Additive Manufacturing Technologies
اسم المؤلف
Ian Gibson, David Rosen, Brent Stucker, Mahyar Khorasani
التاريخ
المشاهدات
343
التقييم
(لا توجد تقييمات)
Loading...
التحميل

Additive Manufacturing Technologies
Third Edition
Ian Gibson, David Rosen, Brent Stucker, Mahyar Khorasani
Contents
1 Introduction and Basic Principles . 1
1.1 What Is Additive Manufacturing? 1
1.2 What Are AM Parts Used For? 3
1.3 The Generic AM Process . 3
1.3.1 Step 1: CAD . 4
1.3.2 Step 2: Conversion to STL 5
1.3.3 Step 3: Transfer to AM Machine and STL File
Manipulation 5
1.3.4 Step 4: Machine Setup . 5
1.3.5 Step 5: Build . 5
1.3.6 Step 6: Removal 5
1.3.7 Step 7: Post-Processing 6
1.3.8 Step 8: Application 6
1.4 Why Use the Term Additive Manufacturing? . 6
1.4.1 Automated Fabrication (Autofab) 7
1.4.2 Freeform Fabrication or Solid Freeform Fabrication 7
1.4.3 Additive Manufacturing or Layer-Based
Manufacturing . 7
1.4.4 Rapid Prototyping 8
1.4.5 Stereolithography or 3D Printing . 8
1.5 The Benefits of AM . 9
1.6 Distinction Between AM and Conventional Manufacturing
Processes . 10
1.6.1 Material 10
1.6.2 Speed 10
1.6.3 Complexity 11
1.6.4 Accuracy . 11
1.6.5 Geometry . 12
1.6.6 Programming 12
1.7 Example AM Parts 13xii
1.8 Other Related Technologies . 14
1.8.1 Reverse Engineering Technology . 14
1.8.2 Computer-Aided Engineering/Technologies (CAX) 15
1.8.3 Haptic-Based CAD 16
1.9 About This Book . 18
1.10 Questions . 19
References . 21
2 Development of Additive Manufacturing Technology . 23
2.1 Introduction . 23
2.2 Computers 24
2.3 Computer-Aided Design Technology . 26
2.4 Other Associated Technologies 30
2.4.1 Printing Technologies 30
2.4.2 Programmable Logic Controllers . 31
2.4.3 Materials 31
2.4.4 Computer Numerically Controlled Machining 31
2.5 The Use of Layers 32
2.6 Classification of AM Processes 33
2.6.1 Liquid Polymer Systems . 35
2.6.2 Discrete Particle Systems . 35
2.6.3 Molten Material Systems . 36
2.6.4 Solid Sheet Systems . 37
2.6.5 New AM Classification Schemes . 38
2.7 Heat Sources 39
2.7.1 Lasers 39
2.7.2 Electron Beam . 41
2.7.3 Electric Arc/Plasma Arc 41
2.8 Metal Systems . 42
2.9 Hybrid Systems 42
2.10 Milestones in AM Development . 43
2.11 AM around the World . 45
2.12 AM Standards . 47
2.13 The Future? Rapid Prototyping Develops into Direct Digital
Manufacturing . 48
2.14 Questions . 49
References . 50
3 Generalized Additive Manufacturing Process Chain . 53
3.1 Introduction . 53
3.2 The Eight Steps in Additive Manufacture 54
3.2.1 Step 1: Conceptualization and CAD 54
3.2.2 Step 2: Conversion to STL/AMF . 56
3.2.3 Step 3: Transfer to AM Machine and STL File
Manipulation 57
3.2.4 Step 4: Machine Setup . 58
Contentsxiii
3.2.5 Step 5: Build . 58
3.2.6 Step 6: Removal and Cleanup . 59
3.2.7 Step 7: Post-processing 59
3.2.8 Step 8: Application 60
3.3 Variations from One AM Machine to Another . 60
3.3.1 Photopolymer-Based Systems . 61
3.3.2 Powder-Based Systems 62
3.3.3 Molten Material Systems . 62
3.3.4 Solid Sheets . 63
3.4 Metal Systems . 63
3.4.1 The Use of Substrates 63
3.4.2 Energy Density . 64
3.4.3 Weight . 64
3.4.4 Accuracy . 65
3.4.5 Speed 65
3.4.6 Build Rate . 66
3.5 Maintenance of Equipment . 66
3.6 Materials Handling Issues 66
3.7 Design for AM . 68
3.7.1 Part Orientation 68
3.7.2 Removal of Supports 69
3.7.3 Hollowing Out Parts . 69
3.7.4 Inclusion of Undercuts and Other Manufacturing
Constraining Features 69
3.7.5 Interlocking Features 70
3.7.6 Reduction of Part Count in an Assembly . 71
3.7.7 Identification Markings/Numbers 71
3.8 Application Areas for AM-Enabled Product Development . 71
3.8.1 Medical Modeling 72
3.8.2 Reverse Engineering Data 72
3.8.3 Architectural Modeling 72
3.8.4 Automotive 72
3.8.5 Aerospace . 73
3.9 Further Discussion 73
3.10 Questions . 74
References . 75
4 Vat Photopolymerization 77
4.1 Introduction . 77
4.2 Vat Photopolymerization Materials . 79
4.2.1 UV Curable Photopolymers . 79
4.2.2 Overview of Photopolymer Chemistry 81
4.2.3 Resin Formulations and Reaction Mechanisms 83
4.3 Reaction Rates . 87
4.4 Laser Scan Vat Photopolymerization 87
Contentsxiv
4.5 Photopolymerization Process Modeling . 88
4.5.1 Irradiance and Exposure 89
4.5.2 Laser–Resin Interaction 91
4.5.3 Photospeed 94
4.5.4 Time Scales . 95
4.6 Vector Scan VPP Machines . 96
4.7 Scan Patterns 98
4.7.1 Layer-Based Build Phenomena and Errors . 98
4.7.2 Weave 100
4.7.3 Star-Weave 101
4.7.4 ACES Scan Pattern 103
4.8 Vector Scan Micro Vat Photopolymerization 107
4.9 Mask Projection VPP Technologies and Processes . 108
4.9.1 Mask Projection VPP Technology 108
4.9.2 Commercial MPVPP Systems . 110
4.9.3 MPVPP Modeling 111
4.9.4 Continuous Liquid Interface Production (CLIP)
Technology 113
4.10 Two-Photon Vat Photopolymerization . 113
4.11 Process Benefits and Drawbacks . 115
4.12 Summary . 116
4.13 Questions . 117
References . 121
5 Powder Bed Fusion . 125
5.1 Introduction . 125
5.2 Materials . 127
5.2.1 Polymers and Composites 127
5.2.2 Metals and Composites 128
5.2.3 Ceramics and Ceramic Composites . 130
5.3 Powder Fusion Mechanisms 130
5.3.1 Solid-State Sintering 131
5.3.2 Chemically Induced Sintering . 134
5.3.3 Liquid-Phase Sintering and Partial Melting . 134
5.3.4 Full Melting . 138
5.3.5 High-Speed Sintering 139
5.4 Metal and Ceramic Part Fabrication 141
5.4.1 Metal Parts 141
5.4.2 Ceramic Parts 142
5.5 Process Parameters and Analysis . 143
5.5.1 Process Parameters 143
5.5.2 Applied Energy Correlations and Scan Patterns . 145
5.6 Powder Handling . 149
5.6.1 Powder Handling Challenges 149
5.6.2 Powder Handling Systems 150
5.6.3 Powder Recycling 152
Contentsxv
5.7 Powder Bed Fusion Process Variants and Commercial
Machines . 153
5.7.1 Polymer Laser Sintering (pLS) 153
5.7.2 Laser-Based Systems for Metals and Ceramics 156
5.7.3 Electron Beam Powder Bed Fusion . 159
5.7.4 Line-Wise and Layer-Wise PBF Processes for
Polymers 163
5.8 Process Benefits and Drawbacks . 165
5.9 Summary . 167
5.10 Questions . 167
References . 169
6 Material Extrusion . 171
6.1 Introduction . 171
6.2 Basic Principles 172
6.2.1 Material Loading . 173
6.2.2 Liquification . 173
6.2.3 Extrusion . 174
6.2.4 Solidification 176
6.2.5 Positional Control . 176
6.2.6 Bonding 178
6.2.7 Support Generation . 179
6.3 Plotting and Path Control . 180
6.4 Material Extrusion Machine Types . 183
6.4.1 MEX Machines from Stratasys 184
6.4.2 Other Material Extrusion Machines . 186
6.4.3 Pellet-Fed Machines . 187
6.5 Materials . 188
6.6 Limitations of MEX . 192
6.7 Bioextrusion . 193
6.7.1 Gel Formation . 193
6.7.2 Melt Extrusion . 194
6.7.3 Scaffold Architectures . 195
6.8 Other Systems . 196
6.8.1 Contour Crafting . 196
6.8.2 Nonplanar Systems 196
6.8.3 Material Extrusion of Ceramics 197
6.8.4 RepRap and Fab@Home . 198
6.9 Questions . 199
References . 200
7 Material Jetting 203
7.1 Evolution of Printing as an Additive Manufacturing Process . 204
7.2 Materials for Material Jetting 205
7.2.1 Polymers 205
7.2.2 Ceramics 208
Contentsxvi
7.2.3 Metals 210
7.2.4 Solution- and Dispersion-Based Deposition 211
7.3 Material Processing Fundamentals . 212
7.3.1 Technical Challenges of MJT 212
7.3.2 Droplet Formation Technologies . 214
7.3.3 Continuous Mode . 215
7.3.4 Drop-on-Demand Mode 217
7.3.5 Other Droplet Formation Methods 218
7.4 Cold Spray 220
7.5 MJT Process Modeling 220
7.6 Material Jetting Machines 226
7.7 Process Parameters in Material Jetting 227
7.8 Rotative Material Jetting . 228
7.9 Process Benefits and Drawbacks . 229
7.10 Summary . 230
7.11 Questions . 231
References . 233
8 Binder Jetting . 237
8.1 Introduction . 237
8.2 Materials . 239
8.2.1 Commercially Available Materials 239
8.2.2 Metal and Ceramic Materials Research 241
8.3 Process Variations 242
8.4 BJT Machines . 245
8.5 Process Benefits and Drawbacks . 248
8.6 Summary . 250
8.7 Questions . 251
References . 252
9 Sheet Lamination 253
9.1 Introduction . 253
9.1.1 Gluing or Adhesive Bonding 254
9.1.2 Bond-then-Form Processes . 254
9.1.3 Form-then-Bond Processes . 256
9.2 Materials . 259
9.3 Material Processing Fundamentals . 260
9.3.1 Thermal Bonding . 260
9.3.2 Sheet Metal Clamping . 261
9.4 Ultrasonic Additive Manufacturing . 262
9.4.1 UAM Bond Quality . 265
9.4.2 UAM Process Fundamentals 266
9.4.3 UAM Process Parameters and Process Optimization 267
9.4.4 Microstructures and Mechanical Properties of
UAM Parts 270
9.4.5 UAM Applications 273
Contentsxvii
9.5 Sheet Lamination Benefits and Drawbacks . 279
9.6 Commercial Trends . 280
9.7 Summary . 280
9.8 Questions . 281
References . 282
10 Directed Energy Deposition 285
10.1 Introduction 285
10.2 General Directed Energy Deposition Process Description 287
10.3 Material Delivery 289
10.3.1 Powder Feeding 289
10.3.2 Wire Feeding 292
10.4 DED Systems . 292
10.4.1 Laser Powder Deposition Processes 293
10.4.2 Electron Beam Based Metal Deposition Processes . 298
10.4.3 Wire Arc Additive Manufacturing (WAAM) 301
10.4.4 Friction Stir Additive Manufacturing (FSAM) 303
10.4.5 Other DED Materials and Processes 305
10.5 Process Parameters . 305
10.6 Typical Materials and Microstructure 306
10.7 Processing–Structure–Properties Relationships . 309
10.8 DED Benefits and Drawbacks 314
10.9 Questions 316
References . 317
11 Direct Write Technologies . 319
11.1 Direct Write Technologies . 319
11.2 Background 320
11.3 Materials in Direct Write Technology 320
11.4 Ink-Based DW 321
11.5 Nozzle Dispensing Processes . 323
11.5.1 Quill-Type Processes 324
11.5.2 Inkjet Printing Processes . 326
11.5.3 Aerosol DW . 326
11.6 Laser Transfer DW . 328
11.7 Thermal Spray DW 331
11.8 Electroforming 333
11.9 Beam Deposition DW 334
11.9.1 Laser CVD 334
11.9.2 Focused Ion Beam CVD . 336
11.9.3 Electron Beam CVD 337
11.10 Liquid-Phase Deposition 337
11.11 Beam Tracing Approaches to Additive/Subtractive DW 338
11.11.1 Electron Beam Tracing 338
11.11.2 Focused Ion Beam Tracing . 339
11.11.3 Laser Beam Tracing . 339
Contentsxviii
11.12 Hybrid Direct Write Technologies . 340
11.13 Applications of Direct Write . 340
11.14 Technical Challenges in Direct Write 342
11.15 Questions 343
References . 344
12 Hybrid Additive Manufacturing 347
12.1 Hybrid Manufacturing 347
12.2 Hybrid Manufacturing Processes 348
12.3 Hybrid Additive Manufacturing Principles 351
12.3.1 Inseparable Hybrid Processes . 351
12.3.2 Synergy in Hybrid AM . 351
12.3.3 Hybrid Materials . 351
12.3.4 Part Quality and Process Efficiency . 352
12.4 Sequential Hybrid AM Classification Based on Secondary
Processes 352
12.4.1 Hybrid AM by Machining 353
12.4.2 Hybrid AM by Rolling . 355
12.4.3 Hybrid AM by Burnishing 356
12.4.4 Hybrid AM by Friction Stir Processing 356
12.4.5 Hybrid AM by Ablation or Erosion . 357
12.4.6 Hybrid AM by Peening 357
12.4.7 Hybrid AM by Pulsed Laser Deposition . 360
12.4.8 Hybrid AM by Remelting 361
12.4.9 Hybrid AM by Laser-Assisted Plasma Deposition . 362
12.5 Summary 362
12.6 Questions 363
References . 364
13 The Impact of Low-Cost AM Systems . 367
13.1 Introduction 367
13.2 Intellectual Property 368
13.3 Disruptive Innovation . 370
13.3.1 Disruptive Business Opportunities 370
13.3.2 Media Attention 371
13.4 The Maker Movement 374
13.5 The Future of Low-Cost AM . 376
13.6 Questions 376
References . 377
14 Materials for Additive Manufacturing . 379
14.1 Introduction 379
14.2 Feedstock for AM Processes . 381
14.3 Liquid-Based Material 383
14.3.1 Liquids for VPP 387
14.3.2 Liquid Polymer Material for MJT and BJT . 388
Contentsxix
14.3.3 Liquid Metal Material for MJT 390
14.3.4 Liquid Ceramic Composite Materials for VPP
and MJT 390
14.3.5 Support Material . 392
14.3.6 Other Liquid Polymer Feedstock . 392
14.4 Powder-Based Materials 392
14.4.1 Polymer Powder Material 393
14.4.2 Metal Powder Material for PBF, DED, and BJT . 394
14.4.3 Ceramic Powder Material 399
14.4.4 Composite Powder for AM Processes . 402
14.5 Solid-Based Materials 405
14.5.1 Solid Polymer Feedstock for MEX . 405
14.5.2 Solid Metal Feedstock for DED and MEX SHL . 408
14.5.3 Solid Ceramic Feedstock for SHL and MEX . 413
14.5.4 Solid-Based Composite Materials for SHL, MEX,
and DED 415
14.6 Material Issues in AM 420
14.6.1 Build Orientation . 420
14.6.2 Keyholes 421
14.6.3 Chemical Degradation and Oxidation . 421
14.6.4 Reactive Processes 421
14.6.5 Assistive Gas and Residual Particles 421
14.6.6 Cracks . 422
14.6.7 Delamination 422
14.6.8 Distortion . 422
14.6.9 Inclusions . 423
14.6.10 Poor Surface Finish . 423
14.6.11 Porosity 423
14.6.12 Shelf Life or Lifetime of the Feedstock 423
14.6.13 Support Structures 424
14.7 Questions 424
References . 425
15 Guidelines for Process Selection 429
15.1 Introduction 429
15.2 Selection Methods for a Part . 430
15.2.1 Decision Theory 430
15.2.2 Approaches to Determining Feasibility 431
15.2.3 Approaches to Selection . 433
15.2.4 Selection Example 436
15.3 Challenges of Selection . 438
15.4 Example System for Preliminary Selection 442
15.5 Production Planning and Control 448
15.5.1 Production Planning . 449
15.5.2 Pre-Processing . 449
Contentsxx
15.5.3 Part Build Time 451
15.5.4 Post-Processing 452
15.5.5 Summary . 452
15.6 Future Work 453
15.7 Questions 454
References . 455
16 Post-Processing 457
16.1 Introduction 457
16.2 Post-Processing to Improve Surface Quality . 458
16.2.1 Support Material Removal 458
16.2.2 Surface Texture Improvements 462
16.2.3 Aesthetic Improvements . 463
16.3 Post-Processing to Improve Dimensional Deviations 464
16.3.1 Accuracy Improvements . 464
16.3.2 Sources of Inaccuracy . 464
16.3.3 Model Pre-Processing to Compensate for
Inaccuracy 465
16.3.4 Machining Strategy . 466
16.4 Post-Processing to Improve Mechanical Properties 476
16.4.1 Property Enhancements Using Nonthermal
Techniques 476
16.4.2 Property Enhancements Using Thermal Techniques 478
16.5 Preparation for Use as a Pattern . 482
16.5.1 Investment Casting Patterns . 483
16.5.2 Sand Casting Patterns . 484
16.5.3 Other Pattern Replication Methods . 485
16.6 Summary 486
16.7 Questions 487
References . 487
17 Software for Additive Manufacturing 491
17.1 Introduction 491
17.2 AM Software for STL Editing 492
17.2.1 Preparation of CAD Models: The STL File . 493
17.3 AM Software for Slicing 497
17.3.1 Calculation of Each Slice Profile . 498
17.3.2 Technology-Specific Elements . 502
17.4 AM Software for STL Manipulation . 504
17.4.1 STL File Manipulation . 505
17.4.2 Mesh Healing 507
17.4.3 Surface Offsetting 507
17.4.4 STL Manipulation on the AM Machine 508
17.5 Problems with STL Files 508
Contentsxxi
17.6 Beyond the STL File . 511
17.6.1 Direct Slicing of the CAD Model 511
17.6.2 Color Models 512
17.6.3 Multiple Materials 512
17.6.4 Use of STL for Machining 512
17.7 AM Software for Process Visualization and Collision
Detection 513
17.8 AM Software for Topology Optimization . 514
17.9 AM Software for Modeling and Simulation . 516
17.10 Manufacturing Execution System Software for AM . 518
17.11 The Additive Manufacturing File (AMF) Format . 520
17.12 Questions 522
References . 522
18 Direct Digital Manufacturing 525
18.1 Introduction 525
18.2 Early DDM Examples 526
18.2.1 Align Technology . 527
18.2.2 Siemens and Phonak 528
18.2.3 Polymer Aerospace Parts . 530
18.3 Applications of DDM 531
18.3.1 Aerospace and Power Generation Industries 532
18.3.2 Automotive Industry 534
18.3.3 Medical Industry . 535
18.3.4 Consumer Industries 536
18.4 DDM Drivers . 538
18.5 Manufacturing Versus Prototyping 540
18.6 Cost Estimation . 542
18.6.1 Cost Model 542
18.6.2 Build Time Model 544
18.6.3 Laser Scanning Vat Photopolymerization Example . 547
18.7 Life-Cycle Costing . 548
18.8 Future of Direct Digital Manufacturing . 550
18.9 Questions 551
References . 553
19 Design for Additive Manufacturing 555
19.1 Introduction 555
19.2 Design for Manufacturing and Assembly . 556
19.3 Core DFAM Concepts and Objectives 559
19.3.1 Opportunistic vs. Restrictive DFAM 559
19.3.2 AM Unique Capabilities . 560
19.3.3 Shape Complexity 560
19.3.4 Hierarchical Complexity . 561
19.3.5 Functional Complexity . 563
19.3.6 Material Complexity 565
Contentsxxii
19.4 Design Opportunities . 567
19.4.1 Part Consolidation Overview 567
19.4.2 Design for Function . 569
19.4.3 Part Consolidation Consequences 571
19.4.4 Customized Geometry . 572
19.4.5 Hierarchical Structures . 572
19.4.6 Multifunctional Designs 574
19.4.7 Elimination of Conventional DFM Constraints 575
19.4.8 Industrial Design Applications . 576
19.4.9 Role of Design Standards . 578
19.5 Design for Four-Dimensional (4D) Printing . 578
19.5.1 Definition of 4D Printing . 579
19.5.2 Shape-Shifting Mechanisms and Stimuli . 580
19.5.3 Shape-Shifting Types and Dimensions 581
19.6 Computer-Aided Design Tools for AM . 583
19.6.1 Challenges for CAD . 583
19.6.2 Solid Modeling CAD Technologies . 584
19.6.3 Commercial CAD Capabilities 586
19.6.4 Prototypical DFAM System . 587
19.7 Design Space Exploration . 591
19.7.1 Design of Experiments . 591
19.7.2 Design Exploration Software 593
19.8 Synthesis Methods . 594
19.8.1 Theoretically Optimal Lightweight Structures 594
19.8.2 Optimization Methods . 595
19.8.3 Topology Optimization 596
19.9 Summary 604
19.10 Questions 604
References . 605
20 Rapid Tooling . 609
20.1 Introduction 609
20.2 Direct AM Production of Injection Molding Inserts . 611
20.3 EDM Electrodes . 616
20.4 Investment Casting . 616
20.5 Other Systems 618
20.5.1 Vacuum Forming Tools 618
20.5.2 Paper Pulp Molding Tools 618
20.5.3 Formwork for Composite Manufacture 619
20.5.4 Assembly Tools and Metrology Registration Rigs . 620
20.6 Questions 620
References . 621
21 Industrial Drivers for AM Adoption . 623
21.1 Introduction 623
21.2 Historical Developments 624
Contentsxxiii
21.2.1 Value of Physical Models . 624
21.2.2 Functional Testing 625
21.2.3 Rapid Tooling 626
21.3 The Use of AM to Support Medical Applications . 627
21.3.1 Surgical and Diagnostic Aids 628
21.3.2 Prosthetics and Implants . 630
21.3.3 Tissue Engineering and Organ Printing 632
21.4 Software Tools and Surgical Guides for Medical
Applications 633
21.5 Limitations of AM for Medical Applications . 634
21.5.1 Speed 635
21.5.2 Cost . 636
21.5.3 Accuracy . 636
21.5.4 Materials . 637
21.5.5 Ease of Use . 637
21.6 Further Development of Medical AM Applications . 637
21.6.1 Approvals . 638
21.6.2 Insurance . 638
21.6.3 Engineering Training 639
21.6.4 Location of the Technology . 639
21.6.5 Service Bureaus 639
21.7 Aerospace Applications . 640
21.7.1 Characteristics Favoring AM 640
21.7.2 Production Manufacture 641
21.8 Automotive Applications 644
21.9 Questions 645
References . 646
22 Business and Societal Implications of AM 649
22.1 Introduction 649
22.2 What Could Be New? 651
22.2.1 New Types of Products 651
22.2.2 New Types of Organizations 653
22.2.3 New Types of Employment . 656
22.3 Digiproneurship . 657
22.4 Summary 660
22.5 Questions 661
References . 661
Index . 663
A
Abrasive barrel machining (ABM), 473, 474
Abrasive flow/jet machining (AFM/AJM),
471, 472
Abrasive water jet machining (AWJM),
471, 472
Accurate, Clear, Epoxy, Solid (ACES), 103,
104, 107
Acoustophoretic printing, 219
Acrylate photopolymer systems, 114
Acrylate/epoxide hybrid system, 86
Actuation energy, 222
Ad hoc decision support methods, 430–431
Additive manufacturing (AM)
aerospace industry, 640–643
applications (see Applications for AM)
ASTM and ISO standards, 47, 48
ASTM consensus standards, 2
Autofab, 7
automotive industry, 644, 645
basic dimensional details, 2
benefits, 9
CAD, 2
CAX, 15
conventional manufacturing processes, 54
CT, 15
DDM, 49
design
assembly, 71
constraining features, 69
identification marking/numbers, 71
interlocking features, 70
part orientation, 68
removal of supports, 69
equipment maintenance, 66
freeform fabrication, 7
hearing aids, 49
industry, 623
inkjet printing, 13
layer-based manufacturing, 7
management consultants/software
engineers, 1
materials handling issue, 66, 67
molten material systems, 62
patient-specific data, 623
PBF, 13
photopolymer-based systems, 61
post-processing, 3
power -based systems, 62
printing, 204
process chains, 3
product development context, 1
product development process, 3
prototype/basis model, 1
prototypes, 2
RE, 14
RP, 1, 8, 48
SL/3DP, 8
solid sheets, 63
steps
application, 60
build, 58
conceptualization/CAD, 54, 55
machine setup, 58
post-processing, 59, 74
removal/cleanup, 59
STL/AMF, conversion, 56
transfer to AM/STL file, 57
unmanned aerial vehicle, 13
visualization models, 3
Additive Manufacturing Format
(AMF), 47
Advanced information and communication
technologies (aICT),
651–653, 656–660
AeroMet System, 295
Aerosol DW, 326–328
Aerosol Jet, 320
Aerospace industry, 624
characteristics
complex geometry, 641
digital spare parts, 641
economics, 641
high temperature, 640
lightweight, 640
production manufacture, 641–643
AM business and opportunities
conceptualization, 650
creation, 650
digital entrepreneurship, 650
new organizations, 653–656
new types of employment, 656–657
new types of products, 651–653
propagation, 650
Web 2.0, 650
AM-enabled product development
aerospace, 73
architectural models, 72
automotive, 72
medical modelling, 72
reverse engineering data, 72
AM software
additive manufacturing file (AMF)
format, 520–522
collision detection, 514
MES software (see Manufacturing
execution system (MES) software)
modeling and simulation, 516–518
process visualization, 514
slicing, 497–505
STL
CAD model, 511
color models, 512
editing, 492–496
files, 508–510
machining, 512–513
manipulation, 504–508
multiple material, 512
3D CAD, 491
TO (see Topology optimization (TO))
American National Standards Institute
(ANSI), 47
American Society of Mechanical Engineers
(ASME), 47
AMSelect, 442–445, 447
Applications for AM
Ansys, 240, 450, 493, 515, 516, 518, 541,
587, 593, 602, 603
DW, 340–342
functional testing, 625, 626
medical (see Medical applications)
physical models, 624, 625
rapid tooling processes, 626, 627
SL machines, 624
Atomic force microscope (AFM) tip, 325
Autodesk Generative Design, 586
Automotive industry, 644, 645
Autonomous Manufacturing (AMFG), 655
B
B2B (business to business), 653
B2C (business to consumer), 653
Ballistic Particle Manufacturing (BPM), 196
Beam deposition DW, 334
electron beams CVD, 337
FIB CVD, 336
LCVD, 334–336
Beam tracing DW
electron beam, 338, 339
FIB, 339
laser beam, 339
micro-/nanodiameter beams, 338
Beer–Lambert law, 88
Big Area Additive Manufacturing
(BAAM), 187
Binder Jetting technology (BJT), 39, 62, 139,
336, 383, 388, 389, 392, 394, 396,
397, 399, 400, 402, 404, 423,
441, 626
advantages, 248, 249
applications, 245, 247
Desktop Metal, 245
disadvantages, 248, 249
ExOne, 245, 247, 250
ExOne S-Max, 248
low-cost, 238
machine specifications, sample, 246
materials (see Materials, BJT)
metal powders, 239
MIT, 245
molds, 239
part material, 237
polymer PBF processes, 238
polymer powders, 238
post-processing, 238
print head, 238
printed part, 238
Index665
process variations (see Process variations)
Voxeljet, 245
Voxeljet VX400, 248
Voxeljet VXC800 machine, 245, 246
Z Corp, 245
Bioextrusion
conventional ME-like process, 193
definition, 193
gel formation, 193
metal extrusion, 194, 195
scaffold architecture, 195
Blaha effect, 267
Boeing Additive Manufacturing, 532
Bond-then-form processes, 254–256
C
CAD/CAM systems, 628
CAD/CAM/CAE tools, 634
Candidate manufacturing process, 277
Carbon-reinforced composites (CRCs), 190
Cationic photoinitiators, 85
Cationic photopolymerization, 83
Cationic photopolymers, 82
Cationic polymerization, 85
Ceramics, 208, 306
Chemical Machining (ChM), 475
Chemical vapor deposition (CVD), 334
Chrysler tested airflow, 625
Clamping, 261
Classification, AM process
baseline technology, 33
categories, 38
Color 3D Printing, 35
discrete particle systems, 35, 36
DMDs, 33
liquid polymer systems, 35
LM processes, 34
molten material systems, 36, 37
solid sheet systems, 37
2D channel method, 34
Cloud-based design and manufacturing
(CBDM), 654
CoCrMo, 309
Cold low-pressure lamination (CLPL), 413
Cold spray, 220, 221
Cold spray additive manufacturing
(CSAM), 220
Commercial MPVPP systems, 110
“Compensation Zone” approach, 112
Computational models, 219
Computer-Aided Design (CAD), 15, 16
alphanumeric text output, 26
AM machines, 23
CNC machining, 31, 32
computers, 24
graphics technology, 24
hybrid systems, 42, 43
integration, 25
layers, 32
LB-PBF, 31
machine control, 24
metal systems, 42
milestones, 43, 44
nano-scale microprocessors, 26
networking, 25
processing power, 24
serviceable tools, 24
3D solid modeling, 26
workstations, 25
Computer-Aided Engineering (CAE),
15, 16, 18
Computer-Aided Manufacturing
(CAM), 15, 18
accuracy, 28
engineering content, 28
facet normal vector, 29
limitations, 27
NC, 27
PLCs, 31
realism, 28
speed, 28
STL format, 29
surface modeling software, 27
usability/user interface, 28
virtual models, 26
Computer-Aided Manufacturing of Laminated
Engineering Materials (CAMLEM), 257, 258
Computer Numerical Controlled (CNC),
7, 18, 24
accuracy, 11
complexity, 11
conventional technologies, 10
geometry, 12, 13
materials, 10
molten materials, 10
programming, 12
speed, 10, 11
Computerized tomography (CT), 15, 627
Continuous filament writing, 322
Continuous jetting system, 221
Continuous liquid interface production (CLIP)
technology, 113
Continuous mode, 215, 216
Continuous printing methods, 216
Index666
Controlled Metal Buildup (CMB), 296
Conventional deposition methods, 403
Cooling rate, 311
Covid-19 pandemic, 651, 658
Cyber-physical systems, 526
D
Decision support problem (DSP), 431
Decision theory, 430–433, 435, 452
Deep X-ray Lithography (DXRL), 107
Deposit thickness approach, 290
Deposition pattern, 206
DePuy, 625
Design for AM (DFAM)
AM technologies, 555
AM unique capabilities, 559–561
CAD tool
challenges, 583–584
commercial CAD capabilities, 586–587
design space exploration, 591–594
prototypical DFAM system, 587–591
solid modeling, 584–586
concepts and objectives, 559
design opportunities (see Design
opportunities)
4D Printing (see Four-dimensional (4D)
printing)
functional complexity, 563–565
hierarchical complexity, 561–563
manufacture and assembly (see Design for
manufacture and assembly)
material complexity, 565–566
opportunistic vs. restrictive design,
559, 560
shape complexity, 560–561
synthesis methods
optimal lightweight structures, 594–595
optimization methods, 595–596
TO (see Topology optimization (TO))
Design for manufacture and assembly,
555, 594–595
Design opportunities
conventional DFM constraints, 575
customized geometries, 572
design for function, 569–571
design standards, 578
guidelines, 567
hierarchical structures, 572–575
industrial design applications, 576–577
multifunctional designs, 574
part consolidation, 567–571
Design trade-offs, 651
Desktop Metal, 240, 245
Development in AM, 649–655, 658–661
DICOM scanner standard, 633
Diffusion bonding, 259
Digiproneurship, 650–653, 656–660
Digital Electronics Corp. (DEC), 24
Digital entrepreneurship, 650, 657
Digital Micromirror Device™ (DMD), 33, 79
Dip-pen nanolithography (DPN), 325
Direct digital manufacturing (DDM), 49, 442,
609, 652
aerospace and power generation
industries, 532–534
automotive industry, 534–535
consumer industries, 536–538
cost estimation
build time model, 544–547
cost model, 542–544
laser scanning VPP, 547–548
drivers, 538–540
geometric complexity capabilities, 526
hearing aid business, 528–530
industrial revolution, 525
life-cycle costing (see Life-cycle costing)
manufacturing vs. prototyping, 540–542
medical industry, 535–536
orthodontic treatment devices, 527–528
polymer aerospace parts, 530–531
Directed energy deposition (DED), 39, 62,
145, 319, 370, 383, 392, 394, 396,
397, 399, 401, 402, 404, 408–412,
419, 422, 424
advantage, 314–316
deposited layer, 286
directed energy, 285
disadvantage, 314–316
EBF3, 298–301
focused heat source, 285
FSAM, 303, 304
kinetic energy, 288
laser cladding, 286, 296–298
laser powder deposition processes, 293
laser/electron beam, 285
LENS, 293–296
LPD, 287, 288
materials, 305–309
melting material, 285
microstructure, 286, 306–309
multi-axis deposition head motion, 288
PBF, 285
plasma welding machines, 286
powder feed, 289–292
powder feedstock material/laser, 285, 286
powder-based laser deposition, 297
powder-based laser deposition system, 287
Index667
process parameters, 305, 306
processes, 305
processing–structure–properties
relationships, 309, 311–313
small molten pool, 288
three-dimensional geometry, 285
WAAM, 301–303
wire feed, 292
Direct Shell Production Casting (DSPC), 36
Direct Write (DW)
applications, 340–342
ASTM or ISO standards, 319
beam deposition, 334 (see Beam
deposition DW)
beam tracing, 338, 339
categories, 320
challenges, 342, 343
DARPA, 320
DED, 319
definition, 319
development, 320
electroforming, 333, 334
hybrid, 340
ink-based (see Ink-based DW)
laser transfer, 328–331
liquid-phase deposition, 337, 338
materials, 320–321
MEX, 319
MJT, 319
small-scale, 319
thermal spray, 331, 332
Discrete particle systems, 35, 36
Dispersion-based deposition, 211, 212
Disruptive business opportunities, 370, 371
Disruptive innovation
disruptive business opportunities, 370, 371
media attention, 371–373
DM3D Technology, 294
Droplet formation, 213–216, 218, 219
Droplet generation technology, 219
Droplet jetting, 322
Drop-on-demand (DOD), 205, 214,
215, 217–219
E
Electric arc, 301
Electrical discharge machining (EDM),
474, 475
Electrochemical liquid deposition
(ECLD), 337
Electroforming, 333, 334
Electrohydrodynamic inkjet techniques, 218
Electroluminescent polymers, 211
Electron backscatter diffraction (EBSD), 466
Electron Beam (EB) machining, 470
Electron Beam Freeform Fabrication
(EBF3), 298–301
Electron beam melting (EBM), 41, 129, 159
Electron beam powder bed fusion (EB-PBF),
159, 396, 436
Electron beams CVD, 337
Electron beam tracing, 338, 339
Electrorheological fluid jetting, 218
Electro-slag welding (ESW), 411
Elemental powders, 306
Embedded ceramic fibers, 277
Energy conservation, 222
Engineering training, 639
EnvisionTEC MPVPP machines, 110
EnvisionTEC Perfactory P4K model, 111
Epoxy monomers, 82, 86
Epoxy resins, 81
Evolutionary structural optimization
algorithms, 516
ExOne, 240, 241, 245, 247
Extrusion-based techniques, 34, 632
F
Federal Aviation Administration (FAA), 48
Feedback control system, 294
Feedstock, 220
Fiber/object embedment, 275, 277
Fine-tuning, 206
Finite element analysis (FEA), 27, 516
Finite element method (FEM), 16, 516
Flat surfaces, 325
Flow testing, 625
Fluid flows, 224
Fluid mechanics, 223
Focused acoustic beam ejection, 219
Focused ion beam (FIB) CVD, 336
Focused ion beam (FIB) tracing, 339
Food and Drug Administration (FDA), 47
Form-then-bond processes, 256, 258
Four-dimensional (4D) printing
definition, 579
shape-shifting mechanisms and
stimuli, 580–581
shape-shifting types and
dimensions, 581–582
Freedom of Creation (FOC), 576
Freeform fabrication/Solid freeform
fabrication, 7
Freeform modeling system, 17
Free-radical photopolymerization, 82, 83
Free-radical polymerizations, 84
Index668
Friction Stir Additive Manufacturing (FSAM),
303, 304
Functional testing, 625, 626
Functionally gradient material (FGM), 404
Fused Deposition Modeling (FDM), 36
Future directions, 655, 661
G
Gas Metal Arc Welding (GMAW), 301
Gas Tungsten Arc Welding (GTAW), 301
Gaussian laser, 89
Generic AM process
application, 6
automated process, 5
CAD, 4
machine setup, 5
post-processing, 6
product development process, 3, 4
removal, 5
STL file format, 5
transfer, STL file format, 5
Georgia Tech machine, 110
Gluing/adhesive bonding, 254
Google SketchUp, 370
Graphical user interface (GUI), 24
H
Hagen–Poiseuille equation, 222
Haptic-based CAD modeling, 16, 17
Heat-affected zone (HAZ), 308
Heat sources
electrical/plasma arc, 41
electron beam, 41
laser technology, 39, 40
Helium-cadmium (HeCd) laser, 80, 109
High-Speed Rotative (HSR), 229
High-speed sintering (HSS), 139
Homogenization method, 516
Hot isostatic pressing (HIP), 420
Hot-melt deposition, 208
Hybrid AM
hybrid manufacturing (HM)
benefits, 347
hybrid process, 347
hybrid technologies, 348
processes, 348–350
principles, 351–352
secondary process
ablation/erosion, 357
burnishing, 356–355
friction stir processing, 356
laser-assisted plasma deposition, 362
machining, 353–354
peening, 357–360
pulsed laser deposition, 360–361
remelting, 361–362
rolling, 355–356
surface enhancements, 352
Hybrid conventional machining, 468
Hybrid DW, 340
Hydrogen atmosphere, 241
I
Injection molding (IM), 611–615
Ink-based DW
aerosol, 326–328
benefits, 328
continuous filament writing, 322
development, 321
drawbacks, 328
droplet jetting, 322
inkjet printing processes, 326
MEX, 322
MJT, 322
nozzle dispensing processes, 323, 324
quill-type processes, 324, 325
rheological properties, 322
types, 321
viscoelastic materials, 322
Inkjet and droplet printing technologies, 30
Inkjet printing, 241
Inkjet printing processes, 326
Insurance, 638, 639
Integrated Hardened Stereolithography
(IH), 107
Intellectual property (IP), 368, 370
Internet-of-things (IoT), 373
Interpass cold rolling, 302
Interpass cooling, 302
Interpenetrating polymer network (IPN), 86
InVision 3D printer, 204
Ion Beam Machining (IBM), 470–471
Irradiance, 89, 90
K
Kinetic energy, 221, 222, 288
Knowledge-based approach, 431
L
Laminated object manufacturing (LOM), 44,
253, 254
Laser-based powder bed fusion
(LB-PBF), 31, 396
Index669
Laser beam tracing, 339
Laser chemical vapor deposition
(LCVD), 334–336
Laser cladding, 296–298
Laser Consolidation, 295
Laser Engineered Net Shaping (LENS),
42, 293–296
Laser machining, 469
Laser powder deposition (LPD), 287, 288, 293
Laser–resin interaction, 91–93
Laser scan VPP, 87, 88
Laser sintering (LS) machines, 125
Laser Sintering process, 126
Laser transfer DW, 328–331
Layer-based manufacturing, 7
Layer-by-layer AM fabrication approach, 570
Layer orientations, 291
Layered manufacturing (LM) processes, 34
Level set methods, 516
Life-cycle costing, 548–550
Linear velocity, 244
Linear welding density (LWD), 265
Liquid-phase deposition, 337, 338
Liquid-phase sintering (LPS), 134
Liquid polymer systems, 35
Liquid spark jetting, 218
Low-cost AM machines, 623
Low-cost AM technologies
3D printing, 368
disruptive innovation
disruptive business opportunities,
370, 371
media attention, 371–373
IP, 368, 370
IP protection, 368
maker movement, 368, 374–376
market, 367
MEX, 376
public domain, 376
Rapid Prototyping, 367
ROI, 367
Stratasys FDM, 376
Low-viscosity carrier, 212
Low volume powder feed systems, 293
M
Machine vendors, 628
Machining strategies
abrasive-based machining, 471–474
chemical-based machining, 475–476
conventional machining
processes, 468–469
EDM, 474, 475
grinding, 466
hole drilling, 468
milling, 468
thermal-based machining, 469–471
turning, 467
Maker Faires®, 375
Maker movement, 368, 374–376
Manufacturing execution system (MES)
software, 518–520
Manufacturing industries, 653
Manufacturing process, 249
Mask projection VPP (MPVPP)
advantage, 108
commercial MPVPP systems, 110
DMDs, 108
LCD, 108
model, 111, 112
RMPD, 109
speed advantage, 116
UV radiation, 109
Maskless Mesoscale Materials Deposition
(M3D), 320
Material Extrusion (MEX), 13, 36, 38, 60, 99,
230, 240, 285, 319, 368–370, 376,
380, 382, 392, 405–408, 414,
417–419, 422, 424, 425, 441, 627
bonding, 178
ceramics, 197
contour crafting, 196
extrudate, 171
extrusion, 174, 175
features, 172
limitations, 192
liquidification, 173
machine types
ME-type, 186
Pellet-fed machines, 187
Stratasys, 183–185
material loading, 173
materials, 188–191
nonplanar systems, 196
plotting/path control, 180–182
position control, 176, 177
RepRap, 198
solidification, 176
support generation, 179
Material flexibility, 274
Material jetting (MJT), 33, 38, 61, 237,
319, 380, 383, 388–392, 397,
423, 424
advantages, 229, 230
cold spray, 220, 221
disadvantages, 229, 230
inkjet print heads, 227
Index670
Material jetting (MJT) (cont.)
material processing fundamentals (see
Material processing fundamentals, MJT)
materials
ceramics, 208
dispersion-based deposition, 211, 212
DOD, 205
droplet formation methods, 205
metals, 210, 211
polymers, 205, 207, 208
solution-based deposition, 211, 212
ModelMake, 226
process modeling (see Process
modeling, MJT)
process parameters, 227, 228
rotative MJT, 228, 229
sample, 227
Solidscape, 226
Stratasys markets PolyJet printers, 226
Material processing fundamentals, MJT
continuous mode, 215, 216
DOD mode, 217, 218
droplet formation, 214, 215, 218, 219
technical challenges, 212–214
Materials for AM
advances and challenges, 380
DW, 320–321
fabricating multi-material structures, 380
feedstock for AM processes, 381–386
feedstock materials, 379
issues
assistive gas and residual particles, 421
build orientation, 420
chemical degradation and
oxidation, 421
cracks, 422
delamination, 422
distortion, 422
inclusions, 423
keyholes, 421
poor surface finish, 423
porosity, 423
reactive processes, 421
shelf life/lifetime, 423
build orientation, 420
support structures, 424
liquid-based
liquid ceramic composite, 390–392
liquid metal, 390
liquid polymer, 388–389
liquid polymer feedstock, 392
liquids, 387–388
support material, 392
powder-based
ceramic powder, 399–401
composite powder, 402–404
metal powder (see Metal powder)
polymer powder, 393–394
solid-based
solid ceramic feedstock, 413–414
solid metal feedstock, 408–413
solid polymer feedstock, 405–408
solid-based composite, 415–420
Materials, BJT
Desktop Metal, 240
ExOne, 240, 241
green part, 240
high packing densities, 239
infiltration, 240
metal and ceramic materials, 240–242
polymer, 240
printed parts, 239
temperature, 240
3D Systems, 239
unprinted powders, 239
Voxeljet, 239, 240
Matrix-Assisted Pulsed Laser Evaporation
(MAPLE), 320
Matrix-Assisted Pulsed Laser Evaporation
DW (MAPLE DW) process,
329, 330
Mcor Technologies printers, 259
Mechanical peening, 303
Mechanical properties, UAM, 273
Medical applications
AM-based fabrication, 628
CT, 627
development
approvals, 638
engineering training, 639
insurance, 638, 639
location of technology, 639
service bureaus, 639, 640
surgical procedures, 637
limitations
accuracy, 636
cost, 636
deficiencies, 634
development, 634
ease of use, 637
materials, 637
speed, 635, 636
organ printing, 632, 633
prosthetics and implants, 630–632
software tools, 633–635
surgical and diagnostic aids, 628, 629
Index671
surgical guides, 633–635
3D CAD, 627
3D medical imaging data, 628
3D medical imaging technology, 627
tissue engineering, 632, 633
X-ray, 627
Medium-density fiberboard (MDF), 10
Melting material, 285
Mesoscopic Integrated Conformal Electronics
(MICE) program, 320
Metal-based AM systems
accuracy, 65
build rate, 66
energy density, 64
speed, 65
substrates, 63
weight, 64, 65
Metal-based processes, 167
Metal feedstock, 219
Metal foil thickness, 269
Metal foils, 273
Metal injection molding (MIM), 396
Metal laser sintering (mLS) machines,
125, 157
Metal matrix composites (MMC), 277
Metal oxide reduction 3DP (MO3DP), 242
Metal powder
AM feedstock, 394
AM processing, 395–396
part fabrication, 397–398
production, 394–397
reuse, 398–399
weldable, 394
Metal powder systems, 64
Metal wire feedstock, 300
Metallic materials, 267
Metallurgical bonds, 269
Metals, 210, 211
Microstereolithography (MSL), 107, 108
ModelMaker, 204, 226
Molten material systems, 36, 37
Monomer formulations, 85
MultiJet Fusion (MJF), 139
Multi-jet modeling, 204
N
NanoInk, 325
National Electrical Manufacturers
Association, 628
New types of employment, 656–657
New types of products, 651–653
Newtonian fluids, 222
Nonstructural noble metals, 267
Non-uniform rational basis splines
(NURBS), 27
Non-value adding resources, 652
Normal force, 268
Nozzle dispensing processes, 323, 324
Numerically controlled (NC), 27
O
Optical fibers, 277
Optics system, 97
Optimum process parameters, 305
Organ printing, 632, 633
Oscillation amplitude, 268
Osmosis-mechanics, 580
P
Paper-based SHL, 256
Part creation rate, 242
Part material, 220
Personal computers (PCs), 25–26
Personal protective equipment (PPE), 658
Photochemical machining (PCM), 475
Photoinitiators, 81, 83–85
Photopolymerization, 204
approaches, 78
configurations, 79
irradiation, 77
photocurable resins, 77
photopolymers, 77, 79
SL, 78
two-photon, 79
UV curable materials, 78
Photopolymerization process modeling
Beer–Lambert law, 88
energy sources, 88
exposure, 90, 91
irradiance, 89, 90
laser–resin interaction, 91–93
photospeed, 94, 95
time scales, 95
VPP materials, 88
Photopolymers, 77, 81, 83
Photosensitizers, 84
Photospeed, 94, 95
Physical models, 624, 625
Plasma Arc Additive Manufacturing
(PAAM), 362
Plasma arc machining (PAM), 470
Plasma Arc Welding (PAW), 301
Plastic deformation, 267, 277
Index672
Poly(p-phenylene vinylene) (PPV), 211
Polycaprolactone (PCL), 128, 193, 633
Polylactide (PLA), 128
Poly-L-lactide (PLLA), 128
Polymer laser sintering (pLS), 126
Polymer powders, 238
Polymer types, 80
Polymerization, 81, 83
Polymerization rate, 87
Polymers, 205, 207, 208
Poly-methyl methacrylate (PMMA), 239
Polyvinyl alcohol (PVA), 242
Polyvinyl chloride (PVC), 255
Post-processing, 249
AM limitations, 457
dimensional deviations
accuracy improvements, 464
inaccuracy model pre-processing to
compensate, 465–466
inaccuracy sources, 464–465
machining strategies (see Machining
strategies)
mechanical properties
nonthermal techniques, 476–477
thermal techniques, 478–482
pattern, 482–486
surface quality
aesthetic improvements, 463–464
support material removal, 458–462
surface texture improvements, 462–463
Powder-based laser deposition system, 287
Powder Bed Fusion (PBF), 13, 38, 62, 99, 257,
285, 382, 392–394, 396, 397, 399,
401–404, 421–424, 631
applied energy correlations/scan
patterns, 145–149
benefits/drawbacks, 165
materials
ceramics, 130
metals/composites, 129
polymer/composites, 127, 128
pLS, 126
process parameters, 143, 144
variants/commercial machines
EBM, 159–162
laser-based systems, 157–159
line-wise or layer-wise manner,
164, 165
PLS, 154–156
Powder feed, 289–292, 306
Powder fusion mechanism
chemical induced sintering, 134
full melting, 138
HSS, 139
LPS/partial melting
binder/structure materials, 135, 136
coated particles, 137
composite particles, 136
indistinct binder/structural
materials, 137
part fabrication, 141, 142
solid-state sintering, 131, 133
technologies, 131
Power handling
challenges, 149, 150
recycling, 152, 153
systems, 150, 152
Preheat temperature, 269
Preliminary selection decision support
problem (ps-DSP), 432
Print heads, 242
Print resolution, 214
Printed part, 238
Printing
additive manufacturing process, 204
indicator, 225
print head/substrate, 213
PrintRite3D, 643
Print-through errors, 99
Process modeling, MJT
actuation energy, 222
conservation law, 221
continuous jetting system, 221
density of water and viscosities, 223
energy conservation, 222
fluid flows, 224
fluid mechanics, 223
Hagen–Poiseuille equation, 222
kinetic energy, 221, 222
laminar flow, 222
Newtonian fluids, 222
pressure, 224
printing indicator, 225
Reynolds numbers, 225
Weber number, 224
Process parameter, 228, 305, 313
Process selection
accuracy, 431–433, 438, 442,
449–451, 454
AM machines, 429, 453
approaches to determining
feasibility, 431–433
approaches to selection, 433–436
build time, 433, 438, 441, 442, 445, 447,
448, 450–452
challenges, 438–441
Index673
decision support, 430
decision theory (see Decision theory)
part-building strategy, 451
preliminary selection tool, 442–448
production planning and control, 448–453
Process variations, BJT
continuous printing, 242, 243
cylindrical build chamber, 243
linear velocity, 244
powder handling and recoating
systems, 242
print heads, 242
SGM, 243, 244
Voxeljet, 243
Programmable logic controllers (PLCs), 31
Public domain, 372, 376
Q
QuickCast™, 626
Quill-type processes, 324, 325
R
Radiation, 80
Radical reductions, 652
Rapid Micro Product Development
(RMPD), 109
Rapid prototyping (RP), 1, 8, 367, 624
Rapid tooling
assembly and metrology, 620
composite manufacture, 619
EDM electrodes, 616
IM inserts (see Injection molding (IM))
investment casting, 616–617
long-run tooling, 610
paper pulp molding tools, 618, 619
production tools, 609
short-run tooling, 610
vacuum forming tools, 618
Rapid tooling processes, 626, 627
Reaction rates, 87
Recoating system, 242
Residual stresses, 308
Resin formulations
IPN, 86
monomer formulations, 85
photoinitiating systems, 84, 85
photosensitizers, 84
raw materials, 83
resin suppliers, 84
Return on investment (ROI), 367
Reverse engineering (RE), 14
Right-hand rule approach, 494
Roll-to-roll approach, 340
Room temperature vulcanization (RTV)
molding, 482
Rotative Material Jetting, 228, 229
S
Scaffold geometry, 632
Scalability, 229
Scalmalloy, 643
Scan patterns, VPP
ACES, 103–105, 107
errors, 98–100
layer-based build phenomena, 98–100
STAR-WEAVE, 101–103
WEAVE, 100–102
Scan variables, 103
Scanning electron microscopy (SEM), 466
Scanning micro-VPP systems, 107
SCR500, 114
Secondary support materials, 261
Selection Decision Support Problem
(s-DSP), 433
Selective Area Laser Deposition Vapor
Infiltration (SALDVI), 336
Selective Laser Powder Remelting
(SLPR), 157
Sensors, 97, 279
Service bureaus, 639, 640
Shape Deposition Manufacturing (SDM), 43,
196, 261
Sheet lamination (SHL), 39, 42, 63, 383
advantage, 279
bond-then-form processes, 254–256
disadvantage, 279
form-then-bond processes, 256, 258
future trends, 280
gluing/adhesive bonding, 254
materials, 259, 260
processes, 253
UAM (see Ultrasonic Additive
Manufacturing (UAM))
Sheet metal clamping, 261, 262
SHL material processing fundamentals
sheet metal clamping, 261, 262
thermal bonding, 260, 261
types of processes, 260
Single nozzle feed, 291
Single-nozzle powder feed, 296
Sintered alumina impeller, 209
Sintered zirconia vertical walls, 209
Skewing, 244
Index674
SL 3D Systems machines, 98, 99
SL technology, 96
SLA-250, 97
Small- and medium-sized enterprises
(SMEs), 656
Small products, 652
Smart structures, 278
Social media, 374
Society of Automotive Engineers (SAE), 47
Software tools, 633–635
Solid Isotropic Microstructure with
Penalization (SIMP) method,
516, 597
Solid sheet systems, 37
Solidification microstructure, 309, 310
Solidimension, 260
Solution-based deposition, 211, 212
Sonotrode travel speed, 268
Spiral growth manufacturing (SGM), 243, 244
Spray gun, 220
Standard ray-tracing methods, 112
STAR-WEAVE, 101–103
Stereolithography (SL), 8, 78, 340, 624, 625
Straightforward decision methods, 441
Stratasys markets PolyJet printers, 226, 230
Stratoconception approach, 42, 257
Stress relief heat treatment, 315
Submerged-arc welding (SAW), 411
Subtractive RP (SRP), 43
Support material, 255
Surface modeling software, 27
Surgical and diagnostic aids, 628, 629
Surgical guides, 633–635
T
Temperature-induced phase separation
(TIPS), 403
Thermal bonding, 259–261
Thermal gradient, 312
Thermal spray DW, 331, 332
ThermoChemical Liquid Deposition
(TCLD), 337
ThermoJet, 204
Thermoplastic elastomers (TPE), 393
Thermoplastic polymers, 80
Thermoplastic polyurethane (TPU), 393
Thermoset polymers, 208
Three-dimensional Computer Aided Design
(3D CAD), 2
3D facsimile (3D Fax) process, 15
3D medical imaging data, 628
3D medical imaging technology, 627
3D printing (3DP), 8, 237, 249, 653, 661
3D Rosenthal geometry, 310
3D Systems, 96, 204, 207, 226, 239
Ti–6Al–4V ELI, 642
Time scales, 95
Tissue engineering, 632, 633
Tissue engineering software tools, 634
Titanium jaw, 631
Titanium mesh, 630
ToolMaker, 204
Topology optimization (TO), 514–515
generative design, 600–602
manufacturing considerations, 598–599
software, 601–603
truss-based approach, 596–597
volume-based density methods, 597–598
Tricalcium phosphate (TCP), 633
Two-dimensional inkjet printing, 204
Two-photon approach, 79
Two-photon VPP (2p-VPP) process, 113–116
U
UAM applications
fiber/object embedment, 275, 277
internal features, 274
material flexibility, 274
smart structures, 278
UAM process parameters/process optimization
normal force, 268
oscillation amplitude, 268
parameters, 269
preheat temperature, 269
sonotrode travel speed, 268
Ultrasonic Additive Manufacturing (UAM)
bond-then-form process, 263
CNC machine, 263
defects, 270, 271
deposited foils, 265
fabrication procedure, honeycomb
structure, 264
foil, 263
future trends, 280
LWD, 265
mechanical properties, 273
metal foils, 263
microstructures, 272, 273
power systems, 262
process fundamentals, 266, 267
quality parameters, 265
Ultrasonic Consolidation, 262
Ultrasonic Consolidation, 262
Ultrasonic impact treatment, 303
Index675
Ultrasonic machining (USM), 474
Ultrasonic metal welding (UMW), 266
Ultrasound energy, 277
US Defense Advanced Research Projects
Agency (DARPA), 320
Utility theory approach, 430
UV curable photopolymers, 79–81
V
Vader Systems, 204
Vapor deposition technologies, 334
Vat Photopolymerization (VPP), 38, 127, 230,
368, 380, 381, 387, 388, 390–392,
421, 422, 424, 441
advantages, 115
CLIP™, 113
disadvantages, 116
laser scan, 87, 88
MPVPP (see Mask projection VPP
(MPVPP))
photopolymers, 81, 83
2p-VPP, 113–116
reaction mechanisms, 83–86
reaction rates, 87
resin formulations, 83–86
scan patterns (see Scan patterns, VPP)
SL, 78
UV, 78
UV curable photopolymers, 79–81
vector scan, 96–98
vector scan micro VPP, 107, 108
visible light radiation, 78
Vat system, 97
Vector scan micro VPP, 107, 108
Vector scan VPP machines, 96–98
Viscosity, 223
Volatile solvents, 212
Voxel-based approach, 584
Voxeljet, 239, 241, 243, 245
VPP monomers, 82, 83
VPP photopolymers, 80, 81
W
Water jet machining
(WJM), 471, 473
Wax gear, 207
WEAVE, 100, 101
Web 2.0, 650, 654
Welding exposure time, 268
WINDOWPANE, 94
Wire Arc Additive Manufacturing
(WAAM), 41, 301
characteristics, 301
CNC gantries/robotic systems, 301
electric arc, 301
gas metal arc welding, 301
heat source, 301
MIG, 301
PBF, 301
post-process heat, DED
interpass cold rolling, 302
interpass cooling, 302
peening and ultrasonic impact
treatment, 303
Wire-based DED scan processes, 292
Wire feed, 292
Woodpile structures, 115
Working curve, 93, 94

كلمة سر فك الضغط : books-world.net
The Unzip Password : books-world.net

تحميل

يجب عليك التسجيل في الموقع لكي تتمكن من التحميل

تسجيل | تسجيل الدخول