Applied Statistical Inference with MINITAB – Second Edition

Applied Statistical Inference with MINITAB – Second Edition
اسم المؤلف
Sally A. Lesik
التاريخ
5 مارس 2024
المشاهدات
335
التقييم
(لا توجد تقييمات)
Loading...

Applied Statistical Inference with MINITAB
Second Edition
Sally A. Lesik
Central Connecticut State University
Contents
Preface . xiii
Acknowledgments . xvii

  1. Introduction .1
    1.1 What is Statistics? 1
    1.2 What This Book Is About .2
    1.3 Summary Tables and Graphical Displays .2
    1.4 Descriptive Representations of Data 3
    1.5 Inferential Statistics 4
    1.6 Populations 5
    1.7 Different Ways of Collecting Data 5
    1.8 Types of Variables .6
    1.9 Scales of Variables .7
    1.10 Types of Analyses .9
    1.11 Entering Data into Minitab 10
    1.12 Best Practices . 11
    Exercises 12
  2. Graphs and Charts . 15
    2.1 Introduction . 15
    2.2 Frequency Distributions and Histograms . 15
    2.3 Using Minitab to Create Histograms . 17
    2.4 Stem-and-Leaf Plots 21
    2.5 Using Minitab to Create Stem-and-Leaf Plots 22
    2.6 Bar Charts 24
    2.7 Using Minitab to Create a Bar Chart 24
    2.8 Boxplots 27
    2.9 Using Minitab to Create Boxplots . 31
    2.10 Scatterplots . 32
    2.11 Using Minitab to Create Scatterplots .33
    2.12 Marginal Plots .33
    2.13 Using Minitab to Create Marginal Plots 35
    2.14 Matrix Plots 36
    2.15 Using Minitab to Create a Matrix Plot .38
    2.16 Best Practices .38
    Exercises 41
    Extending the Ideas .44
  3. Descriptive Representations of Data and Random Variables .47
    3.1 Introduction .47
    3.2 Descriptive Statistics .47
    3.3 Measures of Central Tendency 48
    3.4 Measures of Variability 52
    3.5 Using Minitab to Calculate Descriptive Statistics 55viii Contents
    3.6 More on Statistical Inference .56
    3.7 Discrete Random Variables .58
    3.8 Sampling Distributions 61
    3.9 Continuous Random Variables .64
    3.10 Standard Normal Distribution 65
    3.11 Non-Standard Normal Distributions .69
    3.12 Other Discrete and Continuous Probability Distributions .73
    3.13 The Binomial Distribution . 74
    3.14 The Poisson Distribution .75
    3.15 The t-Distribution 77
    3.16 The Chi-Square Distribution .78
    3.17 The F-Distribution .79
    3.18 Using Minitab to Graph Probability Distributions 79
    Exercises 85
  4. Statistical Inference for One Sample 93
    4.1 Introduction .93
    4.2 Confidence Intervals .93
    4.3 Using Minitab to Calculate Confidence Intervals for a Population Mean 99
    4.4 Hypothesis Testing: A One-Sample t-Test for a Population Mean . 100
    4.5 Using Minitab for a One-Sample t-Test 106
    4.6 Power Analysis for a One-Sample t-Test 115
    4.7 Using Minitab for a Power Analysis for a One-Sample t-Test 116
    4.8 Confidence Intervals and Hypothesis Tests for One Proportion . 120
    4.9 Using Minitab for a One-Sample Proportion 124
    4.10 Power Analysis for a One-Sample Proportion 127
    4.11 Confidence Intervals and Hypothesis Tests for One-Sample Variance 129
    4.12 Confidence Intervals for One-Sample Variance . 130
    4.13 Hypothesis Tests for One-Sample Variance 132
    4.14 Using Minitab for One-Sample Variance 134
    4.15 Power Analysis for One-Sample Variance . 136
    4.16 Confidence Intervals for One-Sample Count Data . 140
    4.17 Using Minitab to Calculate Confidence Intervals for a One-Sample
    Count Variable . 142
    4.18 Hypothesis Test for a One-Sample Count Variable 144
    4.19 Using Minitab to Conduct a Hypothesis Test for a One-Sample Count
    Variable . 146
    4.20 Using Minitab for a Power Analysis for a One-Sample Poisson 147
    4.21 A Note About One- and Two-Tailed Hypothesis Tests . 149
    Exercises 151
    References . 155
  5. Statistical Inference for Two-Sample Data . 157
    5.1 Introduction . 157
    5.2 Confidence Interval for the Difference Between Two Means . 157
    5.3 Using Minitab to Calculate a Confidence Interval for the Difference
    Between Two Means . 160
    5.4 Hypothesis Tests for the Difference Between Two Means 162
    5.5 Using Minitab to Test the Difference Between Two Means 166Contents ix
    5.6 Using Minitab to Create an Interval Plot . 167
    5.7 Using Minitab for a Power Analysis for a Two-Sample t-Test 170
    5.8 Paired Confidence Interval and t-Test 172
    5.9 Using Minitab for a Paired Confidence Interval and t-Test 176
    5.10 Differences Between Two Proportions 178
    5.11 Using Minitab for Two-Sample Proportion Confidence Intervals and
    Hypothesis Tests . 182
    5.12 Power Analysis for a Two-Sample Proportion 184
    5.13 Confidence Intervals and Hypothesis Tests for Two Variances . 184
    5.14 Using Minitab for Testing Two Sample Variances . 191
    5.15 Power Analysis for Two-Sample Variances . 193
    5.16 Confidence Intervals and Hypothesis Tests for Two-Count Variables . 195
    5.17 Using Minitab for a Two-Sample Poisson . 198
    5.18 Power Analysis for a Two-Sample Poisson Rate . 199
    5.19 Best Practices . 201
    Exercises 203
  6. Simple Linear Regression . 213
    6.1 Introduction . 213
    6.2 The Simple Linear Regression Model 214
    6.3 Model Assumptions for Simple Linear Regression .220
    6.4 Finding the Equation of the Line of Best Fit . 221
    6.5 Using Minitab for Simple Linear Regression 224
    6.6 Standard Errors for Estimated Regression Parameters .227
    6.7 Inferences about the Population Regression Parameters 227
    6.8 Using Minitab to Test the Population Slope Parameter .230
    6.9 Confidence Intervals for the Mean Response for a Specific Value of the
    Predictor Variable 232
    6.10 Prediction Intervals for a Response for a Specific Value of the
    Predictor Variable 233
    6.11 Using Minitab to Find Confidence and Prediction Intervals .235
    Exercises 242
  7. More on Simple Linear Regression . 247
    7.1 Introduction . 247
    7.2 The Coefficient of Determination . 247
    7.3 Using Minitab to Find the Coefficient of Determination 249
    7.4 The Coefficient of Correlation .250
    7.5 Correlation Inference 254
    7.6 Using Minitab for Correlation Analysis 257
    7.7 Assessing Linear Regression Model Assumptions 259
    7.8 Using Minitab to Create Exploratory Plots of Residuals .259
    7.9 A Formal Test of the Normality Assumption .264
    7.10 Using Minitab for the Ryan–Joiner Test .266
    7.11 Assessing Outliers 268
    7.12 Assessing Outliers: Leverage Values 269
    7.13 Using Minitab to Calculate Leverage Values 269
    7.14 Assessing Outliers: Standardized Residuals 272
    7.15 Using Minitab to Calculate Standardized Residuals . 273x Contents
    7.16 Assessing Outliers: Cook’s Distances 274
    7.17 Using Minitab to Find Cook’s Distances . 275
    7.18 How to Deal with Outliers 276
    Exercises 277
    References .283
  8. Multiple Regression Analysis 285
    8.1 Introduction .285
    8.2 Basics of Multiple Regression Analysis .285
    8.3 Using Minitab to Create Matrix Plots 287
    8.4 Using Minitab for Multiple Regression .289
    8.5 The Coefficient of Determination for Multiple Regression .290
    8.6 The Analysis of Variance Table . 292
    8.7 Testing Individual Population Regression Parameters . 296
    8.8 Using Minitab to Test Individual Regression Parameters 299
    8.9 Multicollinearity 300
    8.10 Variance Inflation Factors 302
    8.11 Using Minitab to Calculate Variance Inflation Factors .303
    8.12 Multiple Regression Model Assumptions .304
    8.13 Using Minitab to Check Multiple Regression Model Assumptions 305
    Exercises 306
  9. More on Multiple Regression 313
    9.1 Introduction . 313
    9.2 Using Categorical Predictor Variables . 313
    9.3 Using Minitab for Categorical Predictor Variables 315
    9.4 Adjusted R2 321
    9.5 Best Subsets Regression . 324
    9.6 Using Minitab for Best Subsets Regression . 329
    9.7 Confidence and Prediction Intervals for Multiple Regression . 331
    9.8 Using Minitab to Calculate Confidence and Prediction Intervals
    for a Multiple Regression Analysis . 331
    9.9 Assessing Outliers 333
    Exercises 334
  10. Analysis of Variance (ANOVA) .341
    10.1 Introduction .341
    10.2 Basic Experimental Design 341
    10.3 One-Way ANOVA .342
    10.4 One-Way ANOVA Model Assumptions 349
    10.5 Assumption of Constant Variance 350
    10.6 Normality Assumption 355
    10.7 Using Minitab for One-Way ANOVAs . 357
    10.8 Multiple Comparison Techniques 370
    10.9 Using Minitab for Multiple Comparisons . 373
    10.10 Power Analysis and One-Way ANOVA . 374
    Exercises 378
    References .383Contents xi
  11. Nonparametric Statistics .385
    11.1 Introduction .385
    11.2 Wilcoxon Signed-Rank Test .385
    11.3 Using Minitab for the Wilcoxon Signed-Rank Test 389
    11.4 The Mann–Whitney Test 395
    11.5 Using Minitab for the Mann–Whitney Test 400
    11.6 Kruskal–Wallis Test 400
    11.7 Using Minitab for the Kruskal–Wallis Test .405
    Exercises 411
  12. Two-Way Analysis of Variance and Basic Time Series . 417
    12.1 Two-Way Analysis of Variance . 417
    12.2 Using Minitab for a Two-Way ANOVA . 424
    12.3 Basic Time Series Analysis 440
    Exercises 449
    Appendix 453
    Index 461
    Index
    A
    Alternative hypothesis, 101, 149
    correlation inference, 255, 256
    Kruskal–Wallis test, 400
    Mann–Whitney test, 400
    normality assumption, 265
    one-sample t-test, 101, 103
    one-way ANOVA, 344
    population regression parameters, 228–229
    Analyses, types of, 9–10
    Analysis of variance (ANOVA), 9–10, 341–383
    assumption of constant variance, 350–355
    Bartlett’s test, 350
    χ2 distribution, 351
    example, 352
    Levene’s test, 352
    rejection of null hypothesis, 351
    test statistic, 351
    balanced two-way, 424
    basic experimental design, 341–342
    one-way analysis of variance, 342
    random assignment of brands, 342
    randomized block design, 342
    randomized design, 341
    exercises, 378–383
    F-distribution, 345
    MINITAB use for multiple comparisons,
    373–376
    MINITAB use for one-way ANOVAs,
    357–370
    commands, 362
    dialog box, 358, 360, 363
    example, 366
    histogram of residuals, 361, 368
    interval plot, 360, 368
    normal probability plot, 362, 368
    output, 365, 369–370
    printout, 367
    residual versus fitted values, 361, 368
    residual versus order plot, 361
    Ryan–Joiner test, 361, 362, 369
    worksheet, 400
    model assumptions, 349–350
    multiple comparison techniques, 370–373
    confidence interval, interpretation of, 373
    example, 371
    Fisher’s Least Significant Difference
    (LSD), 371
    MINITAB use, 373–376
    t-distribution, 371
    normality assumption, 355–357
    example, 356
    rejection of null hypothesis, 357
    one-way ANOVA, 342–349
    alternative hypothesis, 344
    balanced, 343
    degrees of freedom for the denominator,
    344
    degrees of freedom for the numerator,
    344
    example, 345
    factor, 343
    F-distribution, 344
    fixed-effects ANOVA model, 343
    mean square error, 347
    null hypothesis, 344
    samples, 343
    table, 349
    power analysis and one-way ANOVA,
    374–378
    example, 376
    MINITAB printout, 377
    rejection of null hypothesis, 374
    sample size estimation, 375
    randomized block design, 342
    Analysis of variance table, 292–296
    degrees of freedom for the denominator,
    292–293
    degrees of freedom for the numerator,
    292–293
    example, 293
    F-distribution, 292–293, 294
    F-test, 292
    printout, 294
    ANOVA, see Analysis of variance
    Automatic setting, in MINITAB, 18
    B
    Balanced two-way ANOVA, 424
    Bar charts, 24
    discrete data, 24462 Index
    Bar charts (cont.)
    MINTAB use, 24–27
    variables, 24
    Bartlett’s test, 350
    Basic statistical inference, 9
    Basic time series, see also Time series analysis,
    basic
    exercises, 449–452
    Best practices, 11–12, 201–203
    graphs and charts, 38, 40, 41
    Best subsets regression, 324–329
    example, 325
    full regression model, 324
    Mallow’s C
    p statistic, 324
    MINITAB use, 329–331
    model fitting, 331
    predictor variables, 324
    regression analysis including variables, 326,
    327, 328
    statistical modeling using, 325
    Binary variables, 314
    Binomial distribution, 74–75
    Box plots, 27–31
    construction, 27
    example, 28–31
    general form, 28
    Kruskal–Wallis test (MINITAB), 410
    median, 29
    quartiles, 27
    two-way ANOVA, 434, 430
    upper and lower limits, 27–28
    whiskers, 27, 30
    C
    Cartesian plane, 33
    Categorical variables, 24
    Central limit theorem, 64
    Chi-square distribution, 78–79, 130, 131
    Coefficient of correlation, 250–253
    example, 252
    formula, 250
    linear relationship, 253
    linear relationship between variables, 250
    negative relationship, 250
    no relationship, 250
    positive relationship, 250
    sample standard deviation, 251
    scatter plot, 253
    Coefficient of determination, 247–249
    example, 248
    MINITAB use, 249
    predictor variable, 247
    sample mean, 247
    SAT–GPA data set, 247
    scatter plot, 248
    Coefficient of variation (COV), 88
    Column factor, 417
    Columns, of data set, 1
    Conceptual populations, 5
    Confidence interval, 93–99
    calculation, 95–96
    degrees of freedom, 94
    for difference between two means, 157–160
    calculation, 157
    degrees of freedom, 159
    example, 158
    hypothesis tests, 157
    MINITAB calculation, 160–162
    population mean lifetimes, 159
    unequal variances, 158
    example, 96–97
    hypothesis tests for proportions and,
    120–124
    distribution of sample proportion, 121
    example, 121
    population proportion, 120–121
    p-value, 123
    rejection region, 123
    standard normal tables, 123
    test statistic, 122, 124
    MINITAB calculation, 99–100
    commands, 99
    dialog box, 100
    printout, 100
    for one-sample count variable, 140–142
    for one-sample variance, 129–132
    example, 132–133
    point estimate, 93
    t-distribution, 94, 98
    theory for population mean, 94
    and t-test, 172–176
    two-count variables, and hypothesis tests
    for, 195–197
    example, 195
    two variances, hypothesis tests for, 184–191
    unknown population mean, 95
    use, 93
    Continuous random variable, 63
    Continuous variables, 6, 24
    Control group, 5
    Control variables, 285
    Cook’s distance, 274–275
    Correlation analysis, use of MINITAB for,
    257–258
    Correlation inference, 254–257Index 463
    example, 256, 257
    negative linear correlation, 254
    null and alternative hypotheses, 255, 256
    population coefficient of correlation, 254
    positive linear correlation, 254
    rejection region, 255, 256, 257
    sampling distribution, 254
    test statistic, 255
    true population coefficient of correlation, 255
    Count variable, 140
    COV, see Coefficient of variation
    Cyclical trend, time series analysis, 441
    D
    Data, 1
    descriptive representations of, see
    Descriptive statistics
    qualitative, 1
    quantitative, 1
    residual, 262
    Data sets, 1
    box plots, 32
    kurtosis of, 91
    SAT–GPA, 247
    skewness of, 91
    Degrees of freedom, 94
    for the denominator, 292–293, 344
    for the numerator, 292–293, 344
    Dependent populations, 172
    Dependent variable, 32, 33
    Descriptive representations, of data, 2, 3–4
    Descriptive statistics, 47–91, 188
    binomial distribution, 74–75
    chi-square distribution, 78–79
    coefficient of variation, 88
    definition of, 47
    discrete random variables, 58–60
    probability distribution, 58
    representation, 59
    summarized, 59
    exercises, 85–91
    F-distribution, 79
    kurtosis of data set, 91
    measures of central tendency, 48–52
    definition of, 48
    example, 48, 50–52
    median of numeric variable, 50
    median position, 50
    mode, 51
    population mean, 49
    sample average, 48
    summation notation, 48
    measures of variability, 52–55
    example, 52
    interquartile range, 53
    population standard deviation, 55
    population variance, 55
    range, 52
    sample standard deviation, 53
    sample variance, 53
    MINITAB, 55
    dialog box, 56
    output, 57
    statistic properties, 57
    mode, 51
    Poisson distribution, 75–76
    probability distribution, 73
    purpose of calculating, 47
    range, 52
    sampling distributions, 61–64, 74
    area under the curve, 65
    central limit theorem, 64
    continuous random variable, 64
    example, 61
    graph, 63
    nonstandard normal distribution, 69–73
    normal distribution, 65–69
    population parameter, 63
    probability distribution, 60, 62
    sample mean, 62
    standard normal distribution, 65–69
    standard normal table, 67
    skewness of data set, 91
    standard error, 63
    standard normal distribution, 65–69
    t-distribution, 77–78
    types, 52
    weighted mean, 89
    Discrete variables, 6
    random, 58–60
    Distribution-free tests, 385
    E
    Equation of line of best fit, finding, 221–224
    formulas, 221
    mean square error, 223
    population parameters, 221
    residuals, 221–223
    root mean square error, 223
    statistics, 221
    unknown population parameters, 222
    Error(s)
    component, 216, 223
    mean square error, 223464 Index
    Error(s) (cont.)
    observed values, 219
    residual, mean square error due to, 292
    root mean square error, 223
    round-off, 216
    standard, 63
    Type I, 103
    Exercises
    analysis of variance, 378–383
    descriptive statistics, 85–91
    graphs and charts, 41–44
    introduction, 12–13
    multiple regression analysis, 306–311,
    334–339
    nonparametric statistics, 411–416
    simple linear regression, 277–283
    simple regression, 242–246
    statistical inference, 151–155
    for two-sample data, 203–211
    two-way analysis of variance and basic time
    series, 449–452
    Experimental studies, 5
    F F
    -distribution, 79, 292, 344, 345, 418
    Fisher’s Least Significant Difference (LSD), 371
    Fitted line plot, 235, 236, 237, 241, 260
    Fixed-effects ANOVA model, 343
    Four-way residual plots, 409, 437
    Frequency distribution, and histogram, 15
    F-tables, 187
    F-test, 292, 296
    Full regression model, 324
    G
    GPAs, see Grade point averages
    Grade point averages (GPAs), 47
    Graphical displays, 2
    Graphs and charts, 15–46
    bar charts, 24
    discrete data, 24
    MINITAB, 24–25
    variables, 24
    box plots, 27–31
    construction, 27, 28
    example, 28–31
    general form, 28
    median, 29
    MINITAB, 31
    multiple, 31
    quartiles, 27
    upper and lower limits, 27–28
    whiskers, 27, 30
    exercises, 41–44
    frequency distribution, histogram drawn
    from, 15
    histograms, 15–17
    construction, 16
    frequency distribution, histogram drawn
    from, 15
    MINITAB, 17–21
    purpose of drawing, 16
    software use, 17
    marginal plots, 33–35
    matrix plots, 36–38
    scatter plots, 32–33
    Cartesian plane, 32
    data set, 33
    example, 32
    MINITAB, 33
    predictor, 32
    response, 32
    variables, 32
    stem-and-leaf plots, 21–22
    example, 21
    MINITAB, 22–24
    purpose, 21
    stem, 23
    H
    Histogram(s), 15–17
    construction, 16
    frequency distribution, histogram drawn
    from, 15
    marginal plot with, 36, 214
    MINITAB, 17
    purpose of drawing, 16
    residuals
    one-way ANOVAs, 361, 368
    two-way analysis of variance, 428
    values, 262, 305
    software use, 17
    Wilcoxon signed-rank test, 390, 392
    Hypothesis, 175
    alternative, 101
    analysis of variance, 351, 359
    correlation inference, 255, 256
    Kruskal–Wallis test, 400
    Mann–Whitney test, 395
    normality assumption, 265
    null, 101
    for one-sample count variable, 142–144
    one-sample t-test, 101, 103Index 465
    for one-sample variance, 132–133
    one-way ANOVA, 344–345
    population regression parameters, 228
    population slope parameter, 231
    test, 101, 102, 157
    two-count variables, and confidence
    intervals for, 195–197
    example, 195
    two variances, confidence interval for,
    184–191
    I
    Independent variable, 32, 33
    Indicator variables, 314
    Inferential statistics, 2, 4
    Interquartile range (IQR), 52
    Interval plots, one-way ANOVAs, 360
    Interval variable, 8
    IQR, see Interquartile range
    ith residual, 217
    K
    Kruskal–Wallis test, 400–405

    distribution, 404
    example, 402
    MINITAB, 405–411
    box plot, 411
    commands, 405
    data entry, 405
    dialog box, 406
    example, 407
    four-way residual plots, 409
    Levene’s tests, 409
    one-way ANOVA, 409
    printout, 405, 410
    p-value, 405
    Ryan–Joiner test for normality, 410
    null and alternative hypotheses, 402
    ranking of data, 400
    rule of thumb, 405
    test statistic, 403, 404
    Kurtosis of data set, 91
    L
    Least Significant Difference (LSD), 371
    Least squares line, 219
    Left-tailed test, 103
    Level of significance, 102
    Levene’s test, 352, 409
    Leverage value, 269
    Linear forecast model, time series analysis, 444
    Linear regression, see Simple linear regression
    Line of best fit, 219
    Long-term trend, time series analysis, 441
    Lowess smoother, 288
    LSD, see Least Significant Difference
    M
    MAD, see Mean absolute deviation
    Mallow’s C
    p statistic, 324
    Mann–Whitney test, 395–400
    example, 395
    MINITAB, 400–402
    commands, 401
    dialog box, 401
    results, 402
    worksheet, 400
    ranking of data, 403
    test statistic, 396–397
    MAPE, see Mean absolute percentage error
    Marginal plots, 33–35
    Matrix plots, 36–38, 287
    Mean absolute deviation (MAD), 447
    Mean absolute percentage error (MAPE), 445
    Mean squared deviation (MSD), 448
    Mean square error, 223
    Mean square error due to the regression (MSR),
    292–294
    Mean square error due to the residual error
    (MSE), 292–294
    Mean square for the treatment (MSTR), 346
    Measures of central tendency, 48–52
    definition of, 48
    example, 48, 50–52
    median of numeric variable, 50
    median position, 50
    mode, 51
    population mean, 49
    sample average, 48
    summation notation, 48
    Measures of variability, 52–55
    example, 52, 53
    interquartile range, 53
    population standard deviation, 55
    population variance, 55
    range, 52
    sample standard deviation, 53
    sample variance, 53
    MINITAB
    bar chart, 24–27
    categorical variable, 24, 25, 27
    commands, 18, 32466 Index
    MINITAB (cont.)
    dialog box, 27
    example, 28
    type selection, 19
    worksheet, 24
    best subsets regression, 329–331
    dialog box, 329
    printout, 330
    box plot
    dialog box, 31
    example, 28–29
    multiple box plots, 31
    categorical predictor variables, 314–323
    dialog box, 316, 319
    example, 316
    printout, 317
    regression dialog box, 320
    worksheet, 319
    coefficient of determination, 249
    error sum of squares, 249
    example, 249
    printout, 249
    total sum of squares, 249
    confidence and prediction intervals, finding
    of, 235–242
    data set, 236
    dialog box, 236
    example, 235–239
    fitted line plot, 235, 237, 241
    options box, 236
    printout, 239
    regression options tab, 237
    scatter plot, 240
    confidence and prediction intervals
    for multiple regression analysis,
    calculation of, 331–333
    options dialog box, 332
    printout, 332
    confidence interval for difference between
    two means, calculation of, 160–162
    commands, 160, 161
    dialog box, 161
    options dialog box, 161
    printout, 162
    confidence interval for one-sample count
    variable, 142–144
    confidence interval for population mean,
    99–100
    commands, 99
    dialog box, 100
    printout, 100
    Cook’s distance, 274–275
    correlation analysis, 257–258
    dialog box, 258
    printout, 258
    descriptive statistics, calculation of, 55
    dialog box, 56
    output, 57
    statistic properties, 57
    difference between two means, testing of,
    166–167
    dialog box, 169
    options box, 171
    printout, 167, 172
    entering data into, 10–11
    histogram creation using, 17–21
    automatic setting in, 18
    commands for drawing, 18
    dialog box, 18, 19
    sample histogram, 19, 20
    worksheet, 17
    hypothesis tests for one-sample count
    variable, 146–147
    individual regression parameters, 299
    interval plot, 167–170
    dialog box, 169
    example, 170
    Kruskal–Wallis test, 405
    box plot, 411
    commands, 405
    data entry, 405
    dialog box, 406
    example, 407
    four-way residual plots, 409
    Levene’s tests, 409
    one-way ANOVA, 408
    printout, 405, 410
    p-value, 405
    Ryan–Joiner test for normality, 410
    leverage values, calculation of, 269–272
    example, 271
    printout, 271–272
    regression analysis, 269
    storage dialog box, 270
    storage of leverage values, 270
    lowess smoother, 288
    Mann–Whitney test, 400–402
    commands, 401
    dialog box, 401
    results, 402
    worksheet, 400
    marginal plot, 33–35
    commands, 35
    dialog box, 35
    with histograms, 36
    matrix plot, 287–289Index 467
    commands, 35
    dialog box, 38, 288
    lowess smoother, 288
    smoother, 289
    multiple comparisons (ANOVA), 373–376
    multiple regression, 289–290
    printout, 291
    regression dialog box, 290
    multiple regression model assumptions, 304
    error component, 305–306
    normal probability plot of residuals, 306
    normal probability plot, Ryan–Joiner test
    statistic, and p-value, 306
    residual versus fitted values plot, 305
    for one-sample Poisson rate, 147–149
    dialog box, 148
    printout, 148
    one-sample proportion, 124–127, 129
    commands, 125
    dialog box, 125, 128
    options box, 126, 129
    printout, 126, 129
    one-sample t-test, 106–114
    dialog box, 107
    example, 109–113
    options box, 107
    printout, 108
    p-value, 107
    rejection region, 108, 111
    sample mean, 109
    sample standard deviation, 110
    unknown population, 110
    value of test statistic, 111
    one-sample t-test, power analysis for,
    116–120
    commands, 117
    dialog box, 117
    mean difference, 116
    options tab, 119
    printout, 118
    results, 120
    sample size, 119
    for one-sample variance, 134–136
    one-way ANOVAs, 357–370
    commands, 362
    dialog box, 358, 360, 363
    example, 366
    histogram of residuals, 361, 368
    interval plot, 360, 368
    normal probability plot, 362, 369
    output, 363, 369–370
    printout, 367
    residual versus fitted values, 361, 368
    residual versus order plot, 361
    Ryan–Joiner test, 361, 362, 369
    worksheet, 358
    population slope parameter, testing of,
    230–232
    assumptions, 231
    confidence intervals, calculation of, 231
    hypothesis test, 232
    intercept of true population equation, 231
    null hypothesis, 231–232
    printout, 231
    p-value, 231
    standard error, 231
    test statistic, 231
    power analysis for one-sample variance, 138,
    139
    probability distributions
    dialog box, 80
    graphing, 79–82
    residuals, exploratory plots of, 259–264
    area under standard normal curve,
    262–263
    dialog box, 260
    fitted line plot, 260
    histogram of residuals, 260–262, 264
    normal probability plot, 262
    regression dialog box, 261
    regression graphs box, 261
    regression storage options, 259
    residual data, 262
    scatter plot, 260
    Ryan–Joiner test, 267–268
    dialog box, 267
    normality plot, 268
    saving of project or worksheet in, 11
    scatter plot, 33
    dialog box, 33
    variables, 33
    worksheet, 33
    session and worksheet window, 11
    simple linear regression, 224–226
    dialog box, 224
    fitted line plot, 225
    printout, 226
    regression dialog box, 225
    scatter plot, 224
    standardized residuals, calculation of,
    272–273
    printout, 274
    regression dialog box, 273
    storage of residuals, 274
    statistical inference, 56–57
    stem-and-leaf plot, 21–24468 Index
    MINITAB (cont.)
    dialog box, 23
    median, 24
    time series analysis
    commands, 441
    dialog box, 442, 443, 445, 448
    output, 446
    quadratic trend analysis, 448
    for two-sample Poisson, 198–199
    commands, 198
    dialog box, 199
    option box, 198
    printout, 200
    two-sample proportion confidence intervals
    and hypothesis tests, 182–184
    commands, 183
    dialog box, 182
    options box, 182, 186
    printout, 185, 186
    two-sample t-test, power analysis for,
    170–172
    dialog box, 169, 171
    options box, 171
    printout, 172
    two-sample variances, power analysis for,
    193–195
    dialog box, 194
    printout, 195
    two-way ANOVA, 424
    box plot, 432, 438
    commands, 425, 429
    dialog box, 425, 429
    example, 431
    four-way residual plots, 437
    histogram of residual plots, 428
    interaction plot, 426, 436, 439
    main effects plot, 435, 439
    normal probability plot of residuals, 428
    printout, 432, 436
    residual plots, 434
    residual versus fitted values, 428
    Ryan–Joiner test, 434, 435, 438
    use for testing two sample variances,
    191–193
    dialog box, 192
    options box, 192
    printout, 193
    variance inflation factors, calculation of,
    303–304
    printout, 303
    VIF values, 304
    Wilcoxon signed-rank test, 389
    commands, 390
    dialog box, 390
    example, 392
    histogram, 391
    one-sample t-test, 393
    printout, 391, 394
    results, 394
    Ryan–Joiner test, 392, 392
    worksheet illustrating date, text, and
    numeric forms of data, 11
    Mode, 51
    MSD, see Mean squared deviation
    MSE, see Mean square error due to the residual
    error
    MSR, see Mean square error due to the
    regression
    MSTR, see Mean square for the treatment
    Multiple regression analysis, 285–311, 313–339
    adjusted R2, 321–322
    analysis of variance table, 292–296
    example, 293
    F-distribution, 292–293, 294
    F-test, 292
    printout, 297
    basics, 285–287
    example, 286
    MINITAB use, 287–289
    model development, 286
    model fit, 285
    population linear multiple regression
    equation, 286
    predictor variables, 286
    random error component, 286
    variables, 285
    best subsets regression, 324–329
    example, 325
    full regression model, 324
    Mallow’s C
    p statistic, 324
    MINITAB use, 329–331
    model fitting, 331
    predictor variables, 324
    regression analysis including variables,
    326, 327, 328
    statistical modeling using, 325
    binary variables, 314
    categorical predictor variables, using,
    313–314
    characteristic of interest, 313
    example, 313–314
    MINITAB use, 315–321
    coefficient of determination for multiple
    regression, 291Index 469
    confidence and prediction intervals for
    multiple regression, 331
    calculations, 331
    MINITAB use, 331–333
    specific value, 331
    control variables, 285
    degrees of freedom, 292–293
    exercises, 306–311, 334–339
    indicator variables, 314
    lowess smoother, 288
    matrix plot, 287
    MINITAB use for best subsets regression,
    329–331
    dialog box, 329
    printout, 330
    MINITAB use for categorical predictor
    variables, 315–321
    categorical predictor variable, 314, 321
    dialog box, 316, 319
    example, 316
    printout, 315
    regression dialog box, 320
    worksheet, 319
    MINITAB use for multiple regression, 289–290
    printout, 291
    regression dialog box, 290
    MINITAB use to calculate confidence and
    prediction intervals for, 331–333
    options dialog box, 332
    printout, 332
    MINITAB use to calculate variance inflation
    factors, 303–304
    printout, 303
    VIF values, 303
    MINITAB use to check multiple regression
    model assumptions, 304
    error component, 305–306
    histogram of residual values, 305
    normal probability plot of residuals, 306
    normal probability plot, Ryan–Joiner test
    statistic, and p-value, 306
    residual versus fitted values plot, 305
    MINITAB use to create matrix plot, 287–289
    dialog box, 288
    lowess smoother, 288
    matrix plot and smoother, 289
    MINITAB use to test individual regression
    parameters, 299
    multicollinearity, 300–302
    example, 300
    predictor variables, 300
    regression parameter estimates, 300
    multiple regression model assumptions, 304
    outliers, assessment of, 333–334
    random error component, 286
    testing individual population regression
    parameters, 296–299
    confidence interval, interpretation of, 298
    example, 297, 299
    population predictor variables, 297
    response variable, 297
    t-distribution, 298
    variance inflation factors, 302–303
    calculation, 302
    example, 302
    predictor variables, 302
    printout, 299
    use of MINITAB to calculate, 303–304
    value too high, 304
    N
    Nominal variables, 7
    Nonparametric statistics, 385–416
    exercises, 411–416
    Nonstandard normal distribution, 69–73
    Normality assumption, formal test of, 264–266
    error component, 264
    null and alternative hypotheses, 265
    Ryan–Joiner test, 266–268
    test statistic value, 266
    violated assumption of normality, 268
    Normal probability plot, 262
    Null hypothesis, 101, 150
    analysis of variance, 351, 359
    correlation inference, 255, 256
    Kruskal–Wallis test, 400
    Mann–Whitney test, 402
    normality assumption, 265
    one-sample t-test, 101, 103
    one-way ANOVA, 344
    population regression parameters, 228
    population slope parameter, 230–232
    O
    Observational studies, 5, 6
    One-sample count variable
    confidence intervals for, 140–142
    MINITAB
    commands, 142
    dialog box, 143
    hypothesis test, 146–147
    printout, 144, 147470 Index
    One-sample Poisson, 199
    power analysis for, 147–149
    dialog box, 148
    printout, 148
    One-sample t-test, 100–106
    alternative hypothesis, 101, 103
    decision process, 102
    error types, 103
    graph, 102
    left-tailed test, 103
    level of significance, 102
    mean of random sample, 101
    null hypothesis, 101, 103
    power analysis for, 115–116
    conclusions, 115–116
    null hypothesis, 115
    power of test, 115
    test statistic, 114
    rejection region, 102, 105–106
    right-tailed test, 103
    sampling error, 101
    significance level, 103
    two-tailed test, 103
    value of test statistic, 105–106
    One-sample variance
    confidence intervals for, 129–131
    example, 132–133
    hypothesis tests for, 132–133
    MINITAB, 134–136
    One-tailed hypothesis test, 149–150
    One-way ANOVA, 342–349
    alternative hypothesis, 344
    balanced, 343
    degrees of freedom for the denominator, 344
    degrees of freedom for the numerator, 344
    example, 345
    factor, 343
    F-distribution, 344
    fixed-effects ANOVA model, 343
    Kruskal–Wallis test, 410
    mean square error, 347
    null hypothesis, 344
    samples, 343
    table, 349
    Ordinal variables, 7–8
    Outliers
    assessment of, 268
    Cook’s distance, 274–275
    leverage values, 269–272
    multiple regression analysis, 331–333
    standardized residuals, 272–273
    unusual observation, 268
    dealing with, 276–277
    example, 276
    MINITAB printout, 277
    unusual observation, 276
    P
    Paired confidence interval
    MINITAB, 176–178
    option box, 177, 178
    printout, 178, 179
    and t-test, 176–178
    Paired t-test, 172
    Parameter, 4
    Parametric methods of statistical inference, 385
    Physical populations, 5
    Plots, see Variables, graphing of
    Point estimate, 93
    Poisson distribution, 75–76
    Population mean count, 140
    Populations, 4, 5
    coefficient of correlation, 254
    mean, 49
    confidence intervals, 94
    one-sample t-test for, 100–106
    unknown, 95
    regression parameters, inferences about,
    227–230
    confidence intervals, calculation of, 227
    example, 229
    null and alternative hypotheses, 229
    predictor variable, 228
    rejection region, 229
    sampling distribution, 228
    true population slope parameter, 228,
    230–232
    standard deviation, 55, 131
    variance, 55, 129, 130
    Power analysis, 115
    for a one-sample Poisson, 147–149
    for one-sample variance, 136–140
    MINITAB, 137, 138
    for two-sample Poisson rate, 199–201
    for two-sample variances, 193–195
    Power of test, 115
    Practical significance, 201
    Predictor variable(s), 228
    categorical, 313–314
    characteristic of interest, 313
    example, 313
    MINITAB use, 315–321
    confidence intervals for mean response for
    specific value of, 232–233
    example, 232–233Index 471
    population mean response value, 233
    predictor value, 232–233
    multicollinearity, 300
    multiple regression analysis, 286
    prediction intervals for response for specific
    value of, 233–235
    calculations, 233
    example, 234
    graph, 235
    inferences, 234
    variance inflation factors, 302
    Probability distribution, 73–74
    random variable, 58, 60
    sample statistics, 61, 63
    p-value, 107, 123, 397
    confidence intervals, 109, 124
    Kruskal–Wallis test, 406
    linear regression model assumptions, 259
    one-sample t-test, 107
    population slope parameter, 230
    statistical inference, 108, 124
    Wilcoxon signed-rank test, 388, 393
    Q
    Quadratic trend analysis (MINITAB), 448
    Qualitative data, 1
    Quantitative data, 1
    R
    Randomized block design, 342
    Random sample, 4, 13, 16
    Random trend, time series analysis, 441
    Random variable(s), see also Descriptive
    statistics
    continuous, 64
    discrete variable, 58
    mean, 61
    probability distribution, 58, 61
    representation, 58
    summarized, 59
    t-distribution, 94
    Range, 52
    Ratio variable, 8
    Regression analysis, 9, see also Multiple
    regression analysis
    Regression inference
    confidence intervals, calculation of, 226
    MINITAB printout, 226
    parameters, 227
    standard error, 227
    unknown population, 227
    Regression line, 219
    Regression sum of squares (SSR), 293
    Rejection region, 102, 133, 187
    Confidence Intervals, 121
    correlation inference, 255–257
    one-sample t-test, 106–14
    population regression parameters, 229–230
    statistical inference, 123, 181
    two-way analysis of variance, 423, 423
    Wilcoxon signed-rank test, 388
    Residual(s), 217
    equation of line of best fit, 221–224
    error, mean square error due to, 292
    histogram of
    one-way ANOVAs, 361, 368
    two-way analysis of variance, 428
    values, multiple regression model
    assumptions, 305
    ith, 217
    normal probability plot of, 306
    plots, linear regression model assumptions,
    259
    standardized, 272–273
    Right-tailed test, 103, 133, 176, 178
    Root mean square error, 226
    Round-off error, 216
    Row factor, 417
    Rows, of data set, 1
    Ryan–Joiner test, 355
    Kruskal–Wallis test, 410
    MINITAB use, 266–268
    normality assumption, 266–268
    one-way ANOVAs, 361, 370
    statistic, 305–306
    two-way ANOVA, 434, 434, 440
    Wilcoxon signed-rank test, 391, 392
    S
    Sample, 4
    average, 48
    mean, 48
    size, 199
    standard deviation, 53
    statistic, 93
    Sampling distributions, 61–64, 74, 190
    area under the curve, 65
    central limit theorem, 64
    continuous random variable, 64
    example, 61
    graph, 63
    nonstandard normal distribution, 69–73
    normal distribution, 65–69472 Index
    Sampling distributions (cont.)
    population parameter, 63
    probability distribution, 61, 62
    sample mean, 62
    standard normal distribution, 66–69
    standard normal table, 67
    Scatter plots, 32–33
    Cartesian plane, 33
    data set, 33
    example, 32
    MINITAB use, 33
    predictor, 32
    response, 32
    simple linear regression model, 214–215
    variables, 32
    Seasonal trend, time series analysis, 441
    Selection bias, 6
    Simple linear regression, 213–246, 247–283
    analysis, 214
    assessing linear regression model
    assumptions, 259
    MINITAB use, 259
    p-values, 258
    residual plots, 259
    cause-and-effect relationship between
    variables, 214
    coefficient of correlation, 250–253
    example, 252
    formula, 250
    linear relationship, 253
    linear relationship between variables, 250
    negative relationship, 250
    no relationship, 250
    positive relationship, 250
    sample standard deviation, 250
    scatter plot, 253
    coefficient of determination, 247–249
    example, 248
    MINITAB use, 249
    predictor variable, 247
    sample mean, 247
    SAT–GPA data set, 247
    scatter plot, 248
    confidence intervals for mean response for
    specific value of predictor variable,
    232–233
    example, 232
    population mean response value, 232
    predictor value, 232–233
    correlation inference, 250–253
    example, 255, 256
    negative linear correlation, 254
    null and alternative hypotheses, 255, 256
    population coefficient of correlation, 254
    positive linear correlation, 254
    rejection region, 255, 256, 257
    sampling distribution, 254
    test statistic, 255
    true population coefficient of correlation,
    255
    dependent variable, 214
    equation of line of best fit, finding, 221–224
    formulas, 221
    mean square error, 226
    population parameters, 221
    residuals, 221–223
    root mean square error, 226
    statistics, 221
    unknown population parameters, 222
    exercises, 242–246, 277–283
    histogram, residual values, 261
    independent variable, 214
    least squares line, 219
    line of best fit, 219
    mean square error, 226
    MINITAB use for correlation analysis,
    257–258
    dialog box, 258
    printout, 258
    MINITAB use for Ryan–Joiner test, 266–268
    MINITAB use for simple linear regression,
    224–226
    dialog box, 224
    fitted line plot, 225
    printout, 226
    regression dialog box, 225
    scatter plot, 224
    MINITAB use to calculate leverage values,
    269–272
    example, 271
    printout, 271–272
    regression analysis, 272
    storage dialog box, 270
    storage of leverage values, 270
    MINITAB use to calculate standardized
    residuals, 272–273
    printout, 274
    regression dialog box, 273
    storage of residuals, 274
    MINITAB use to create exploratory plots of
    residuals, 259–264
    area under standard normal curve,
    262–263
    dialog box, 260
    fitted line plot, 260
    histogram of residuals, 260, 261, 264Index 473
    normal probability plot, 262
    regression dialog box, 261
    regression graphs box, 261
    regression storage options, 259
    residual data, 262
    scatter plot, 260
    MINITAB use to find coefficient of
    determination, 249
    error sum of squares, 249
    example, 249
    printout, 249
    total sum of squares, 249
    MINITAB use to find Cook’s distance,
    275–276
    MINITAB use to find confidence and
    prediction intervals, 235–242
    confidence and prediction intervals, 241
    data set, 241
    dialog box, 236
    example, 235–236
    fitted line plot, 235, 237, 241
    options box, 236
    printout, 240
    regression options tab, 237
    scatter plot, 241
    MINITAB use to test population slope
    parameter, 230–232
    assumptions, 231
    confidence intervals, calculation of,
    231–232
    hypothesis test, 232
    intercept of true population equation, 231
    null hypothesis, 231
    printout, 231
    p-value, 231
    standard error, 231
    test statistic, 231
    model assumptions, 220–221
    errors, 220–221
    population error component, 220–221
    normality assumption, formal test of,
    266–268
    error component, 264
    null and alternative hypotheses, 265
    Ryan–Joiner test, 266–268
    test statistic value, 266
    violated assumption of normality, 268
    normal probability plot, 262
    normal score, 262
    outliers, assessment of, 266–268
    Cook’s distance, 274–275
    leverage values, 269–272
    standardized residuals, 272–273
    unusual observation, 268
    outliers, dealing with, 276–277
    example, 276
    MINITAB printout, 277
    unusual observation, 276
    population regression parameters,
    inferences about, 227–230
    confidence intervals, calculation of, 227
    example, 229
    null and alternative hypotheses, 229
    predictor variable, 228
    rejection region, 229
    sampling distribution, 228
    true population slope parameter, 228,
    230–232
    prediction intervals for response for specific
    value of predictor variable, 233–235
    calculations, 233
    example, 234
    graph, 235
    inferences, 234
    predictor variable, 214
    regression inference
    confidence intervals, calculation of, 224
    MINITAB printout, 226
    parameters, 227
    standard error, 227
    unknown population, 227
    regression line, 219
    residual, 217
    response variable, 214
    root mean square error, 226
    SAT–GPA data set, 213–214
    simple linear regression model, 214–220
    equation of line, 216
    ith residual, 217
    least squares line, 219
    line of best fit, 219
    line usefulness, 217
    marginal plot with histograms, 214
    regression line, 219
    scatter plot, 214–215
    unknown population linear equation,
    216, 219–220
    vertical distance, 217–218
    simple regression analysis, 214
    standard errors for estimated regression
    parameters, 227
    confidence intervals, calculation of, 228
    standard error, 227
    unknown population parameters, 227
    standardized residuals, 272–273
    unusual observations, 268474 Index
    Slope-intercept form, 216
    SSE, see Sum of the squares of the residual
    errors
    SSR, see Regression sum of squares
    SSTR, see Sum of squares for the treatment
    Standard error, 63
    for estimated regression parameters, 227
    confidence intervals, calculation of, 227
    standard error, 227
    unknown population parameters, 227
    Standardized residuals, 272–273
    MINITAB calculation, 273–274
    Standard normal distribution, 66–69
    Standard normal table, 67, 123
    Statistical inference, 56–57
    confidence interval, 93–99
    calculation, 95–96
    degrees of freedom, 94
    example, 96–97
    MINITAB, 99–100
    point estimate, 93
    t-distribution, 94, 98
    theory for population mean, 94
    unknown population mean, 95
    use, 93
    confidence interval, difference between two
    means, 157–160
    calculation, 157
    degrees of freedom, 159
    example, 158
    hypothesis tests, 155
    MINITAB use to calculate, 160–162
    population mean lifetimes, 159
    unequal variances, 158
    confidence intervals, hypothesis tests for
    proportions and, 120–124
    distribution of sample proportion, 121
    example, 121
    population proportion, 120–121
    p-value, 123
    rejection region, 123
    standard normal tables, 123
    test statistic, 122, 126
    difference between two means, testing of,
    162–166
    degrees of freedom, 163
    descriptive statistics, 165
    hypothesis test, 162
    MINITAB, 166–167
    pooled standard deviation, 165
    rejection region, 166
    test statistic, 163, 165
    differences between two proportions, 178–182
    example, 179
    formula, 179
    p-value, 182
    rejection region, 181
    sampling distribution, 178
    exercises, 151–155
    hypothesis testing (one-sample t-test for
    population mean), 100–106
    interval plot, 167–170
    MINITAB use for one-sample count variable
    commands, 142
    dialog box, 143
    hypothesis test, 146–147
    printout, 144, 147
    MINITAB use for one-sample proportion,
    124–127
    commands, 125
    dialog box, 125, 128
    options box, 126, 128
    printout, 126, 128
    MINITAB use for one-sample t-test, 106–114
    dialog box, 107
    example, 109–113
    options box, 107
    printout, 108
    p-value, 108
    rejection region, 108, 111
    sample mean, 110
    sample standard deviation, 110
    unknown population, 110
    value of test statistic, 112
    MINITAB use for one-sample variance,
    134–136
    dialog box, 134, 136
    options box, 135
    printout, 135, 137
    summarized data, 134
    MINITAB use for power analysis for onesample t-test, 116–120
    commands, 117
    dialog box, 117
    mean difference, 116
    options tab, 119
    printout, 118
    results, 120
    sample size, 116, 118–119
    MINITAB use for two-sample proportion
    confidence intervals and hypothesis
    tests, 182–184
    commands, 183
    dialog box, 182
    options box, 184, 185
    printout, 185, 186Index 475
    MINITAB use to calculate confidence
    interval for difference between two
    means, 160–162
    commands, 160
    dialog box, 161
    options dialog box, 161
    printout, 162
    MINITAB use to calculate confidence
    intervals for population mean, 99–100
    commands, 99
    dialog box, 100
    printout, 100
    summary data, 99
    MINITAB use to create interval plot, 167–170
    commands, 160
    dialog box, 169
    example, 170
    for one sample, 93–155
    one-sample proportion, power analysis for,
    127–129
    hypothesized proportion test, 128
    MINITAB use, 127
    printout, 128
    one-sample t-test, 100–106
    alternative hypothesis, 101, 103, 111
    decision process, 102
    error types, 103
    graph, 102
    left-tailed test, 103
    level of significance, 102
    mean of random sample, 101
    MINITAB use, 106–114
    null hypothesis, 101, 103, 112
    rejection region, 102, 105–106
    right-tailed test, 103
    sampling error, 101
    significance level, 103
    two-tailed test, 103
    value of test statistic, 105–106, 111
    one-sample t-test, power analysis for,
    115–116
    conclusions, 115–116
    null hypothesis, 115
    power analysis, 115
    power of test, 115
    test statistic, 114
    one-sample variance
    confidence interval for, 129–131
    hypothesis tests for, 132–133
    paired confidence interval and t-test, 172–176
    point estimate, 93
    p-value, 107
    two-count variables, 195–197
    two-sample Poisson, 198–201
    two-sample proportion, power analysis for,
    184–187
    example, 181
    MINITAB printout, 184
    sample sizes, 184
    two-sample t-test, use of MINITAB
    dialog box, 169, 171
    options box, 171
    for power analysis for, 170–172
    printout, 171
    smaller effect, 172
    two variances, 184–191
    MINITAB, 191–193
    power analysis for, 193–195
    types, 93
    Statistical significance, 201
    Statistics, 4
    definition of, 1
    descriptive, 3–4
    graphical methods, 2
    inferential, 4
    Stem-and-leaf plots, 21–22
    example, 21
    leaf creation, 21, 23, 24
    MINITAB use, 22–24
    purpose, 21
    stem, 23
    Stratified random sample, 13
    Studies
    experimental, 5
    observational, 5, 6
    types of, 5–6
    Summary tables and graphical displays, 2
    Sum of squares for the treatment (SSTR), 346
    Sum of the squares of the residual errors (SSE),
    219
    T t
    -distribution, 77, 94, 98, 298
    Test(s)
    Bartlett’s test, 350
    distribution-free tests, 385
    F-test, 292, 296
    hypothesis test, 101, 157
    Kruskal–Wallis test, 400–405
    χ2 distribution, 403
    example, 402
    MINITAB use, 405–410
    null and alternative hypotheses, 402
    ranking of data, 400
    rule of thumb, 405476 Index
    Test(s) (cont.)
    test statistic, 403, 404
    left-tailed test, 103
    Levene’s test, 352, 409
    Mann–Whitney test, 395–400
    example, 395
    null and alternative hypotheses, 395
    ranking of data, 395
    test statistic, 396
    one-sample t-test, 100–106
    alternative hypothesis, 101, 103
    decision process, 102
    error types, 103
    graph, 102
    left-tailed test, 103
    level of significance, 102
    mean of random sample, 101
    null hypothesis, 101, 103
    power analysis for, 115–116
    rejection region, 102, 105–106
    right-tailed test, 103
    sampling error, 101
    significance level, 103
    two-tailed test, 103
    value of test statistic, 105–106
    power of, definition of, 115
    right-tailed test, 103
    Ryan–Joiner test, 266–268, 355, 361
    Kruskal–Wallis test, 410
    normality assumption, 266–268
    one-way ANOVAs, 361, 362, 369
    two-way analysis of variance, 434, 434, 438
    Wilcoxon signed-rank test, 392, 393
    two-sample t-test, use of MINITAB for
    power analysis for, 170–172
    dialog box, 169, 171
    options box, 171
    printout, 172
    smaller effect, 172
    two-tailed test, 103
    Wilcoxon signed-rank test, 385–389
    assumption, 386
    example, 386
    MINITAB use, 389–395
    null and alternative hypotheses, 431
    population median, 386
    p-value, 388, 392
    ranking of observations, 386
    rejection region, 388
    sample size, 386
    symmetric distribution, 386
    Time series analysis, basic, 440–449
    chronological order of data, 440
    cyclical trend, 441
    example, 440
    linear forecast model, 444
    long-term trend, 441
    mean absolute deviation, 447
    mean absolute percentage error, 445
    mean squared deviation, 448
    MINITAB commands, 441
    MINITAB dialog box, 442, 443, 445, 448
    MINITAB output, 443
    MINITAB quadratic trend analysis, 448
    random trend, 441
    regression analysis, 443–444
    response variable, 444
    seasonal trend, 441
    time series plot, 440, 445
    trend analysis graph, 446
    trends, 441
    Treatment group, 5
    Trimmed mean, 90
    t-test, 172–176, 395
    one-sample, 106–114
    dialog box, 107
    example, 109–113
    options box, 107
    printout, 107
    p-value, 107
    rejection region, 108, 111
    sample mean, 110
    sample standard deviation, 110
    unknown population, 110
    value of test statistic, 112
    two-sample, use of MINITAB for power
    analysis for, 170–172
    dialog box, 169, 171
    options box, 171
    printout, 171
    smaller effect, 172
    Two-count variables, confidence intervals and
    hypothesis tests for, 195–197
    Two-sample Poisson, 198–201
    MINITAB
    commands, 198
    dialog box, 199
    option box, 198
    printout, 200
    power analysis for, 199
    Two-sample variances, power analysis for,
    193–195
    Two-tailed hypothesis test, 103, 149–150
    Two variances
    confidence intervals and hypothesis tests
    for, 184–191Index 477
    example, 188
    MINITAB use for testing two sample
    variances, 191–193
    dialog box, 192
    options box, 192
    printout, 199
    Two-way analysis of variance, 417–424
    calculation of mean squares, 419
    column factor, 417, 420
    example, 417
    exercises, 449–452
    F-distribution, 418
    interaction between factors, 418
    MINITAB, 424–440
    box plot, 432, 438
    commands, 425, 429
    dialog box, 425, 427, 429
    example, 431–432
    four-way residual plots, 437
    histogram of residuals, 434
    interaction plot, 426, 436, 439
    main effects plot, 435, 439
    normal probability plot of residuals, 428
    printout, 432, 436
    residual plots, 434
    residual versus fitted values, 359
    Ryan–Joiner test, 434, 435, 438
    rejection region, 422, 423
    row factor, 417
    SSInteraction, 421
    test statistics, 418
    Type I error, 103
    U
    Unknown population
    linear equation, 216, 219–220
    mean, confidence interval, 95
    one-sample t-test, 110
    parameters
    equation of line of best, 221
    standard errors for estimated regression
    parameters, 227
    standard deviation, 131
    variance, 189
    Unusual observation, outliers, 268, 276
    Upper and lower limits, box plots, 27–28
    V
    Variable(s), 9
    binary, 314
    categorical, 24
    cause-and-effect relationship between, 214
    continuous, 6, 24
    control, 285
    dependent, 32, 33, 214
    discrete, 6
    independent, 32, 33, 214
    indicator, 314
    interval, 8
    mathematical properties, 9
    nominal, 7
    numeric, median of, 50
    ordinal, 7
    predictor, 32, 214, 228
    categorical, 313–314
    confidence intervals for mean response
    for specific value of, 231–232
    multicollinearity, 300
    multiple regression analysis, 286
    prediction intervals for response for
    specific value of, 233–235
    variance inflation factors, 302
    random, 58–60
    continuous, 64
    discrete variable, 58
    mean, 61
    probability distribution, 57, 60
    representation, 58
    summarized, 59
    t-distribution, 94
    ratio, 8
    relationship between, 32
    response, 32, 214
    sample, linear trend between, 250
    scales of, 7–9
    straight line model, 214
    types of, 6–7
    Variables, graphing of, 15–46
    bar charts, 24
    discrete data, 24
    MINITAB use, 24–25
    variables, 24
    box plots, 27–31
    construction, 27, 28
    example, 28–30
    general form, 28
    median, 29
    MINITAB use, 31
    multiple, 31
    quartiles, 27
    upper and lower limits, 27–28
    whiskers, 27, 30
    frequency distribution, histogram drawn
    from, 15478 Index
    Variables, graphing of (cont.)
    histograms, 15–17
    construction, 16
    frequency distribution, histogram drawn
    from, 15
    MINITAB use, 17–21
    purpose of drawing, 16
    software use, 17
    marginal plots, 33–35
    scatter plots, 32–33
    Cartesian plane, 33
    data set, 33
    example, 32–33
    MINITAB use, 33
    predictor, 32–33
    response, 32
    variables, 32
    stem-and-leaf plots, 21–22
    example, 21
    MINITAB use, 22–24
    purpose, 21
    stem, 23
    Variance inflation factor (VIF), 302–303
    calculation, 302
    example, 302
    predictor variables, 302
    printout, 303
    use of MINITAB to calculate, 303–304
    value too high, 304
    VIF, see Variance inflation factor
    W
    Weighted mean, 89
    Wilcoxon signed-rank test, 385–389
    assumption, 386
    example, 386
    MINITAB use, 389–395
    commands, 390
    dialog box, 389
    example, 392
    histogram, 385, 391
    one-sample t-test, 393
    printout, 391, 393
    results, 394
    Ryan–Joiner test, 392
    null and alternative hypotheses, 431
    population median, 386
    p-value, 388, 392
    ranking of observations, 386
    rejection region, 388
    sample size, 386
    symmetric distribution, 386

كلمة سر فك الضغط : books-world.net
The Unzip Password : books-world.net

تحميل

يجب عليك التسجيل في الموقع لكي تتمكن من التحميل
تسجيل | تسجيل الدخول

التعليقات

اترك تعليقاً