Advanced Ceramic Materials

Advanced Ceramic Materials
اسم المؤلف
Ashutosh Tiwari, Rosario A. Gerhardt and Magdalena Szutkowska
التاريخ
2 يناير 2019
المشاهدات
524
التقييم
Loading...

Advanced Ceramic Materials
من سلسلة علم المواد المتقدمة
Advanced Material Series
Ashutosh Tiwari, Rosario A. Gerhardt and Magdalena Szutkowska
Contents
Preface xiii
Part 1 Design, Processing, and Properties
1 Development of Epitaxial Oxide Ceramics Nanomaterials
Based on Chemical Strategies on Semiconductor Platforms 3
A. Carretero-Genevrier, R. Bachelet, G. Saint-Girons,
R. Moalla, J. M. Vila-Fungueiri?o, B. Rivas-Murias,
F. Rivadulla, J. Rodriguez-Carvajal, A. Gomez,
J. Gazquez, M. Gich and N. Mestres
1.1 Introduction 4
1.2 Integration of Epitaxial Functional Oxides
Nanomaterials on Silicon Entirely Performed
by Chemical Solution Strategies 8
1.2.1 Integration of Piezoelectric Quartz Tin
Films on Silicon by Sof Chemistry 10
1.2.2 Controllable Textures of Epitaxial
Quartz Tin Films 13
1.2.3 Integration of Functional Oxides by
Quartz Templating 17
1.2.4 Highly Textured ZnO Tin Films 21
1.3 Integration of Functional Oxides by Combining
Sof Chemistry and Physical Techniques 22
1.4 Conclusions 23
Acknowledgments 26
References 26vi Contents
2 Biphasic, Triphasic, and Multiphasic Calcium Orthophosphates 33
Sergey V. Dorozhkin
2.1 Introduction 34
2.2 General Defnitions and Knowledge 38
2.3 Various Types of Biphasic, Triphasic,
and Multiphasic CaPO4 40
2.4 Stability 42
2.5 Preparation 44
2.6 Properties 51
2.7 Biomedical Applications 53
2.8 Conclusions 59
References 60
3 An Energy Efcient Processing Route for Advance Ceramic
Composites Using Microwaves 97
Satnam Singh, Dheeraj Gupta and Vivek Jain
3.1 Introduction 98
3.2 Historical Developments in Materials Processing by
Microwaves 99
3.3 Introduction to Microwave Heating Process 101
3.3.1 Microwave–materials Interaction Teory 102
3.3.2 Microwave Heating Mechanisms 104
3.4 Heating Methods by Microwaves 107
3.4.1 Direct Microwave Heating 107
3.4.2 Microwave Hybrid Heating 108
3.4.3 Selective Heating 109
3.4.4 Microwave-assisted Processing of Materials 109
3.5 Advantages/Limitations of Microwave
Material Processing 110
3.5.1 Highly Energy Efcient Processing Method 110
3.5.2 Better Quality of Processed Materials 113
3.5.3 Cleaner Energy Processing 114
3.5.4 Compact Processing Unit 114
3.5.5 Restriction in Processing of All Varieties
of Materials 115
3.5.6 Restrictions in Processing of Complex Shapes 115
3.5.7 Non-uniformity in Heating 115
3.5.8 Human Safety Issues 115Contents vii
3.6 Application of Microwave Heating in
Composite Processing 116
3.6.1 Recent Review of Work Carried Out in
MMC/CMC/Alloys/Ceramic Processing
by Microwaves 119
3.6.2 Microwave Melting/Casting of Metals/
Metal Matrix Composites 127
3.7 Future Prospectives 130
3.8 Conclusion 133
References 133
Part 2 Ceramic Composites: Fundamental and Frontiers
4 Continuous Fiber-reinforced Ceramic Matrix Composites 147
Rebecca Gottlieb, Shannon Poges, Chris Monteleone
and Steven L. Suib
4.1 Introduction 148
4.2 Parts of a CMC 149
4.2.1 Fibers 150
4.2.2 Interphase 151
4.2.3 Matrix 152
4.3 Modern Uses of CMCs 154
4.4 History 155
4.5 Ceramic Fibers 158
4.5.1 Oxide Fibers 158
4.5.1.1 Alumina Fibers 159
4.5.1.2 Stabilized Alumina Fibers 160
4.5.1.3 Alumina Silicate Fibers 160
4.5.1.4 Other Oxide Fibers 164
4.5.2 Non-oxide Fibers (SiC) 164
4.5.2.1 Oxidation 164
4.5.2.2 Irradiation 165
4.5.2.3 Sintering 165
4.5.3 Carbon Fibers 166
4.5.3.1 Polyacrylonitrile 167
4.5.3.2 Pitch 167
4.6 Interface/Interphase 168
4.6.1 Requirements 169
4.6.2 Non-oxide 170
4.6.3 Oxide 171viii Contents
4.7 Matrix Materials 172
4.7.1 Carbon 172
4.7.2 Silicon Carbide 175
4.7.3 Oxides 178
4.8 Matrix Fabrication Techniques 179
4.8.1 Polymer Impregnation and Pyrolysis 180
4.8.2 Chemical Vapor Infltration 181
4.8.3 Melt Infltration 183
4.8.4 Slurry Infltration 184
4.8.5 Metal Oxidation 185
4.9 Toughness of CMCs 185
4.9.1 Fiber/Matrix Interface 186
4.9.2 Modes of Failure 186
4.9.3 Energy-Absorbing Mechanisms 187
4.9.4 Stress Testing of Composites 188
4.10 Applications 188
4.10.1 Brakes and Friction 190
4.10.2 Biomedical Applications 191
Acknowledgments 193
References 193
5 Yytria- and Magnesia-doped Alumina Ceramic
Reinforced with Multi-walled Carbon Nanotubes 201
Ifikhar Ahmad and Yanqiu Zhu
5.1 Introduction 202
5.2 Dispersions and Stability of MWCNTs 202
5.3 In?uence of Yytria (Y2O3) Doping on MWCNT/Al2O3
Nanocomposites 205
5.3.1 Densifcation and Microstructure Development 205
5.3.2 Mechanical Performance and
Toughening Mechanism 210
5.4 Magnesia (MgO)-Tuned MWCNT/Al2O3
Nanocomposites 215
5.4.1 Role of MgO on the Densifcation and
Microstructural Features 215
5.4.2 E?ect of MgO on the Grain Size and
Fracture Behavior 217
5.4.3 Mechanical Response of MgO-Doped
MWCNT/Al
2O3 Nanocomposite 221Contents ix
5.5 Conclusions 225
Acknowledgments 226
References 227
6 Oxidation-induced Crack Healing in MAX Phase
Containing Ceramic Composites 231
Guoping Bei and Peter Greil
6.1 History of Crack Healing in Ceramics 232
6.2 High-temperature Crack Healing in MAX Phases 233
6.2.1 MAX Phases 233
6.2.2 Crack Healing in Al-contained MAX Phases 234
6.2.2.1 Ti
3AlC2 234
6.2.2.2 Ti
2AlC 235
6.2.2.3 Cr
2AlC 238
6.3 Lower-temperature Crack Healing in MAX
Phase-based Ceramics 241
6.3.1 Oxidation Behavior of Ti
2Al(1–x)SnxC MAX
Phase Solid-solution Powders 241
6.3.2 Oxidation-induced Crack Healing in
Termal-shocked Ti
2SnC MAX Phase 244
6.3.3 Crack Healing in Ti2Al0.5Sn0.5C–Al2O3
Composites 249
6.4 Conclusions 255
Acknowledgments 256
References 256
7 SWCNTs versus MWCNTs as Reinforcement Agents
in Zirconia- and Alumina-based Nanocomposites:
Which One to Use 261
M.H. Bocanegra-Bernal, C. Dominguez-Rios,
A. Garcia-Reyes, A. Aguilar-Elguezabal and J. Echeberria
7.1 Introduction 262
7.2 Single-walled Carbon Nanotubes 266
7.3 Multi-walled Carbon Nanotubes 269
7.4 Te E?ects of CNTs Types on the Mechanical
Properties of Al2O3- and ZrO2-based Ceramics 274
7.5 Why SWCNTs? or Why MWCNTs? 285
7.6 Conclusions 287
Acknowledgments 289
References 289x Contents
Part 3 Functional and Applied Ceramics
8 Application of Organic and Inorganic Wastes in
Clay Brick Production: A Chemometric Approach 301
Milica V. Vasi?, Zagorka Radojevi?, and Lato Pezo
8.1 Introduction 302
8.2 Materials and Methods 305
8.2.1 Raw Materials and Laboratory Brick Samples 305
8.2.2 Macro Oxides Content of the Used Raw Materials 306
8.2.3 Response Surface Method 307
8.2.4 Fuzzy Synthetic Evaluation Algorithm 308
8.2.5 Artifcial Neural Network modeling 309
8.3 Results and Discussion 312
8.3.1 Characteristics of Raw Materials 312
8.3.2 Changes Observed in Shaping and
Drying in the Air 314
8.3.3 Characteristics of Fired Products 318
8.3.4 RSM and ANOVA Analysis 321
8.3.5 Neurons in the ANN Hidden Layer 323
8.3.6 Simulation of the ANNs 325
8.3.7 Principal Component Analysis 328
8.3.8 Optimization 330
8.4 Conclusions 331
Acknowledgments 332
References 332
9 Functional Tantalum-based Oxides: From the Structure
to the Applications 337
Sebastian Zlotnik, Alexander Tkach and Paula M. Vilarinho
9.1 Functional Materials: Current Needs 338
9.2 Importance of Tantalum and Tantalum-based Oxides 342
9.3 Properties of Alkali Tantalates 343
9.3.1 Crystal and Electronic Structures 343
9.3.2 Termochemistry 347
9.4 Processing of Alkali Tantalate Ceramics for Electronic
Applications 351
9.5 Potential Applications of Alkali Tantalates 358
9.5.1 Sodium Tantalate as a Photocatalyst 358
9.5.2 Lithium Tantalate as a Piezoelectric Biomaterial 366Contents xi
9.6 Conclusions 370
Acknowledgement 371
References 371
10 Application of Silver Tin Research on Hydroxyapatite 385
Ewa Skwarek
10.1 Introduction 386
10.1.1 Properties of Silver 386
10.1.2 Application of Silver 387
10.1.3 Hydroxyapatite (HAP)–Silver 391
10.2 Materials and Methods 399
10.2.1 Synthesis of Hydroxyapatite Using the
Co-precipitation Method 399
10.2.2 Synthesis of Silver-doped Hydroxyapatite 400
10.2.3 Characteristics of Surfaces of Obtained Materials 400
10.3 Results and Discussion 402
10.3.1 Te Results of XRD and Surface 402
10.3.2 Zeta Potential at the Hydroxyapatite/NaNO3
Electrolyte Solution Interface 404
10.3.3 Surface Charge Density 408
10.3.4 Adsorption of Silver Ions on Hydroxyapatite 410
10.3.5 Kinetics of Ag+ Ions Adsorption on the
Hydroxyapatite Surface 413
10.4 Conclusion 414
References 415
Index 419
كلمة سر فك الضغط : books-world.net
The Unzip Password : books-world.net

تحميل

يجب عليك التسجيل في الموقع لكي تتمكن من التحميل
تسجيل | تسجيل الدخول

التعليقات

اترك تعليقاً