Advanced Catalytic Materials
اسم المؤلف
Ashutosh Tiwari and Salam Titinchi
التاريخ
المشاهدات
300
التقييم
Loading...
التحميل

Advanced Catalytic Materials
من سلسلة علم المواد المتقدمة
Advanced Material Series
Ashutosh Tiwari and Salam Titinchi
Contents
Preface xv
Part I: Nanocatalysts – Architecture and Design 1
1 Environmental Applications of Multifunctional
Nanocomposite Catalytic Materials: Issues
with Catalyst Combinations 3
James A. Sullivan, Orla Keane, Petrica Dulgheru and
Niamh O’Callaghan 3
1.1 Introduction 3
1.1.1 Te Tree Way Catalyst 4
1.1.2 Operation and Composition of the TWC 5
1.1.3 Process Control to Allow the TWC Operate 6
1.1.4 Changes to Catalyst Formulations Allowing
Oscillating A/F Ratios 7
1.1.5 Problems with TWC Technology 7
1.2 Proposed Solutions to the Lean-Burn NOx emission Problems 9
1.2.1 NH
3-SCR 9
1.2.1.1 TiO
2-Supported V2O5 Catalysts 11
1.2.1.2 Ion-Exchanged Zeolites in NH3-SCR 12
1.2.1.3 SCR-Urea Reactions 13
1.2.2 NOx Trapping 14
1.3 Multifunctional Materials to Combine NH
3-SCR and
NSR Cycles 17
1.4 Particulate Matter, Formation, Composition and Dangers 19
1.4.1 Particulate Matter Afertreatment Technology 20
1.4.2 Particulate Traps and Regeneration 20
1.5 Use of Multifunctional Materials to Combust C(s) and
Trap NOx 22
1.6 Multifunctional Materials in Selective Catalytic Oxidation 23
1.6.1 Current Epoxidation Reactions 24
1.6.2 H
2O2 as a Selective Oxidant 25
1.6.3 Current and Greener H
2O2 Production 26vi Contents
1.7 Proposed Tandem Catalysts for “Green” Selective
Epoxidation 28
1.8 Conclusions 29
Acknowledgements 30
References 30
2 Chemical Transformation of Molecular Precursor into
Well-Defned Nanostructural Functional Framework via
Sof Chemical Approach 37
Taimur Athar 37
2.1 Introduction 38
Aims and Objective of the Chapter 40
2.2 Te Chemistry of Metal Alkoxides 41
2.3 Te Chemistry of Nanomaterials 47
2.4 Preparation of Monometallic Alkoxides and Its
Conversion into Corresponding Metal Oxides 52
2.5 Techniques used to Characterization of Precursor and
Inorganic Material 54
2.5.1 1H NMR 55
2.5.2 FT-IR Spectroscopy 55
2.5.3 UV–Visible Spectroscopy 55
2.5.4 Raman Spectroscopy 56
2.5.5 Termal Analysis 56
2.5.6 XRD Studies 56
2.5.7 SEM-EDX 57
2.5.8 Energy Dispersive X-Ray Analysis (EDX) 57
2.5.9 TEM 58
2.5.10 STM 58
2.5.11 AFM 58
2.5.12 BET 58
2.5.13 Photoluminescence Spectroscopy 59
2.5.14 Particle size and Its Distribution along with Shape 59
2.6 Conclusion 60
Acknowledgement 60
References 61
3 Graphenes in Heterogeneous Catalysis 69
Josep Albero and Hermenegildo Garcia 69
3.1 Introduction 69
3.1.1 Carbocatalysis 69
3.1.2 Structure and Properties of G 70Contents vii
3.1.3 Defects on G and GO 73
3.1.4 Doped Gs. Properties and Interest in Catalysis 75
3.1.5 Preparation of Doped Gs 77
3.1.6 Preparation Procedures 79
3.1.7 Characterization Techniques 85
3.2 Carbocatalysis 89
3.3 G Materials as Carbocatalysts 92
3.3.1 G as Oxidation Catalyst 92
3.3.2 Reduction 100
3.3.3 G as Acid/Base Catalysts 102
3.4 G as Support of Metal NPs 104
3.4.1 G as Support of Metal NPs Used as Catalyst
for Oxidation Reactions 106
3.4.2 Metal NPs Supported in G-Based Materials
as Catalyst for Reduction Reactions 109
3.4.3 Metal NPs Supported in G-Based Materials
as Catalyst for Coupling Reactions 111
3.4.4 Metal NPs Supported in G-Based Materials
as Catalyst for Hydrogen Release 114
3.5 Summary and Future Prospects 115
References 116
4 Gold Nanoparticles–Graphene Composites Material:
Synthesis, Characterization and Catalytic Application 121
Najrul Hussain, Gitashree Darabdhara and Manash R. Das 121
4.1 Introduction 122
4.2 Synthesis of Au NPs–rGO Composites and
Its Characterization 124
4.2.1 In Situ Synthesis of Au NPs–rGO
Composite Materials 124
4.2.1.1 Termal Reduction 124
4.2.1.2 Chemical Reduction 126
4.2.1.3 Gas Phase Chemical Reduction 131
4.2.1.4 Electrochemical Deposition of Au
NPs onto Graphene Sheets 133
4.2.1.5 Photo-Assisted Reduction 133
4.2.1.6 Ultrasonication 134
4.2.1.7 Microwave-Assisted Synthesis 134
4.2.2 Ex Situ Synthesis of Au NPs–rGO Nanocomposites 135
4.3 Catalytic Application of Au NPs–rGO Composites 136
4.4 Future Prospects 138viii Contents
Acknowledgements 138
References 139
Part II: Organic and Inorganic Catalytic Transformations 143
5 Hydrogen Generation from Chemical Hydrides 145
Mehmet Sankir, Levent Semiz, Ramis B. Serin,
Nurdan D. Sankir and Derek Baker 145
5.1 Introduction: Overview of Hydrogen 146
5.2 Hydrogen Generation 148
5.2.1 Measurement Techniques 148
5.2.2 Reactions 150
5.2.3 Rate Calculations and Yields 153
5.3 Type of Catalysts and Catalyst Morphologies 159
5.3.1 Powder Catalysts 159
5.3.1.1 Monometallic Ni(0) 159
5.3.1.2 Monometallic Co-P 160
5.3.1.3 Monometallic CoO 160
5.3.1.4 Monometallic Cu 160
5.3.1.5 Bimetallic Pt-Ru 161
5.3.1.6 Bimetallic Co-Co
2B and Ni-Ni3B 161
5.3.1.7 Bimetallic Pt
x
Ni
1-x 161
5.3.1.8 Ternary Pd-Ni-B Nanoclusters 162
5.3.1.9 Quaternary Co–La–Zr–B 162
5.3.1.10 Quaternary Co–Mo–Pd–B 163
5.3.2 Supported Catalysts 163
5.3.2.1 Cobalt (Co) on Mesoporous Silica 163
5.3.2.2 Cobalt (Co) on Carbon 165
5.3.2.3 Cobalt (Co) on Oxides
(TiO2, Al2O3, CeO2) 165
5.3.2.4 Cobalt (Co) on Polymers 166
5.3.2.5 Co(II)-Cu(II) On Polymer 166
5.3.2.6 Ni on Polymers 167
5.3.2.7 Co-Ni-P on Pd-Activated TiO
2 167
5.3.2.8 Ni
3B on Carbon 167
5.3.2.9 Ni-Ru Nanocomposite 168
5.3.2.10 Pt on Carbon 168
5.3.2.11 Pt on TiO
2 168
5.3.2.12 Ru on Carbon 169
5.3.2.13 Ru on Al
2O3, TiO2, CeO2,
Activated Carbon 169Contents ix
5.3.2.14 Noble Metal Nanoclusters (Ru, Rh, Pd,
Pt, Au) on Alumina, Carbon and Silica 170
5.3.2.15 PtPdRu on CNTs (Carbon Nanotubes) 171
5.3.3 Foam and Film Supports 171
5.3.3.1 Fe–Co–B on Ni Foam 171
5.3.3.2 Co-B on Ni Foam 171
5.3.3.3 Ni–B on Ni Foam 172
5.3.3.4 Mg, Al on Ni Foam 172
5.3.3.5 FeB on Ni Foam 173
5.3.3.6 Co-Ni-P on Cu Sheet 173
5.3.3.7 Co-W-P on Cu Plate 173
5.3.3.8 Fe-B on Carbon Cloth 174
5.3.3.9 Cu Film on Cu Foil 174
5.3.3.10 Co-B Film 174
5.3.3.11 Dealloyed Precious Metals on Te?on™
or Asymmetric Membranes 174
5.4 Kinetics and Models 177
5.4.1 Zero-Order Kinetic Model 177
5.4.2 First-Order Kinetic Model 178
5.4.3 Langmuir–Hinshelwood Model 180
5.5 Hydrogen Generation for PEMFCs 183
5.5.1 Proton-Exchange Membrane Fuel Cells 183
5.6 Conclusions 186
Acknowledgements 187
References 187
6 Ring-Opening Polymerization of Lactide 193
Alekha Kumar Sutar, Tungabidya Maharana,
Anita Routaray and Nibedita Nath 193
Abbreviation 194
6.1 Introduction 194
6.2 Aluminum Metal 195
6.3 Importance of Polylactic Acid 196
6.4 Ring-Opening Polymerization (ROP) 197
6.5 Application of Di?erent Catalytic System in ROP of Lactide 197
6.5.1 Alkyl Aluminum Catalyst 198
6.5.2 Alkoxy Aluminum Catalyst 207
6.5.3 Bimetallic Aluminum Catalyst 217
6.6 Concluding Remarks 220
Acknowledgments 221
References 221x Contents
7 Catalytic Performance of Metal Alkoxides 225
Mahdi Mirzaee, Mahmood Norouzi, Adonis Amoli,
and Azam Ashrafan 225
7.1 Introduction 225
7.2 Metal Alkoxides 226
7.3 Polymerization Reactions Catalyzed by Metal Alkoxides 227
7.3.1 Ring Opening Polymerization of Olefn Oxides 227
7.3.2 Ring Opening Polymerization of Cyclic Esters 230
7.3.2.1 Lactide 231
7.3.2.2 ?-Caprolactone 242
7.3.2.3 ?-Butyrolactone 244
7.3.2.4 Other Miscellaneous Polymerization
Reactions 249
7.4 Reduction Reactions Catalyzed by Metal Alkoxides 250
7.4.1 Hydrogenation 250
7.4.2 Meerwein–Ponndorf–Verley Reaction 251
7.4.3 Reduction Reaction with Borane 255
7.5 Oxidation Reactions Catalyzed by Metal Alkoxides 256
7.5.1 Oxidation of Sulfdes 256
7.5.2 Oxidation of Olefns 258
7.6 Other Miscellaneous Metal Alkoxide Catalysis Reactions 259
7.6.1 Reactions Catalyzed by s-Block Metal Alkoxides 259
7.6.2 Reactions Catalyzed by p-Block Metal Alkoxides 260
7.6.3 Reactions Catalyzed by d-Block Metal Alkoxides 261
7.6.4 Reactions Catalyzed by f-Block Metal Alkoxides 265
7.7 Conclusion 266
Acknowledgment 267
References 267
8 Cycloaddition of CO2 and Epoxides over Reusable
Solid Catalysts 271
Luis F. Bobadilla, Sérgio Lima, and Atsushi Urakawa 271
8.1 Introduction: CO
2 as Raw Material 271
8.2 Properties and Applications of Cyclic Carbonates 273
8.3 Synthesis of Cyclic Carbonates from the Cycloaddition
Reaction of CO
2 with Epoxides 275
8.3.1 Inorganic Materials 276
8.3.1.1 Hydrotalcites as Precursors of Mixed Oxides
276
8.3.1.2 Pure and Mixed Metal Oxides 278
8.3.1.3 Layered Clay Mineral (Hydroxyapatites
and Smectites) 284Contents xi
8.3.1.4 Zeolite and Molecular Sieves Materials 286
8.3.2 Organic Materials 287
8.3.2.1 Functionalized Chitosan (CS) 287
8.3.2.2 Functionalized Cross-linked Polymers
and Resins 290
8.3.3 Organic–Inorganic Hybrid Composites 294
8.3.3.1 Functionalized Silica-Based Catalysts 295
8.3.3.2 Functionalized Mesoporous
Ordered Materials 299
8.3.3.3 Supported Organometallic Complexes
Catalysts 303
8.3.3.4 Metal Organic Frameworks (MOFs) 304
8.3.3.5 Polyoxometalate-Based Materials 306
8.4 Concluding Remarks and Future Perspectives 306
References 307
Part III: Functional Catalysis: Fundamentals and Applications 313
9 Catalytic Metal-/Bio-composites for Fine Chemicals
Derived from Biomass Production 315
Madalina Tudorache, Simona M. Coman,
and Vasile I. Parvulescu 315
9.1 Introduction 316
9.2 Metal Composites with Catalytic Activity
in Biomass Conversion 317
9.2.1 Ru-Based Materials as Efcient Catalysts
for the Cellulose Valorization 318
9.2.2 Key Catalytic Features: Platform Molecules
Nature Relationship 321
9.3 Catalytic Biocomposites with Heterogeneous Design 328
9.3.1 Enzyme Composites in Catalytic Conversion
of Biomass 328
9.3.2 Immobilized Enzymes on Magnetic
Particles (IEMP) 332
9.3.3 Carrier-Free Immobilized Enzymes 335
9.3.4 Enzyme and Neoteric Solvent Mixture 341
9.3.5 New Immobilized Enzyme Architectures 343
9.3.6 Biocomposites Using Whole Cell 343
9.4 Conclusions 345
References 345xii Contents
10 Homoleptic Metal Carbonyls in Organic Transformation 353
Badri Nath Jha, Abhinav Raghuvanshi and Pradeep Mathur 353
10.1 Introduction 353
10.2 Cycloaddition 354
10.2.1 [2+2+1] Cycloaddition 355
10.2.2 Regioselective [2+2+2] Cycloaddition 355
10.3 Carbonylation 358
10.3.1 Carbonylation of Unactivated C(sp3)–H Bonds 358
10.3.2 Oxidative Carbonylation of Arylamines 361
10.3.3 Tiolative Lactonization of Alkynes with Double
CO Incorporation 362
10.3.4 Synthesis of Succinimides with Double
Carbonylation 362
10.4 Silylation 363
10.4.1 Hydrosilylation of Conjugated Dienes 365
10.5 Amidation of Adamantane and Diamantane 366
10.6 Reduction of N,N-Dimethylthioformamide 367
10.7 Reductive N-Alkylation of Primary Amides
with Carbonyl Compounds 368
10.8 Synthesis of N-Fused Tricyclic Indoles 369
10.9 Cyclopropanation of Alkenes 369
Conclusion 378
References 378
11 Zeolites: Smart Materials for Novel, Efcient, and
Versatile Catalysis 385
Mayank Pratap Singh, Garima Singh Baghel,
Salam J. J. Titinchi and Hanna S. Abbo
11.1 Introduction 385
11.2 Structures and Properties 388
11.2.1 Porosity of Zeolites 389
11.2.2 Zeolites Characterization 392
11.3 Synthesis of Zeolites 393
11.4 Application of Zeolites in Catalysis 395
11.4.1 Electrophilic Aromatic Substitutions 396
11.4.2 Additions and Eliminations 398
11.4.3 Rearrangements and Isomerizations 398
11.4.4 Cyclizations 399
11.4.5 Zeolites Supported Enantioselective Catalysis 400
11.4.5(a) Zeolite Supported Catalysts
for Chiral Hydrogenation 400Contents xiii
11.4.5(b) Epoxidation and Aziridination 401
11.5 Medical Applications of Zeolites 404
11.5.1 Heavy-Metal Removal 404
11.5.2 Antimicrobial E?ects 405
11.5.3 External Applications 405
11.6 Conclusions 406
References 406
12 Optimizing Zeolitic Catalysis for Environmental Remediation 411
Chrispin Ounga Kowenje and Elly Tetty Osewe
Acronyms 411
Defnition of Terms 412
12.1 Introduction 413
12.1.1 Identifcation and Development of
Nanomaterials 414
12.1.2 General Applications of Zeolites on Water
Purifcation 415
12.1.3 Wastewater Re-use by Regions of the World 416
12.2 Structure of Zeolites 417
12.2.1 Zeolite Framework 417
12.2.2 Charge Development in the Zeolites 418
12.3 Categorization and Characterization of Zeolites 419
12.3.1 Name Codes for Synthetic Zeolites 419
12.3.2 Name Codes for Natural Zeolites 419
12.4 Properties of Zeolites and Teir E?ects 421
12.4.1 E?ects of Si/Al Ratio 421
12.4.1.1 E?ects of Si/Al on Resultant Reacting
Solution pH 422
12.4.2 E?ects of Ion-Exchange Capacity in Zeolites 423
12.4.2.1 Removal of Heavy Metals 423
12.4.2.2 Desalination of Sea Water 424
12.4.2.3 Removal of Inorganic Anions 424
12.4.2.4 Removal of Humic Substances 424
12.4.3 Window Opening (Pore Size) and Internal
Surface Area 425
12.4.3.1 Determining Kinetic Diameter
of a Molecule 425
12.4.3.2 E?ects of Internal Surface Area
and Window Opening 427
12.4.3.3 Application in Reverse Osmosis (RO) 428xiv Contents
12.4.3.4 Removal of Other Organics 429
12.4.3.5 Capturing of Microorganisms 429
12.4.3.6 Applications in Permeable Reactive
Barriers (PRB) 429
12.4.3.7 Molecular Sieve E?ects 430
12.4.4 E?ects of Channel, Cage, or Cavity
Dimensionality 431
12.4.5 E?ects of Hydrophobicity and Hydrophilicity
of the Zeolites 433
12.5 E?ects of Chemical Modifcation 434
12.6 Summary 436
References 436
Index 43
كلمة سر فك الضغط : books-world.net
The Unzip Password : books-world.net

تحميل

يجب عليك التسجيل في الموقع لكي تتمكن من التحميل

تسجيل | تسجيل الدخول