 10.1 Introduction 457
JACK E. LEMONS
9.2 Sterilization of Implants 415
JOHN B. KOWALSKI ANDROBERT F. MORRISSEY 10.2 Voluntary Consensus Standards 457
STANLEY A. BROWN
9.3 Cardiovascular Implantation 420 10.3 Product Development and Regulation 461
LINDA M. GRAHAM, DIANA WHITTLESEY, AND BRIAN BEVACQUA NANCY B MATED
9.4 Dental Implantation 426
A. NORMAN CRANIN, ARAM SIRAKIAN, ANDMICHAEL KLEIN CHAPTER 11 Perspectives and Possibilities in
Biomaterials Science
BUDDY D. RATNER 465
9.5 Ophthalmic Implantation 435
STEPHEN A. OBSTBAUM APPENDIX Properties of Biological Fluids
STEVEN M. SLACK 469
9.6 Implant and Device Failure 443
ALLAN S,
INDEX
A Alginates, 120 Aramid (aromatic polyamide fiber), 96
Absorbable materials, see Bioerodable Alloys, see also specific ASTM numbers Association for the Advancement of
materials cobalt-based, 41—46 Medical Instrumentation, 240, 459
Activated-partial thromboplastin time galvanic corrosion, 262 ASTM, see American Society for Testassay, 298—299 stainless steel, 41 ing and Materials
Adhesion, see Adhesives and sealants; titanium-based, 46—50 ASTM F67 (titanium), 46, 47
Bacterial adhesion; Cell adhesion; Alternative pathway, 177-178 ASTM F75 (cobalt), 41-45
Platelet adhesion Alumina (A12O3) ASTM F90 (cobalt), 45
Adhesions, prevention of, 65 degradation in vivo, 266 ASTM F136 (titanium), 47-50
Adhesives and sealants in dental implants, 76—78, 313 ASTM F138 (stainless steel), 41
hard tissue adhesives in hip replacement, 76-77 ASTM F.139 (stainless steel), 41
composite polymer-ceramic resins, in joint replacements, 343 ASTM F562 (cobalt), 46
325-327 properties, 76-78 ASTM F799 (cobalt), 45
glass ionomer cements, 325 American Dental Association, 459 ASTM grain size, 41
methyl methacrylate, 324 American National Standards Institute, Atactic polymers, 52
resin cements, 325 459 Atomic force microscopy, 32—33
zinc phosphate, 325 American Society for Testing and Mate- Atomic structure
zinc polycarboxylate, 325 rials, 18, 215, 217, 457 carbon, 11—12, 12—13
mechanisms American Type Tissue Culture Collec- ceramics, 12
adsorption, 320—322 tion, 216 inorganic glasses, 13-14
diffusion, 322 Amorphous state, defined, 14 metals, 12
electronic transfer, 322 Animal models polymers, 14
mechanical interlocking, 320 AAAS resolution on use of animals, Atrophy, stress protection, 101, 102—
ophthalmologic applications, 240-241 104,222-223
333—334 laws and regulations, 238-239 Austenite phase, 41
overview, 319—320 species considerations, 239—240 Autoclaving, 417
research directions, 327 standards, 459-460 Autologous saphenous vein, 287
soft tissue adhesives Animal and Plant Health Inspection A-W glass-ceramic (A-WGC), in bone
bioadhesives, 323—324 Service, 239 bonding, 79
cyanoacrylate esters, 323 Animal Welfare Act, 239
fibrin sealants, 323 Anisotropy, defined, 16—17
gelatin-resorcinol-formaldehyde Annealing B
glue, 323 metals, 21 Bacterial adhesion
Adsorption, protein polymers, 271 and biomaterial corrosion, 211
and leukocyte localization, 168, 179 Antibiotic resistance, in biomaterial-cen- and matrix proteins, 210
mechanisms, 136-140 tered infections, 212 mechanisms, 209-210
Agar diffusion test methodology, 218 Antigenicity, see Immunogenicity microzones, 211
Albumin Apheresis, 404-410 research results, 205-206
and bacterial adherence, 210 APHIS, see Animal and Plant Health In- species differences, 208
surface hydrophilicity modification, spection Service Barriers, temporary, 65
298 Apoptosis, defined, 157 BCC, see Body-centered cubic structure
473474 INDEX
B cells, structure and functions, 187 iridium, 373—374 Blood-material interactions
Bend testing, 18 iridium oxide, 374 blood compatibility, 229—232
Bioabsorption, see Bioerodable mate- nerve cell stimulation, 371 classifications, 283—284
rials nerve regeneration, 371 testing
Bioactive fixation, defined, 74 platinum, 373 anticoagulants, 233
Bioadhesives, 323-324 silver, 373 blood flow effects, 233-234
Biobrane, 366 stainless steel, 374 blood handling, 233
Bioceramics, see also Ceramics stimulation waveforms, 372—373 donor species considerations, 232,
alumina, 76-78, 343 tantalum, 374 239-240
applications, 82f Bioerodable materials interaction time, 234-235
bioerodable, 74—75, 83 applications, 64—65, 353 in vitro, 235
degradation in vivo, 265—267 bioerodable composites, 101—102 in vivo, 235—237
microstructure, 75—76 ceramics, 82, 83 overview, 228-229
processing methods, 75—76 composites, 96, 97, 101—102 thrombogenicity, 229—231, 297—298
tissue attachment, 73—75, 343 defined, 65—66 Blood pumps
zirconia, 77 mechanisms of bioerosion, 69—70 calcification, 273
Biocompatibility, 2, 11, 445-447 natural polymers, 84-94 titanium microsphere lining, 294
blood compatibility, 228—229 rate of bioerosion, 70—72 Blood substitutes, 295
cytotoxicity, 215—216 synthetic polymers, 66—69, 96, 97 Body-centered cubic structure, 12
systemic toxicity Biofilms Bonds, interatomic
immune response, 180, 191-192 and biomaterial-centered infections, covalent, 11-12
nonimmune, 189 208 hydrogen, 12
thrombogenicity, 229—231 defined, 210—211 in adsorption bonding theory, 320
Biocompatibility testing detachment, 211-212 in hydrogels, 60
application-specific tests, 219 Biofix bone pins, 69 in polymers, 14
blood-material interactions, 228— Bioglass, 75, 79 ionic, 11
238, 298-299 Biological fixation, 74, 78 metallic, 12
hierarchy, 240 Biomedical sensors, see also Biosensors van der Waals, 12
in vitro tests blood gas sensors, 384 in adsorption bonding theory, 320
activated-partial thromboplastin consuming vs. nonconsuming, in hydrogels, 60
times assay, 298—299 376-377 in polymers, 14
agar diffusion test, 218 electrochemically active sensors, Bone bonding
direct contact test, 217 383—384 bioactive ceramics, 78—81, 343
elution test, 218 ion-selective electrodes, 383 dental implants, 311-312, 317
safety factors, 216 optical pH sensors, 382-383 hydroxyapatite implants, 83
thrombin and ATIII adsorption optical thermometers, 380—381 porous polymer coatings, 342
test, 299 overview, 376-379 synthetic hydroxyapatite, 96, 343
thrombin chromogenic assay, 299 pH potentiometers, 382 Bone cement disease, 268—269
in vivo tests, see also Animal models pressure transducers, 381 Bone remodeling
controls, 225 resonance temperature detectors, 380 and dental implants, 311—312
criteria, 228 thermistors, 380 and implant stiffness, 102—104,
histology and histochemistry, thermocouples, 380 222—223
225-226 Biomer Brittle fracture, 18
immunohistochemistry, 226 degradation, 270 Bulk erosion, defined, 70
mechanical testing, 227 and heparin immobilization, Burn dressings
percutaneous injection, 224 303-304 amnion temporary dressing, 365
scanning electron microscopy, 227 Bioresorbable materials, see Bioeroda- burn classifications, 360
selecting implant sites, 222-224 ble materials; Degradable implants natural skin grafts, 361—362, 365
surgical protocols, 224—225 Biosensors relevant properties of skin substitutes
transmission electron microscopy, acoustic/mechanical, 386—387 biodegradation rate, 363
226-227 biomembrane-based, 387 dimensions and pore size,
standards, 459-460 defined, 384-385 362-363
thrombogenicity, 229-231,298—299 electrochemical, 386 macrostructure, 364
Biodegradable implants, see Degrad- immobilization of biochemistry, 385 minimal antigenicity, 363—364
able implants optical waveguide, 386 porosity, 362
Bioelectrodes potential-based, 386 strength, 363
applications, 371 research directions, 387-388 wetting and adherence, 362
capacitor electrodes, 374 thermal and phase transition, 387 synthetic graft materials
charge transfer mechanisms, 372 Blood gas sensors, 384 culture grafts, 367—368INDEX 475
multilaminar dressings, 366-367, Catheters, 289-290, 424-425 ASTM F90, 45
368-369 catheter-related thrombosis, 290 ASTM F562, 46
single laminar polymer dressings, Celgard, in oxygenator membranes, ASTM F799, 45
365-366 285 in dental implants, 313, 314, 316
n-Butyl cyanoacrylate, in soft tissue ad- Cell adhesion in joint replacements, 340
hesives, 323 adhesive proteins, 141, 149 Collagen
adhesive sites, 142-143 in artificial skin, 364-365, 366
cell-cell contact sites, 142-143, 149 biodegradable implants, 88-91
cell-substratum contact sites, 143 bovine, as composite matrix, 97
C critical surface tension, 146 calcification, 279
Calcification integrin receptors, 141 chemical modifications, 88-91
assessment techniques, 275—276 kinetics, 143-144 m extracellular matrix analogs,
bioprosthetic heart valves, 272-273, overview, 209 92-94
278-279 porosity,’145 immunogenicity, 91
blood pumps, 273, 278 spreading mechanisms, 144-146 native structure, 85-87
contraceptive intrauterine devices, ancj surface contact angle, 33 physical structural modifications,
2-‘^ surface roughness, 145 8/~os
homografts, 273 thermodynamics, 145 porosity, 88
overview, 272 and wettability, 145 ryPe *> n> 1U»IV’ 85″87′ 150-153
pathophysiology, 277-279 Cell differentiation, 149-150 W V> 153
prevention, 279-280 Cell regeneratjon5 155 Collagen-glycosammoglycan copolyimplant pretreatment, 279 CeU structure ‘ mers, 88, 92-94
mhibitors, 279-280 compartmentalization, 148-149 Complement system
soft contact lenses, 274-275, 279 cytoskeleton 141 activation during
urinary prosthesis encrustation, 275 < 141147 cardiopulmonary bypass, 285
Calcitite,’ 7 , 5 ^ i TT i Cellula \\ \ \ r adaptations ‘ .• • , in j wound uhealin r hemodialysis g , ; ,’,. 180—18 . , 3
Calcium phosphate, see also Hydroxy- , 17~ adsorption to biomatenais, 168
apatite; 6-Tricalcium phosphate ^ .. ‘.,, – , , . alternative pathway, 177-178
. ,
r
. „. „-, Cements, see Adhesives and sealants … . . ‘_~ .„,,
in biocerarmcs, 81-83 . . _. . cellular activation, 179—180
, . . . . oo -»^ Ceramics, see also Biocerarmcs . . . , ‘
bioerosion mechanisms, 83, 266 , .~ classical pathway, 173—177
n^ atomic structure, 12 _, .
in composites, 96 , . i i i • 0< o-» Composites
^ ,s ~>c-> calcium phosphate-based, 81-83 , . , , , 0, n_
Capronor, 66, 353 . ,,. . . . . bioerodable, 96, 97
Carbid ~ , . ,e , phase .. , 41. a ° s cladding o r n metal joint prosthe classification – , .c n , 95r1
ses 343
Carbon, atomic structure, 12—13 .’ 1 – 1 -, -, continuous fiber, 98—100
r Carbo . i c n fiber i j , productio *• a n process, & s coatings r on dental implants fabrication , 313 t i – – Q , 97—9 -, Q08
95-96 m comP°s^ 96 isotropic? 10Q
Carbonization, 96 porous, 78 matrix systems, 96-97, 102-104
Cardiopulmonary bypass systems, Ceravital, 75, 79 bioerodable, 101-102
284-285 CG copolymers, see Collagen-glycos- mcchanical properties, 98-101
Cardiovascular applications, see also ammoglycan copolymers overview, 94-95
Hearts, total artificial; Thrombo- Chemotaxis, and leukocyte emigration, paniculate, 95
genicity reinforcing materials
blood-material interactions, Chitosans, 120 carbon fiber, 95-96
283-284 Chondroitin 6-phosphate, 365 ceramics, 96
blood pumps, 294 Chondroitin 6-sulfate, 366-367 glass fiberS) 96
blood substitutes, 295 Chromium polymer fibers, 96
cardiopulmonary bypass systems, all°ys with cobalt, 41-46 short-fiber, 100-101
284-285 corrosion and passivation, 263 Compression molding, 98
catheters, 289-290, 424-425 Classical pathway, 173-177 Compression testing, 17-18
heart valves, 285-286, 422-424 Closed-mold processes, 97-98 Connective tissue
inferior vena cava filters, 292 Coagulation jn vjvo biomaterial assessment,
intra-aortic balloon pumps, 292-293 control, 197-198 222-223
pacemakers, 269-270,290-291 mechanisms, 196-197 structure and function, 154
stents, 289 overview, 195-196 Contact angle measurement, 23
vascular grafts, 287-288, 420-422 Coatings, on metallic implants, 40, 74, correlation with biological reactivity,
ventricular assist devices, 293-295 342 33, 447
Casting, investment, 39—40 Cobalt techniques, 26?
Cataract, 436-437 alloys, 41-46 Contact lenses
Catgut, see Poly(glycolic acid) ASTM F75,41-45 flexible fluoropolymer, 330476 INDEX
Contact lenses (continued) definitions, 65—66 membrane-controlled, 348
rigid, 330 fracture fixation, 101-102 monolithic, 347-348
soft hydrogel, 274—275, 329—330 sterilization, 72; see also Sterilization overview, 346—347
Continuous pultrusion, 98 of implants regulated
Contraceptive implants, 66, 349,353, storage stability, 72 externally regulated, 288—289,
354 Degradation, unintended 354-355
Contraceptive intrauterine devices, 274 ceramics, 265-267 glucose concentration-modulated
Copolyroers, 51-52, 54 corrosion, metallic, 101 (insulin delivery), 355
properties, 59—60 corrosion and bacterial infection, morphine-triggered (naltrexone),
Corals, and porous ceramics, 78 211 355
Corneal implants, 331 metals, 261-265 sustained-release products, 347
Corrosion polymers, 243-258 transdermal, 349
crevice, 264 hydrolytic, 244-249 water penetration controlled
fretting, 264 leaching, 269 applications, 351
galvanic, 262, 265 oxidative, 249-258 osmotically controlled, 349-350
intergranular, 265 stress crazing5 269 swelling-controlled, 63-64, 350
m vivo swelling, 269 Ductility, 18
and dynamic stress, 266, 267 systemic toxicity, 189 Durapatite, 75
overview, 260 Denaturation, protein, 136 Dynamic mechanical analysis, 55—56
protein influences, 263 Dental implants
stress corrosion cracking, 265, 266 dinical environment5 310
surface passivation, 262, 263 designs? 308_310 E
tissue reactions, 101, 268 endosteal implants, 312-315, EDXA, see Energy-dispersive X-ray
microbiological, 267-268 431-432 analysis
pitting, 264 fibre-osteal integration, 317 Elasticity, 15, 16
surface passivation 115 w 426_429 of ^ 337.338
CP titanium, see ASTM r67 • . T , ii/- ->\-> • 10
_ , ,, ‘ . _ mtraoral prostheses, 316-317 testing, 18
Creep, denned, 19 t . , -1*~. ,-,, . Q-, ^ n
„ . . , , , „_. materials, 312if Elastin, 92, 153
Critical stress intensity factor, 20 . • -> 11 -> 1 -i T ^ -? r-i r L • i
„ . , , , . ~,, osteomtegration, 311—312, 317 Electron spectroscopy tor chemical
Critical surface tension, 23 , . , . „.,- .-,, , . ,-, a5
, „ ., . „ ‘ .._ packaging and preparation, 432-434 analysis, 23-28
a n d cell adhesion, 146, 4 4 7 v 1 1 1 – , ^ – , • • j • -,-,
j ,, j – ~ tAA IAS removable dentures, 317 contamination detection, 33
and cell spreading, 144-146 . . . . ‘ _ _ , 0 . . . . , . . . ‘ .
,-, ,,• i c-i research directions, 317-318 correlation with biological reactivity,
Crystalline polymers, 52 . . . . . ,,r -,., ^~.
r ‘ aijif_ ,c subpenosteal implants, 315-316, 33
Vjryatdiiiics, u Atn A-H i i- i i • • i-»
Crystal structures, 12-13 ^ 429~4{l , , , ^ c,and ^colored titanium 33
^, i Denture prostheses, removable, 317 Electrostatic spinning, 121
Ubiocompnatibility reactions, 180-183 Dermagraft, 368 ELI alloy, see ASTM F136
“first use syndrome” in cardiopulmo- Desmosomes, structure and function, Elution test methodology, 218
narv bvoass 285 ^^’ ^^” ^^ Endosteal implants, seeDental imCyanoacrylate surg’icaUdhesives, 323 Dexon sutures’ 69 Plants
ophthalmologic applications, Dextran, 120 Energy, surface, 23; see also Contact
333—334 Diabetes, see Insulin delivery implants angle measurement
Cytokines 183—186 Dialysis, see Hemodialysis; Organs, ar- and cell spreading, 144—146
Cytoskeleton, and cell adhesion, 141 tificial immunoglobulin G adsorption correCytosol, defined, 148/”, 149 Differential scanning calorimetry, 56 lation, 33
Cytotoxicity Direct contact test methodology, 217 Energy-dispersive X-ray analysis, 31
assay methods, 217-220 Di-para-xylylene, in parylene coatings, calcification assessment, 276
defined, 215 115-116 Epikeratophakia (corneal transplant),
DLVO theory, 143-144 331
DPX, see Di-/?#ra-xylylene Epithelium
£) Drug delivery systems in vivo biomaterial assessment,
Dacron, see Polyethylene tere- chemically controlled 223-224
phthalate) applications, 353-354 structure and function, 153—154
Daughter cells, defined, 156 bioerodable core, 353 ePTFE, see Expanded poly(tetrafluoroDegradable implants bioerodable matrix, 67-68, ethylene)
applications, 64-65 353-354 ESCA, see Electron spectroscopy for
bioerodable composites, 101—102, covalently attached to polymer chemical analysis
346 backbone, 352-353 Ethical concerns, It
bone plates, 345—346 diffusion-controlled Ethylene oxide sterilization, 72,
collagen-based, 88-91 applications, 348-349 417-418INDEX 477
Exocytosis, and oxidation of polymer Foreign body reaction observing, 15
implants, 251-252 fibrosis, 171-172 and yield stress, 41
Expanded poly(tetrafluoroethylene) form and topography of implant sur- Grain structure, 15
in mechanical heart valves, 286 face, 171, 204 Granulation tissue, 170-171
in struts of bioprosthetic heart and host defense impairment, 212 Granulomas, defined, 170—171
valves, 286 overview, 171
in vascular prosthesis, 121—122, 288 progression to neoplasia, 204
Extracellular matrix, see also Collagen simulating neoplasms, 201 H
constituents and functions, 141— 45S5 glass, properties, 78 HA, see Hydroxyapatite
142, 150—153 Fourier transform infrared spectrome- Hall-Petch relationship, 41
synthetic analogs ter,31 Haynes-Stellite 21, see ASTM F75
nerve regeneration template, 94 Fracture fixation devices Haynes-Stellite 25, see ASTM F90
skin regeneration template, 92—94 bioerodable, 96 HCP, see Hexagonal close-packed
Eye, see Ophthalmologic applications bioerodable composites, 101—102 structure
bone plates, 345-346 Heartmate Ventricular Assist System,
corrosion and allogenic responses, 294
F 101 Hearts, total artificial, see also VentricFabrication process factors degradable polymers, 65 ular assist devices
annealing, 21, 271 Fracture stress, 18 clinical use, 398—399
and material strength, 20—21 Fracture toughness, 20; see also history, 293, 389—390
metal implants, 39-40 Toughness Jarvik-7, 390, 393
Fabrics FTIR spectrometer, see Fourier trans- natural heart physiology, 391
alginates, 120 form infrared spectrometer Utah total artificial heart
cellulose fibers, 118 design and function, 392—395
characterization, 122 hemolysis, 397-398
chitosans, 120 G immunosuppression, 396
construction, 120—122 GAGs, see Glycosaminoglycans infection problems, 396
electrostatic spinning, 121 Gap junctions (cell-cell contact), 142, mechanical valve failure, 397
fiber bonding, 120-121 148f, 149 monitoring, 395-396
melt-blowing, 121 Gelatin-resorcinol-formaldehyde glue, postoperative hemorrhaging, 396
solution-blowing, 121 323 suture line leakage, 396—397
dextran, 120 Gel permeation chromatography, 54 Heart valves
external applications, 122 Genotype, defined, 150 bioprosthetic, 286,423—424
internal applications, 122-123 Glass, see also Bioceramics calcification, 272—273
overview, 118 atomic structure, 13—14 failure by swelling, 269
simulated in vitro testing, 122 bioactive, 78-81 mechanical, 285-286,424
Face-centered cubic structure, 12 glass-ceramics, 76 overview, 422—423
Fatigue, defined, 20 processing method, 75 HEMA, see 2-hydroxyethyl methacFCC, see Face-centered cubic structure Glass fibers, in composites, 96 rylate
FDA, see U.S. Food and Drug Adminis- Glass ionomer cements, 325 Hematopoiesis, 183
tration Glass transition temperature, 75 Hemidesmosomes, defined, 142
FEP, see Fluorinated ethylene pro- for polymers, 52 Hemodialysis
pylene Glaucoma, 332 and activation of complement,
Ferrite phase, 41 Glow discharge deposition, see Radio- 180—183
Fibrinogen frequency glow discharge plasma methods, 400-403
coagulation mechanisms, 197 deposition Hemofiltration, 403—404
in soft tissue adhesives, 323 Glues, see Adhesives and sealants Hemoperfusion, 404
Fibrinolytic system, 198 Glycosaminoglycans Heparin-contaimng surfaces
Fibrin sealants, 323 in artificial skin, 365 heparin-grafted polymer coatings,
Fibronectins in extracellular matrix, 153 305—306
and bacterial adherence, 210 properties, 92—93 heparin immobilization, 128,
in extracellular matrix, 153 Golgi complex, structure and function, 302—304
Fibrosis, mechanisms, 171-173, 222 148/, 149 heparin-releasing systems, 300—302
Pick’s first law,348 Gore-Tex, 59 testing methods, 298-299
Filament-winding process, 97 GPC, see Gel permeation chromatog- Hexagonal close-packed structure, 12
Fixation (histology), 158-160 raphy Higuchi equation, 348
Fluorinated ethylene propylene, 59 Grain size Hip replacement, see also Orthopedic
Fluosol, 295 ASTM number, 41 applications
Focal adhesion, defined, 143 and fabrication history, 41 alumina, 76-77478 INDEX
Hip replacement (continued) formation on calcium phosphate ce- Intraocular lens implants
bone bonding, 343 ramies, 82 capsular ©pacification, 441
bone remodeling, 102-104 2-Hydroxyethyl methacrylate dislocations, 440
ceramics, 343 calcification, 274-275 history, 437-439
composites, 344-345 properties, 63 inflammation, 440—441
metals, 340-342 in soft contact lenses, 57 iris chafing, 440
polymers, 342 Hypersensitivity reactions, 191-192 one-piece, 441
Histology overview, 332—333
artifacts, 162 oxidative degradation, 257
in vitro biomaterial assessment, I small incision lenses, 442
225-226 Immobilization surface modification, 441—442
techniques, 157-162 heparin, on blood-contacting sur- Ion beam implantation, 111-112
dehydration and embedding, 160 faces 298 Iridium, in bioeiectrodes, 373—374
fixation, 158-160 methods, 110, 125—128 Iridium oxide, in bioeiectrodes, 374
interpretation, 162 polyethylene oxide), on blood-con- Islet cel1 transplantation, 410-411
sectioning, 160-162 tacting surfaces, 298 ^O, see International Standards Orgastaining, 158f, 162 support designs, U4t nization
Homografts therapeutic applications, 125* Isobutyl cyanoacrylate, in soft tissue adcalcification, 273 to transducers in biosensors, 385 hesives, 323
defined, 273 Immunogenicity Isotactic polymers, 52
heart valves, 273, 286 of biomaterials 177 Isotropic composites, 100
venous, 287 of biomaterial ^ear products, 191 Isotropy, defined, 16
Homopolymers of collagen.based implants, 88, 91 IUD’ see Contraceptive mtrautennededasses’ 58f Immunoglobulins vlces
properties, 57-59 adsorption to biomaterials, 168
Hooke’slaw, 15 16 structure and function, 186
and composite laminae, 99—100 T u- u • ^ TT^ I
. -.a AC Immunohistochemistry, 226 J
Hot isostatic pressing, 39,45 T , 1-7-. -100 Jarvik-7 total artificial heart, 390, 393
.
r
, »’ ‘ Immunology, 173-188 JT . . _ . ‘ . ‘ ..
Humane ammal care and use,see Am- , , . \ *?* ACA Joint replacement, see Orthopedic appli-
, , , Implant retrieval, 451-454 J r ‘ r rr
mai models T , ./, cations
.T . . , rt_ Implants,seespecific types
Hyaluronic acid, properties, 92 T f . . . , -,
.,, . . ;– Industrial involvement,7
Hydration ratio, 62 . , . . . . . .
T T , , » r» i Infection, biomatenal-centered ^
Hydrogels, see also Polymers … . K.
calcification, 274—275,279 . . ‘ Kelvin-Voight rheological model, 340
classification , •£• • sn , 60 m. . artmcia & l organs’ , 21_2_ v . _ n Kevlar , . , seeArami .,, d (aromati . , c polyarncross-linkin i – , – j g density • /-> , 63 bacteria . l pathogens id , 207—208 – j r\ e fiber\ )
drug delivery systems, 63-64 ™ture strategies’ 212-213 K^ sgg Critical stress intensity factor
heparin-releasing. systems, 301-302 host defense imPairment mecha- Ki(jney agsist devic^ 400_404
molecular weight between cross- nisms, 212
links 62-63 microbiological sampling, 208
overview,’60 overview, 205-206 L
preparation, 62 and Polymer degradation, 246 L_929 cdl Unej 217
soft contact lenses, 329-330 Inferior vena cavafilters,292 Lablk cells> defined) 156
structure, 60-62, 62-63 Inflammation Langhans’ cells, and paniculate biomaswelling behavior, 62 acute’ mechanisms, 167-168 terialSi 171
Hydrogen bonds, 12 chronic, mechanisms, 168-170 Langmuir-Blodgett deposition, 112
adsorption bonding theory, 320 cytokine factors, 185-186 Lens, artificial, see Intraocular lens imm polymers, 14 ys- foreign body tumorigenesis, 204 p}ants
Hydrolysis (polymer implants) overview, 166—167 Leukocytes, see also Lymphocytes;
clinical experience, 247-249 and polymer degradation, 246 Macrophages; Monocytes; Neutrokinetics, 245-246 Infrared spectroscopy, 31, 55 phils
mechanisms, 70, 244-246 Injection molding, 98 in acute inflammation, 168
Hydron, 366 Insulin delivery implants, 355 in chronic inflammation, 168-170
Hydroxyapatite Integrin receptors, and cell adhesion, varieties and functions, 186-188
as anticorrosive coating, 74 141 Liver assist devices, 410
applications, 83 Interleukins, 185-186 Load-deflection testing, 17
calcification, 276 International Standards Organization, Loads, dynamic, 20
in composites, 96 215, 217, 459-460 Lost wax process, see Casting, incrystalline structure in bone, 335 Intra-aortic balloon pumps, 292—293 vestmentINDEX 479
Lucite, see Poly(methyl methacrylate) Methyl methacrylate, 63 Neutrophils
Lung assist devices, 410 Methyl methacrylate cements, 324 in acute inflammation, 166, 168
Lymphocytes Microporosity, and tensile strength, 83 complement receptors, 179, 180
in chronic inflammation, 169 Microscopy and cytokines, 183
varieties and functions, 149, calcification assessment, 275 functions, 149
187-188 tissue analysis, 157-162 hematopoiesis, 183
Lysosomes, structure and function, Microstructure oxidation of polymer implants,
148f, 149 bioceramics, 75-76 249-252
cobalt-based alloys, 41—46 structure and functions, 186—187
and fabrication history, 20—21, Nexus, 142
M 75-76 Nitinol, 289
MAA, see Methacrylic acid overview, 14-15 Nitriding, defined, 40
MAC, see Membrane attack complex stainless steels, 41 NMR, see Nuclear magnetic resonance
Macrophages titanium-based alloys, 47—50 Norplant, 349
in acute inflammation, 168 Microzones, defined, 211 NRT, see Nerve regeneration template
in chronic inflammation, 166, Mitochondria, structure and function, Nuclear magnetic resonance, 55
169-170 148/”, 149 Nucleus, structure and function, 148/i
complement receptors, 180 MMA, see Methyl methacrylate 149
and cytokines, 185 Modulation (cell), 150 Number average molecular weight, 51
in foreign body reaction, 171 Molding techniques, 97—98 Nylon
functions, 149 Molecular weight between cross-links degradation, 247—249
in granulation tissue, 170 (hydrogel), 62—63 properties, 59
hematopoiesis, 183 Molecular weight (polymer), 51
oxidation of polymer implants, determination, 54—55
249—252 Monoclonal antibodies, 191
structure and functions, 187 Monocytes O
Macula adherens, 142 in chronic inflammation, 166, 169 Ocusert, 349
Maleic anhydride, 63 complement receptors, 180 0.2% Offset yield strength, 18, 19
Malleability, see Ductility oxidation of polymer implants, OHAp, see Hydroxyapatite
Matrix systems (composites), 95, 249-252 Open-mold processes, 97
96-97 structure and functions, 187 Ophthalmologic applications
Maxillofacial prostheses Monomers, defined, 50 anatomy, 435—436
materials, 315 Mononuclear phagocytic system, 169 artificial endothelium, 332
oxidative degradation, 257 Morphological fixation, defined, 74 cataract surgery, 436—437
Maxwell rheological model, 340 MP35N alloy, see ASTM F562 contact lenses
Medical devices Mucosal implants, 316 flexible fluoropolymer, 330
development progression, 6f Multiphase materials, defined, 15 overview, 328—329
FDA approval process, 462—463 Muscle tissue rigid, 330
FDA classifications, 462 in vivo biomaterial assessment, 223 soft hydrogel, 329-330
regulations, 461—464 structure and function, 154 corneal implants, 331
required testing, 463—464 Mutagenicity, testing, 460 glaucoma, 332
standards, 457-460 drug delivery system, 349
Melt-blowing, 121 pressure relief implants, 332
Membrane attack complex, 178—179 N intracorneal implants, 332
Membrane osmometry, 54—55 National Institutes of Health, 215, 239 intraocular lens implants
Memory metal, see Nitinol Natural materials, see Collagen; Elas- capsular ©pacification, 441
Metallic implants tin;Glycosaminoglycans dislocations, 440
corrosion, 101 Nearnst equation, 261 history, 437—439
corrosion and bacterial infection, Necrosis, defined, 157 inflammation, 440-441
211 Neoplastic growth, distinguishing char- iris chafing, 440
Metals, see also specific metals and ap- acteristics, 200 one-piece, 441
plications Nerve regeneration template, 94 overview, 332—333
alloys, 41—50 Nerve tissue small incision lenses, 442
atomic structure, 12 in vivo biomaterial assessment, 224 surface modification, 441—442
fabrication, 37—40 regeneration, and bioelectrodes, 371 retinal detachment surgery, 333
microstructure, 15 structure and function, 154 Oppenheimer effect, defined, 202
Methacrylic acid, 63 Neutropenia Opsonins
Methyl cyanoacrylate, in soft tissue ad- during cardiopulmonary bypass, 285 and acute inflammation, 168
hesives, 323 during hemodialysis, 181 complement receptors, 179—180480 INDEX
Organelles, structure and function, Oxidation, polymer implants, 249-258 consumption
148/1 149 device-mediated, 255—257 and implant surface analysis, 33
Organs environmentally induced, 257-258 and thrombogenicity, 195
compact vs. tubular, 155 host-induced, 249—252 release reaction, 195
organization, 155-156 metal ion-induced, 255-257 structure and functions, 193-195
Organs, artificial, see also Hearts, total stress cracking, 252-255 thrombus formation, 233
artificial Oxygenators, 410 Platinum, in bioelectrodes, 373
apheresis Oxygen permeability coefficient, 329 Plexiglas, see Poly(methyl methaccentrifugal plasma separation, rylate)
405-406 PMMA, see Poly(methyl methacrylate)
cytapheresis, 409-410 P PNVP, see Poly(N-vinyl-2-pyrrolidone)
membrane plasma filtration, Pacemakers, 269-270, 290-291 Polyacrylamides, 63
408-409 Palavital, 75 Polyacrylonitrile
membrane plasma separation, PAN, see Polyacrylonitrile in carbon fiber production, 95—96
406-407 Pancreatic assist devices, 410-411 in cardiopulmonary bypass systems,
plasma exchange, 404-405 Parenchyma, 155-156 285
plasma treatment, 407-408 Parylene coatings, 115-116 Poly(allylamine), 302
sorption plasma fractionation, 409 Pascal, defined, 16 Polyamides, 247-249
biomaterial-centered infection, 212 PDMS, see Poly(dimethyl siloxane) Poly(amino acids), 68—69
kidney assist PDS, see Polydioxanone Polyanhydrides
hemodialysis, 400-403 PE, see Polyethylene in drug delivery, 65, 68, 353-354
hemofiltration, 403-404 PEO, see Polyethylene oxide) properties, 67-68
hemoperfusion, 404 Peritoneal dialysis, 403 surface erosion, 70
peritoneal dialysis, 403 Permanent cells, defined, 156 Polycaproamide, 247-249
liver assist, 410 PET, see Poly(ethyleneterephthalate) Polycaprolactone
lung assist PGA, see Poly(glycolic acid) degradation, 247
bubble-type oxygenators, 410 PGL, see Poly(glycolide lactide) enzymatic surface erosion, 70
membrane oxygenators, 410 Phagocytosis properties, 66—67
ventilators, 410 and biomaterials, 168, 249—252 Polycarbonate, 59
pancreatic assist, 410—411 impairment by Staphylococcus epider- Polycyanoacrylates
Oros, 351 midis, 212 degradation, 249
Orthopedic applications mechanisms, 168 properties, 69
bone plates, 345-346 Pharmaceutical applications, see Drug Poly(dimethyl siloxane), 59
ceramics and glasses, 76—77, delivery systems Polydioxanone, 65
342-343 PHB, see Poly(hydroxybutyrate) Polydispersity index, 51
composite implants, 343-346 PHEMA, see Poly(hydroxyethyl methac- Polyesters, 246—247
and bone remodeling, 102—104 rylate) Polyester urethanes, 247
elasticity of bone, 337-338 Phenotype, defined, 150 Polyether urethanes
hip replacement Photografting, 108—109 metal-ion induced oxidation in vivo,
bone bonding, 343 PHV, see Poly(hydroxyvalerate) 255—257
bone remodeling, 102-104 PLA, see Poly(lactic acid) in pacemaker lead connectors, 290
ceramics, 343 Plasma deposition, mechanisms, 110 stress cracking in vivo, 252—255,
composites, 344—345 Plasmalemma, structure and function, 269—270
metals, 340-342 148f, 149 Polyethylene, 57
polymers, 342 Plasmapheresis, 404 Poly(ethylene oxide)
ligament and tendon replacement, Plasma spraying, 40 in coatings on blood-contacting sur-
346 Plasmic reticulum, structure and func- faces, 305-306
rheoiogical models, 340 tion, 148/, 149 hydrogels, 63
stress protection osteoporosis, 101, Plastic deformation, 18—19 immobilization on blood-contacting
102-104 strengthening effect, 21 surfaces, 298, 304
structure of bone, 335-337 Plastic strain, 18-19 surface hydrophilicity modification,
viscoelasticity of bone, 338-340 Platelet adhesion 298
wear debris and blood flow, 233 Poly(ethylene terephthalate)
and immune response, 191 mechanisms, 194 degradation, 246—247
and osteolysis, 268-269 and protein adsorption, 140 in synthetic vascular grafts, 288
Osmet, 351 Platelets Poly(glycolic acid)
Osteointegration, see Bone bonding adhesion mechanisms, 140, 194 composite fracture fixation devices,
Osteoporosis, stress protection, 101, aggregation, 194—195 101, 346
102-104 coagulant activity, 195 as composite matrix, 97INDEX 481
controlling degradation rate of poly- Poly(methyl methacrylate) elastic behavior, 15, 16
(lactic acid), 101-102, 346 antibiotic resistance of adherent bac- fabrication process, 20-21
in dermal replacement membrane, teria, 212 fatigue strength, 20
368 bacterial adherence, 208 isotropy, 16-17
in drug delivery systems, 353,354 in cardiopulmonary bypass systems, shear, 16
properties, 69 285 stress and strain, 15
in sutures, 65 intraocular lens implants, 333,437, tension and compression, 16
Poly(glycolide lactide), 59 439 testing, 17-20
Poly(hexamethylene adipamide), 247 in joint replacement, 340, 342 toughness, 20
Poly(hydroxybutyrate), 66 properties, 57 viscous flow, 19-20
Poly(hydroxyethyl methacrylate) in rigid contact lenses, 330 microstructure, 14-15
in burn dressings, 366 surface analysis example, 26-28 surface, 21-34
in heparin-release devices, 300 Polymorphonuclear leukocytes, see analysis methods, 251
properties, 63 Neutrophils characterization, 21-22
in soft contact tenses, 329-330 Poly(ortho esters) sample preparation, 22
Poly(hydroxyvalerate), 66 in drug delivery, 68, 353 Proteins
Poiy(lactic acid) properties, 68 adsorption behavior, 136-140
as composite matrix, 97 surface erosion, 70 ce” adhesion, 139-140
in drug delivery systems, 353, 354 Polyphosphazenes, 69 concentration in surface phase,
in fracture fixation devices, 65, 101— Polypropylene 136— 13o
102,346 in cardiopulmonary bypass systems, conformational change, 139-140
in ligament and tendon replacement, 285 enthalpy, 140
346 in oxygenator membranes, 285 kinetics, 140
properties, 69 properties, 57-59 platelet adhesion, 140
in sutures, 65 Polysulfone thermodynamics, 140
Polymer fiber, 96 carbon fiber-polysulfone composites, P«lyelectrolyte behavior, 136
T, i • • ‘ u • im mA structure, 134-136
Polymerization techniques 102—104 .
addition polymerization, 51—52 in cardiopulmonary bypass systems, , ^ i n^
, i • • n ci T O T defined, 92
condensation polymerization, 51—52 285 . .. . • «r->
fre , j e radica – il i polymerization • • r , 51 1 i stress crackin • – g in – vivo, i- 270-27 m IT1* m n , extracellula . . r matrix, 15 . . 3 .
„ . . r. i / n i i \ / T- rseuaomonas aeruyinosa, biomatenalPolymers Poly(tetratluoroethylene), see also Ex- A ‘ f 707
annealing, 271 panded poly(tetrafluoroethylene) „„ , „ , , . ‘ ., . ^n
.
w
, „ -r • rr> Pseudo -poly(ammo acids), 69
atomic structure, 14, 35 properties, 59 rrriri? n i / a a. i \
, . . . . _ , ‘ _. , , PirE, see Poly(tetrafluoroethylene)
bioerodabie, 96, 97 Polyurethanes D ,, . ‘ . Q0
T7i TTA o^c i ‘ C s T77 Pultrusion, continuous, 98
calcification,’ 273 . ‘, . 274—275 calcification . . ‘ , 27„3_ m/r ^_0 PVC< « , seePoli / y(viny • il u chloride i • j \ )
characterization, 54-57 degradation, 247,270 Pyrogenicity, 460
crystallinity, 52 and heparin immobilization,
degradable, 64-72, 351-354 303-304
degradation, unintended, 243-258, in heparin-releasing catheters, 300
269-271 in intra-aortic balloon pumps, j^
fatigue, 52 292-293 Radiation grafting, 108-109
hydrolysis, 244-249 in pacemaker lead sheaths, 291 Radiation sterilization, 419-420
molecular weight, 50-51, 54-55 properties, 60 Radiofrequency glow discharge plasma
natural, 84—94 in “skin button” of vascular access deposition 109—110
collagen, 85-91 device, 288 Radiofrequency glow discharge treatelastin, 92 Poly(vinyl alcohol), 63 rnent 107—108
glycosarainoglycans, 92, 93-94 Poly(vinyl chloride) Rayleigh’s ratio, 55
oxidation, 249-258 plasticizer leaching, 269 Regulations, 461—464
surface analysis, 56-57 properties, 59 Reinforcing materials (composite)
synthesis, 51-52 Poly(N-vinyl-2-pyrrolidone), 63 carbon fiber, 95-96
tacticity, 52 Powder metallurgy, 45 ceramics, 96
tensile strength, 52, 55-56 PP, see Polypropylene classification, 9St
thermal properties, 52-54, 56 Prepreg, 97, 98 defined, 94-95
thermoplastic, defined, 14 Pressure transducers, 381 glass fibers, 96
thermosetting, defined, 14 Properties, material polymer fibers, 96
toughness, 52 atomic structure, 11-14 Renal failure, see Organs, artificial
viscoelasticity, 53-54 mechanical, 15-21 Replamineform process, 78
wear rates in vivo, 268—269 ductility, 18 Research directions, 464—467482 INDEX
Resin cements, 325 bacterial adherence, 208 correlation with biological reactions,
Resorbable materials, see Bioerodable in bioelectrodes, 374 445-450
materials corrosion in vivo, 264-265 methods, 25?
Reticuloendothelial system, 169 in dental implants, 316 atomic force microscopy, 32-33
RFGD plasma deposition, see Radiofre- in inferior vena cava filters, 292 contact angle measurement, 23
quency glow discharge plasma de- in joint replacements, 340 electron spectroscopy for chemical
position microstructure, 41 analysis, 23—28
Rheological models, 340 Standards infrared spectroscopy, 31
ASTM system, 459 scanning electron microscopy,
biocompatibility testing, 459-461 29-31
S devices, 457 scanning tunneling microscopy,
Safe Medical Devices Act of 1990,462 materials, 457 31-33
SAXS, see Small-angle X-ray scattering procedural, 457 secondary ion mass spectrometry,
Scaffold implants, temporary, 65 Staphylococcus aureus 28-29
Scanning electron microscopy antibiotic sensitivity and biomateri- sample preparation, 22
calcification assessment, 275—276 als, 212 Surface erosion, defined, 70
description and applications, 29—31 biomaterial-centered infections, 207, Surface modification, see also Surface
in vivo biomaterial assessment, 227 208 analysis
in tissue analysis, 160 protein receptors, 210 additives, 113—114
Scanning tunneling microscopy, 31-33 Staphylococcus epidermidis biomolecule immobilization, 128,
Scar synthesis, blocking, 93-94 adhesion to polymers vs. metals, 210 298, 302
Sealants, see Adhesives and sealants antibiotic sensitivity and biomateri- delamination resistance, 106
Secondary ion mass spectrometry, als,212 methods
28-29 biomaterial-centered infections, 207, chemical reactions, 107-108
and discolored titanium, 33 208 conversion coatings, 115
Sectioning (histology), 160—162 phagocytosis impairment mecha- ion beam implantation, 111—112
Self-assembled rnonolayers, 112—113 nism, 212 Langmuir-Biodgett deposition, 112
SEM, see Scanning electron microscopy protein receptors, 210 lasers, 116
Sepsis, implant-associated, 206—207 Stem cells, defined, 156 parylene coatings, 115—116
Shear, 16 Stents, 65, 289 photografting, 108-109
Shear modulus, 16 Stereology, and implant pore structure, radiation grafting, 108-109
Shear strain, 16 88 radiofrequency glow discharge
Shear stress, 16 Sterilization of implants plasma deposition, 109-110
Silanes, in surface silanization, degradable materials, 72 radiofrequency glow discharge
110-111 ethylene oxide sterilization, 72, treatment, 107—108
Silver, in bioelectrodes, 373 417-418 self-assembled monolayers,
SIMS, see Secondary ion mass spec- implant and packaging compatibil- 112—113
trometry ity,416-417 silanization, 110-111
Sintering, ceramic radiation sterilization surface-modifying additives,
liquid-phase, 75-76 60Co radiation, 419 113-114
solid-state, 76 electron beam, 419-420 reversal, 106
Sintering, metal, 40 steam sterilization (autoclaving), 417 thickness, 106
Skin regeneration template, 93-94 sterility assurance level, 415-416 Surface reactions, bioactive glass imSkin replacement, 65, 360—370 STM, see Scanning tunneling mi- plants, 78-81
Small-angle X-ray scattering, 55 croscopy Sutures, 59, 65, 356—359
Society for Biomaterials, 1 Strain, 15 Swelling (hydrogels), 62
Solids Stress, 15 Syndiotactic polymers, 52
atomic structure, 11—14 cyclic, 20 Systemic toxicity
microstructure, 14-15 Stress protection atrophy, 101, 102- due to immune response, 191-192
Solutions, solid, 15 104,222-223 nonimmune, 189
SRT, see Skin regeneration template Stress relaxation, defined, 19
Stable cells, defined, 156 Stress relief, in polymeric devices, 271
Staining (histology), 158?, 162 Stroma, 155, 156
Stainless steel Subperiosteal implants, see Dental im- T
antibiotic resistance of adherent bac- plants Tacticity, defined, 52
teria, 212 Surface analysis Tantalum, in bioelectrodes, 374
ASTM F138, 41 characterization, 21-22 T cells, structure and functions, 187
ASTM F139, 41 contamination detection, 33 TCP,see /3-Tricalcium phosphateINDEX 483
Tecoflex, 288 nerve tissue antibiotic resistance of adherentbacTeflon, see Poiy(tetrafluoroethylene) in vivo biomaterial assessment, teria, 212
TEM, see Transmission electron mi- 224 bacterial adherence, 208
croscopy structure and function, 154 in joint prostheses, 96, 342
Tensile modulus, defined, 16 Titanium Unit cells, 12
Tensile strain, 16 ASTM F67,46, 47 Urinary prosthesis, encrustation, 275
Tensile strength ASTM F136 alloy, 47-50 U.S. Food and Drug Administration,
defined, 19 m joint replacements, 340 66, 215, 2.40
and microporosity, 83 ASTM Grade 1 alloy authority under law,461—462
Tensile stress 16 m cardiac pacemaker casings, 290 medical device approval, 462—463
Testing, mechanical properties, 17-20 in implantable drug pumps, 288 medical device testing, 463-464
Texture (in grain structure), defined, properties, 46 U.S. Pharmacopeia! Convention, Inc.,
41 ASTM Grade 2 alloy 217
Therapeutic index 346 m cardiac pacemaker connector Utah total artificial heart, 392—399
Thermistors 380 blocks, 290 UTS, see Ultimate tensile stress
Thermocouples, 380 properties, 46
Thin films, 106, 108-116; see also Sur- corrosion and passivation, 263
face modification in dental implants, 313, 315, 316
316L stainless steel, see Stainless steel discoloration due to oxide growth, V
Thrombin ^ Vacuum bag-autoclave process, 97
coagulation mechanisms, 195, microsphere lining in blood pumps, van der Waals bonds, 12
196-197 “^^ adsorption bonding theory, 320
in sofc. t tissu .- J e adhesives L TT- , 323J , mining an , , d extraction , , 38 in polymers – , 14,
T- I hromb U t • m i chromogeni•c TO assay, 29O9 Torsiona _, , , ^ l load testing , , , , 18 Vascula , f r access ^ , 288
Thrombogenicitv Toughness, defined, 20 Vascular grafts, 420-422
defined, 229-231 Toxicity biologic, 287-288
, ‘ . ‘ . . c assay methods, 217-220 synthetic, 288
heparin-contamtng surfaces, 1 ^ 1 – , ^ */ -, A , n
299-307 defined, 216 Ventilators, 410
Vn-r -.on delivered dose, 216 Ventricular assist devices, 293—295
overview, 297—298 j T.^ i_- ->oa aan
, , , ir.r exposure dose, 216 history, 389-390
and platelet consumption, 195 . , ^,A .,. .
, , . . …. . _rtn Toxicology, 215-220 Vicryl sutures, 65
and surface hydropnihcity, 298 ~ , , , , , . \r w i -> i – j s~>
-r- x * i **r 11 » r-m ,rt ~>, * ransdermal drug delivery systems, N-Vmyl-2-pyrrolidone, 63
H-6A1-4V alloy, see ASTM H36 Q/1Q to ‘ \r \ + • \
. M A~, 349 Viscoelastic materials
Tigh b ‘ t junction Iransmissio s (cell-cell contact), 143, T – . r n electro ^ • n microscop • y polymers ci , 53—5 CA4
” . calcification assessment, 276 testing methods, 19—20
Tissue analysis techniques in vivQ biomaterial assessment, Viscous flow, defined, 19-20
electron microscopy, 162 226-227 Vitreous implants, 333
light microscopy, 157-162 in flssue analysis? 160 Vitrification, seeSintering, ceramic
Tissue attachment /3-Tricalcium phosphate
bioacdve fixation, 74, 78-81 bioerodable ceramics, 82, 266
biologicalfixation,74,78 in composites, 96
ceramic implants, 73-75 Tumorigenesis W
morphological fixation, 74 association with implants, 200-202 WAXS, see Wide-angle X-ray scatTissue engineering, 296 orthopedic, 200-201 tering
Tissue regeneration, 88, 92-94 vascular grafts, 201 Wear debris, artificial joints and osteoTissues, basic anc} foreign body reaction, 201,204 lysis, 268-269
connective tissue VS- inflammatory response, 204 Weight average molecular weight, 51
in vivo biomaterial assessment, neoplastic growth, 200 Wettability, see also Contact angle mea-
222—223 overview, 200 surement
structure and function, 154 pathogenesis, 202-204 and adhesive joining, 320
epithelium and cell adhesion, 145
in vivo biomaterial assessment, and surface energy, 23
223-224 U White cells, see Leukocytes
structure and function, 153-154 UHMW polyethylene, see Ultra-high- Whitlockite, see 0-Tricalcium phosmuscle tissue molecular-weight polyethylene phate
in vivo biomaterial assessment, Ultimate tensile stress, defined, 19 Wide-angle X-ray scattering, 55
223 Ultra-high-molecular-weight polyeth- Wound healing, 170—173
structure and function, 154 ylene cellular adaptations, 172484 INDEX
Wound healing (continued) X-ray photoelectron spectroscopy, 57; Z
granulation tissue, 170-171 see also Electron spectroscopy for Zinc phosphate cements, 325
and surgical trauma, 224 chemical analysis Zinc polycarboxylate cements, 325
^tozra-Xylylene ! ‘ } , see Parylen & e coating Zircom s ^- • a 1-7 (ZrOr\2 \ ), • in \,- hip i replacement,
77
Xenografts
arterial 287 Zisman method, 23; see also Critical
heart valves, 286 Y surface tension
skin, 365 Young’s modulus, see Tensile modulus Zonula occludens, defined, 143
كلمة سر فك الضغط : books-world.net

The Unzip Password : books-world.net

تحميل

يجب عليك التسجيل في الموقع لكي تتمكن من التحميل

تسجيل | تسجيل الدخول