رسالة ماجستير بعنوان Use of Composites as Alternative Materials in Ship Structures

رسالة ماجستير بعنوان Use of Composites as Alternative Materials in Ship Structures
اسم المؤلف
Basem E. Tawfik
التاريخ
17 ديسمبر 2020
المشاهدات
التقييم
(لا توجد تقييمات)
Loading...

رسالة ماجستير بعنوان
Use of Composites as Alternative Materials in Ship Structures
A thesis
Submitted to the Naval Architecture and Marine
Engineering Department
Faculty of Engineering – Alexandria University
in partial fulfillment of the requirements
for the degree of
Master of Science
in
Naval Architecture
by
Basem E. Tawfik
Advisors’ Committee:
Prof. Heba Wael Leheta
Prof. Tarek Elsayed
Prof. Ahmed Elhewy
استخدام المواد المركبة كمواد بديلة في المنشآت البحرية
رسالة علمية
مقدمة الى قسم الهندسة البحرية و عمارة السفن بكلية الهندسة – جامعة الاسكندرية
استيفاء للدراسات المقررة للحصول على درجة
ماجستير العلوم
فى
العمارة البحرية
مقدمة من
باسم السيد توفيق
الملخص
عن طريق إستخدام المواد المركبة يتمكن المصممون من إستغلال أحسن الخواص الموجودة بمكوناتها مم
يؤدي إلى تصميم منشآت ذكية و فعالة ، في الرسالة التي بين يديكم ،تم تقديم المواد المركبة كبديل للمواد المعدنية في
المنشآت البحرية. و قد تم بيان المزايا التي تقدمها المواد المركبة مم يؤهلها لتحل محل المواد المعدنية في العديد من
التطبيقات ، حيث أنه مع التصميم الماهر و الذكي سوف تتحول هذة المزايا إلى أداء فعال و جدوى إقتصادية عالية.
تم التعريف بأنواع و تصنيفات المواد المركبة كما تم أيضا وصف المكونات المركبة لكل نوع من الأنواع ،
ثم بعد ذلك تم مناقشة المزايا التي تقدمها المواد المركبة كما تم كذلك الحديث عن بعض العيوب التي يجب أخذها في
الإعتبار خلال التصميم. علاوة على ذلك ، تمت مناقشة طرق التصنيع الفريدة للمواد المركبة و التي يجب على المصمم
الإختيار منها.ثم تم استعراض المبادئ الأساسية لميكانيكا المواد المركبة و طرق التصميم التي تشكل الأدوات اللازمة
لمباشرة تصميم المنشآت المكونة من المواد المركبة. بعد ذلك ، تمت مراجعة التطبيقات الحالية للمواد المركبة في
المجالات البحرية التجارية ، الترفيهية و الحربية أيضا. و قد تمت كذلك المراجعة على المنشآت البحرية المصنوعة كليا
أو جزئيا من المواد المركبة. حيث أنه تم توضيح أن المواد المركبة تلعب دورا واسعا اليوم في بناء الهياكل الكاملة
للقوارب الشراعية و ذات المحركات أيضا في مجالات السباق و الترفيه و بعض السفن التجارية الصغيرة. كما أنها
تستخدم في بناء العديد من المكونات الإضافية في السفن المصنوعة من المعادن مثل الرفاصات ، الدفة ، أغطية العنابر
، المداخن ، المنشآت الفوق سطحية ، أنظمة الصواري ، القواعد و العديد من التطبيقات الأخرى. كما تم أيضا الإشارة
إلى أن ألياف الكاربون و الكيفلار ( )Kevlarيتم إستخدامها بكثافة في التطبيقات التي تطلب أداءا عاليا لتحل محل ألياف
الزجاج الذي يستخدم بصورة تقليدية في المنشآت البحرية.
تم تقديم المواد المركبة كمواد بديلة لصناعة أغطية العنابر كحالة بحثية ، حيث أن أغطية العنابر الخاصة
بسفينة بضاعة صب حمولة 12228طن قد تم تصميمها بأستخدام المواد المركبة. و قد تم إستخدام منهجين منفصلين
في تصميم أغطية العنبر البحرية المركبة. المنهج الأول هو “منهج التقوية” حيث تم زيادة الحمل على غطاء العنبر
الأمامي بما يعادل %851من الحمل الذي يتم تصميم الغطاء لتحمله (كما هو مطلوب من هيئات التصنيف البحرية)
بدون زيادة في وزن الغطاء عن طريق إستغلال خاصية “القوة العالية مقابل الوزن” التي تتميز بها المواد المركبة ، مم
يؤدي إلى زيادة معامل الأمان ضد غرق العنبر في السفن الكبيرة. المنهج الثاني هو “منهج تخفيف الوزن” حيث تم
تصميم أغطية العنابر بحيث يكون وزنها %55.51من وزن الأغطية المعدنية و بالتالي تؤدي إلى تحسين إتزان السفينة
و تقليل إستهلاك الوقود.
علاوة على ذلك تم دراسة “تكلفة دورة حياة” أغطية العنابرالمبنية من المواد المركبة و مقارنتها بتكلفة دورة
حياة أغطية العنابر المعدنية ، حيث أكدت النتائج على أن تكلفة دورة حياة الأغطية المصنوعة من المواد المركبة أقل
بسبب زيادة تكاليف صيانة الأغطية المعدنية لتكرار حدوث مشاكل الصدأ و هو ما لا يحدث في المواد المركبة.
و على الرغم من النجاح و الإنتشار الحالي الذي حققته المواد المركبة في المجال البحري فإن المجال ما زل
مفتوحا و مليئا بالإمكانات للعديد من التطبيقات الجديدة المبتكرة في جميع الفروع البحرية.
TABLE OF CONTENTS
ACKNOWLEDGMENT i
TABLE OF CONTENTS ii
LIST OF FIGURES vi
LIST OF TABLES . x
LIST OF ABBREVIATIONS . xi
NOMENCLATURE xiii
ABSTRACT .xv
CHAPTER 1 :INTRODUCTION 1
CHAPTER 2 :OVERVIEW OF COMPOSITE MATERIALS . 3
2.1.BACKGROUND .3
2.2.DEFINITION OF COMPOSITES .4
2.3.TYPES AND CLASSIFICATION OF COMPOSITE MATERIALS 5
2.3.1.Particle-Reinforced Composites .5
2.3.2.Fiber-Reinforced Composites .7
2.3.3.Structural Composites: 9
2.3.4.Hybrid Composites .12
2.3.5.Advanced Composites 13
2.4.CONSTITUENT MATERIALS 14
2.4.1.Reinforcement .14
2.4.2.Matrix 23
2.4.2.1.Thermosets .25
2.4.2.1.1.Epoxies 25
2.4.2.1.2.Bismaleimides .26
2.4.2.1.3.Polyimides .26
2.4.2.1.4.Polyesters and vinyl esters 26
2.4.2.1.5.Cyanate esters .27
2.4.2.1.6.Phenolics .27
2.4.2.2.Thermoplastics .27
2.4.3.Core Materials .28
2.4.3.1.Balsa 29
2.4.3.2.ThermosetFoams 30
2.4.3.3.SyntacticFoams 30
2.4.3.4.Cross Linked PVC Foams 31
2.4.3.5.Linear PVC Foam 31
2.4.3.6.Honeycomb 32
2.4.3.7.PMI Foam 32
2.4.3.8.FRP Planking .32
2.4.3.9.Plywood .33
2.5.ADVANTAGES AND DISADVANTAGES OF COMPOSITE MATERIALS 33
2.5.1.Strength and Stiffness Advantages .34
2.5.2.Cost Advantages .37
2.5.3.Weight Advantages .39
2.5.4.Disadvantages .40
2.6.MARKET DEMAND FOR COMPOSITE MATERIALS 41
2.7.PRODUCTION (MANUFACTURING) METHODS .42
2.7.1.Hand Lay-Up 43iii
2.7.1.1.Process description 43
2.7.1.2.Resin Systems .44
2.7.1.3.Molds .44
2.7.1.4.Major Advantages 44
2.7.2.Spray-Up .44
2.7.2.1.Process Description .44
2.7.2.2.Resin Systems .45
2.7.2.3.Molds .45
2.7.2.4.Major Advantages 45
2.7.3.Filament Winding .45
2.7.3.1.Process Description .46
2.7.3.2.Resin Systems .46
2.7.3.3.Molds .46
2.7.3.4.Major Advantages 46
2.7.4.Pultrusion 47
2.7.4.1.Process Description .47
2.7.4.2.Resin Systems .47
2.7.4.3.Molds .47
2.7.4.4.Major Advantages 47
2.7.5.Vacuum Bag Molding .48
2.7.5.1.Process Description .48
2.7.5.2.Resin Systems .48
2.7.5.3.Molds .48
2.7.5.4.Major Advantages 48
2.7.6.SCRIMP 49
2.7.6.1.Process Description .49
2.7.6.2.Resin Systems .49
2.7.6.3.Molds .49
2.7.6.4.Major Advantages 49
2.7.7.Autoclave Molding .50
2.7.7.1.Process Description .50
2.7.7.2.Resin Systems .50
2.7.7.3.Molds .50
2.7.7.4.Major Advantages 51
2.7.8.Resin Transfer Molding 51
2.7.8.1.Process Description .51
2.7.8.2.Resin System 51
2.7.8.3.Molds .52
2.7.8.4.Major Advantages 52
2.7.9.Compression Molding .52
2.7.9.1.Process Description .52
2.7.9.2.Resin Systems .53
2.7.9.3.Molds .53
2.7.9.4.Major Advantages 53
CHAPTER 3 : MECHANICS OF COMPOSITE MATERIALS .54
3.1.INTRODUCTION .54
3.1.1.Mechanical Response .56
3.1.2.Coordinate System 57iv
3.2.MACROMECHANICAL BEHAVIOR OF A LAMINA .60
3.2.1.Stress–Strain Relationships .60
3.2.2.Engineering Constants for Orthotropic Materials .63
3.2.3.Strength Criteria for an Orthotropic Lamina 65
3.2.3.1.“Maximum Stress” Failure Criterion 66
3.2.3.2.“Maximum Strain” Failure Criterion .67
3.2.3.3.Quadratic Failure Criterion 67
3.3.MICROMECHANICAL BEHAVIOR OF A LAMINA .68
3.3.1.Elastic Properties 69
3.3.2.Lamina Strength 70
3.4.MECHANICAL BEHAVIOR OF A LAMINATE .71
3.4.1.Classical Lamination Theory 72
3.4.1.1.Lamina Stress-Strain Behavior 72
3.4.1.2.Strain and Stress Variation in a Laminate .73
3.4.1.3.Resultant Laminate Forces and Moments .75
3.4.2.Strength of Laminates .78
3.4.3.Computer Laminate Analysis .80
3.4.4.Carpet Plots .81
CHAPTER 4 : COMPOSITES APPLICATIONS IN SHIP STRUCTURES 84
4.1.INTRODUCTION .84
4.2.MATERIALS AND PRODUCTION METHODS 86
4.3.COMPLETE COMPOSITE HULLS .90
4.3.1.Recreational Industry 90
4.3.1.1.Power racing boats 90
4.3.1.2.Sail racing boats 93
4.3.1.2.1.The Volvo Ocean Race 93
4.3.1.2.2.Volvo Ocean 65 Race Boat .94
4.3.1.3.Pleasure yachts 97
4.3.1.3.1.Evviva 97
4.3.1.3.2.SuperSport 98
4.3.1.3.3.(M5) Mirabella V 100
4.3.1.3.4.Tûranor Solar Yacht Hull .101
4.3.2.Commercial Industry 103
4.3.2.1.SSC study .104
4.3.2.2.Passenger ferries .104
4.3.2.2.1.Composite Ferries for USA Market 105
4.3.2.2.2.Composite Ferry vs. Aluminum Ferry 106
4.3.2.3.Wave star Energy system .107
4.3.2.4.FRP lifeboat .109
4.3.3.Naval Vessels 109
4.3.3.1.Patrol boats 111
4.3.3.2.Mine counter measure vessels (MCMV) 112
4.3.3.2.1.Landsort / Koster Class MCMV 113
4.3.3.3.Corvettes 115
4.3.3.3.1.Visby class Corvettes 115
4.3.3.3.1.1.Materials 116
4.3.3.3.1.2.Construction technique 117
4.4.COMPOSITE PARTS .118v
4.4.1.Superstructures 119
4.4.1.1.DDG-1000 Zumwalt class .119
4.4.1.2.Passenger ship’s Superstructure .123
4.4.1.3.Superstructure of a RoRo vessel 127
4.4.2.Hatch Covers .129
4.4.2.1.Oshima ECO-Ship 2020 .129
4.4.2.2.M/V Nordic Oshima .130
4.4.3.Propellers 130
4.4.3.1.Alkmaar-class mine hunter 131
4.4.3.2.QinetiQ propeller .133
4.4.3.3.Nakashima Propeller .134
4.4.4.Rudders .136
4.4.4.1.Composite twisted Rudders 136
4.4.5.Propulsion Shafts 138
4.4.5.1.Early trials .139
4.4.5.2.JIME Research .139
4.4.5.3.Expeditionary Fighting Vehicle power systems .140
4.4.6.Advanced Enclosed Mast System .141
4.5.MARINE COMPOSITES ROADBLOCKS 144
CHAPTER 5 : CASE STUDY (MARINE HATCH COVERS FOR LARGE
VESSELS) 145
5.1.INTRODUCTION .145
5.2.DESIGN KEYS 145
5.3.PARTICULARS OF SELECTED VESSEL .146
5.4.CALCULATION OF DESIGN LOADS .148
5.5.DESIGN OF STEEL HATCH COVERS 149
5.6.DESIGN OF COMPOSITE HATCH COVERS .151
5.6.1.Selection of Composite Material 151
5.6.2.Laminate Orientation 152
5.6.3.Failure Criteria 154
5.6.4.Calculation of Member’s Thickness .154
5.6.4.1.Strengthening Approach 155
5.6.4.1.1.Composite cover design 155
5.6.4.1.2.Analysis results and discussion .157
5.6.4.2.Weight Reduction Approach 159
5.6.4.2.1.Composite cover design 159
5.6.4.2.2.Analysis of results and discussion 161
5.7.COST ANALYSIS 163
5.7.1.Manufacturing Cost 163
5.7.1.1.Steel Hatch cover .163
5.7.1.2.Composite hatch cover .164
5.7.2.Life Cycle Cost Analysis (LCCA) 164
5.8.SUMMARY 165
CHAPTER 6 :CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK 167
REFERENCES .169
ARABIC SUMMARY .178vi
LIST OF FIGURES
Figure 2-1 Relationships between Classes of Engineering Materials Showing the Evolution
of Composites [Harris Bryan 1999] . 5
Figure 2-2 Principal Composite Materials [Vinson et al. 2004] 6
Figure 2-3 A Classification Scheme for the Various Composite Types [Callister 2001] 6
Figure 2-4 Various Types and Orientation of Fibrous Composites [Mallick 2008] 8
Figure 2-5 A Laminate Made-up of Laminae with Different Fiber Orientations [Reddy
2004] 10
Figure 2-6 Schematic Diagram Showing the Construction of a Honeycomb Core Sandwich
Panel [Callister 2001] 11
Figure 2-7 Efficiency of the Sandwich Structure [Campbell 2010] 11
Figure 2-8 A Cross Section of a High-Performance Snow Ski [Callister 2001] . 12
Figure 2-9 Some Fiber Construction Forms [Campbell 2010] 15
Figure 2-10 Unidirectional and Woven Cloth Prepreg [Campbell 2010] 16
Figure 2-11 Tensile Stress–Strain Diagrams for Various Reinforcing Fibers [Mallick 2008]
. 20
Figure 2-12 Specific Strength and Modulus of Some Commercially Important Fibers
[Campbell 2010] 23
Figure 2-13 Comparison of Thermoset and Thermoplastic Polymer Structures [Campbell
2010] 24
Figure 2-14 Cost Versus Performance for Core Materials [Campbell 2010] 28
Figure 2-15 Balsa Cell Geometry [Greene 1999] 29
Figure 2-16 Syntactic Core Construction [Campbell 2010] 31
Figure 2-17 Translation from Constituent Properties to Lamina to Laminate Properties
[Jones 1999] . 35
Figure 2-18 Strength and Stiffness of Composite Materials and Metals [Jones 1999] . 36
Figure 2-19 Life-Cycle Cost Elements [Jones 1999] . 38
Figure 2-20 The Relative Importance of Metals, Polymers, Composites, and Ceramics asa
Function of Time. The Diagram is Schematic and Describes neither Tonnage nor Value.
The Time Scale is Nonlinear [Gibson 1994] . 42
Figure 2-21 Comparison of Composite Manufacturing Techniques [Potter 1996] . 43
Figure 2-22 Schematic of the Hand Lay-up Process [Gurit 2013] 43
Figure 2-23 Schematic of the SPRAY-UP Process [Gurit 2013] 45
Figure 2-24 Schematic of the Filament Winding Process [Gurit 2013] 46
Figure 2-25 Schematic of the Pultrusion Process [Callister 2001] 47
Figure 2-26 Schematic of the Vacuum Bag Molding Process [Gurit 2013] 48
Figure 2-27 Schematic of SCRIMP [Gurit 2013] 49
Figure 2-28 A schematic of Autoclave molding process [Gurit 2013] 50
Figure 2-29 A Schematic of Resin Transfer Molding Process [Gurit 2013] . 51
Figure 2-30 Schematic of the Compression Molding Process [Mazumdar 2002] . 52
Figure 3-1 Material with Three Planes of Symmetry [Kollar eta al. 2003] . 54vii
Figure 3-2 The Levels of Analysis for a Structure Made of Laminated Composite [Kollar
eta al. 2003] 55
Figure 3-3 Mechanical Behavior of Various Materials [Jones 1999] 57
Figure 3-4 The Global x, y, z and Local x1, x2, x3 Coordinate Systems [Kollar eta al. 2003]
. 57
Figure 3-5 The x, y, z and x1, x2, x3 Coordinate Systems and the Corresponding
Displacements [Kollar eta al. 2003] 58
Figure 3-6 The Stresses in the Global x, y, z and the Local x1, x2, x3 Coordinate Systems
[Kollar eta al. 2003] . 58
Figure 3-7 Stresses on an Element [Jones 1999] . 60
Figure 3-8 Typical Failure Modes of Composites [Kollar 2003] 65
Figure 3-9 Load-Displacement Curve of a Composite Part [Kollar 2003] 66
Figure 3-10 Representative Volume Element Loaded in the 1-Direction [Jones 1999] 69
Figure 3-11 The Basic Questions of Laminate Analysis . 71
Figure 3-12 Geometry of Deformation in the x-z Plane [Jones 1999] 74
Figure 3-13 Hypothetical Variation of Strain and Stress through the Laminate Thickness
[Jones 1999] . 75
Figure 3-14 In-Plane Forces on a Flat Laminate [Jones 1999] 76
Figure 3-15 Moments on a Flat Laminate . 76
Figure 3-16 Geometry of an N-Layered Laminate [Jones 1999] . 77
Figure 3-17 Laminate Strength-Analysis Elements [Jones 1999] . 78
Figure 3-18 Analysis of Laminate Strength and Load-Deformation Behavior [Jones 1999]
. 79
Figure 3-19 Carpet Plots for [0°, ±45°, 90°] Kevlar Epoxy Laminates [Gibson 1994] 82
Figure 4-1 Marine Industry Reinforcement Material Use [Greene 1999] . 87
Figure 4-2 Marine Industry Reinforcement Style Use . 88
Figure 4-3 Marine Industry Resin System Use 88
Figure 4-4 Marine Industry Core Material Use . 89
Figure 4-5 Building Processes within the Marine Industry . 89
Figure 4-6 Dubai Grand Prix in 2012 [Class-1 2012] . 91
Figure 4-7 Earthrace Power Boat [Greene 2013b] 92
Figure 4-8 The Route of the 2014-15 Volvo Ocean Race [Volvo Ocean Race 2016d] 93
Figure 4-9 Volvo Ocean 65 Race Boat During Manufacture by Vacuum Bagging Infusion
in Italy [Farr Yacht Design 2012] 94
Figure 4-10 A 3D Model of Volvo Ocean 65 Boat [Volvo Ocean Race 2016a] . 96
Figure 4-11 Volvo Ocean 65 Boat in Real Operation [Scuttlebutt 2013] . 97
Figure 4-12 M/Y Evviva [Super yachts 2016b] . 98
Figure 4-13 MY Supersport 48M [Morpheus London 2015] 99
Figure 4-14 MY Supersport 72M [Palmer johnson 2016b] . 100
Figure 4-15 M5, Ex Mirabella V [Super yachts 2016c] 101
Figure 4-16 MY Turanor PlanetSolar [Greene 2013b] 102
Figure 4-17 Design Characteristics of Turanor Solar Yacht [Black 2011b] . 103viii
Figure 4-18 LCC Comparison on High Speed Ferry [Petersson 2004] . 105
Figure 4-19 Comparison between Aluminum and CFRP Ferries [Arcadia-alliance 2016]
. 106
Figure 4-20 A Comparison of Carbon Footprint Reduction of the 2 Ferries [Arcadia-alliance
2016] 107
Figure 4-21 Wave Star Energy System [Wavestar 2016] 108
Figure 4-22 Example Photos Showing the Production Process from Danish Yachts [Danish
composites 2015] . 108
Figure 4-23 A Totally Enclosed GRP Lifeboat [Norsafe 2016] 109
Figure 4-24 Plot of Vessel Length against Year of Construction for All-Composite Patrol
Boats, MCMV and Corvettes [Mouritz 2001] . 110
Figure 4-25 The Skjold Class Patrol Boat [Greene 2013b] . 111
Figure 4-26 Landsort Class MCMV [Naval-technology 2016a] . 114
Figure 4-27 One of the Landsort Class MCMV during Construction [Naval-technology
2016a] 114
Figure 4-28 HMS Nykoping K34, Visby Class Corvette of Swedish Navy during a Visit to
Gothenburg [Ships and harbours 2013] . 116
Figure 4-29 USS Zumwalt [Naval-technology 2016c] 120
Figure 4-30 The Deckhouse of USS Zumwalt [LeGault 2010] . 121
Figure 4-31 The Composite Deckhouse during Construction [Composites World 2013]
. 122
Figure 4-32 Completed Composite Deckhouse [Greene 2013b] 123
Figure 4-33 M/S Norwegian Gem [Evegren et al. 2011] 124
Figure 4-34 Illustration of the Design Changes Made to the Norwegian Gem to Form the
Novel Design of the Norwegian Future [Evegren et al. 2011] 125
Figure 4-35 The Cruise Ship Norwegian Gem and the Structure (Marked) Intended for
Reconstruction in FRP Composite from Deck 11 and up [Evegren et al. 2011] . 125
Figure 4-36 The Maximum Modelled Hogging for the Existing Norwegian Gem (top), the
Norwegian Future (mid) and the Norwegian Future with Increased Deck Plating (bottom)
[Evegren et al. 2011] 126
Figure 4-37 Characteristics of Vessel under Study [Petersson 2004] . 128
Figure 4-38 A Demonstration of the Reduction in VCG after Implementing Composite
Superstructure [Petersson 2004] 128
Figure 4-39 An Illustration Showing the Proposed Solution for Oshima ECO-Ship 2020
[Mori 2011] 129
Figure 4-40 Nordic’s M/V Nordic Oshima Panamax Vessel [Ship Technology 2015] . 130
Figure 4-41 The Composite Propeller Blade, Attached to the Bronze Blade Foot that Forms
the Interface with the Existing Metallic Propeller Hub [Black 2011a] . 131
Figure 4-42 Airborne Composites’ Composite Blades for Controllable-Pitch Ship Propeller
Illustration [Black 2011a] 132
Figure 4-43 The Completed Prototype Blades Are Shown Installed on a Minehunter’s
Propeller Hub [Black 2011a] . 133ix
Figure 4-44 CFRP after Installation on MV “Taiko Maru” [Marex 2016] . 135
Figure 4-45 Twisted Rudder on the USS Bulkeley [Griffiths 2006] . 136
Figure 4-46 Internal Design of the Hybrid Steel/Composite Twisted Rudder 137
Figure 4-47 Carbon Fiber Propulsion Shaft [Greene 2013a] . 138
Figure 4-48 Lamination of the Hybrid Composite Shaft [Sunahara et al. 1992] . 140
Figure 4-49 Composite Driveshafts on the Expeditionary Fighting Vehicle [Mason 2004]
. 140
Figure 4-50 An Insight View of the AEMS [Greene 2013c] . 142
Figure 4-51 AEMS on San Antonio Class LPD-17 [Greene 2013c] . 142
Figure 4-52 AEMS During Installation, the Enclosed Radar System Still Visible [Greene
2013c] 143
Figure 4-53 Applications of composite structures to naval ships [Mouritz et al. 2001] 143
Figure 5-1 An Overview of the Case Study Vessel . 146
Figure 5-2 Arrangement of ship’s Cargo Holds and Covers . 147
Figure 5-3 Hatch Cover Design According to IACS UR S21 and ILLC 66 . 148
Figure 5-4 Construction of Steel Hatch Cover Number 1 . 151
Figure 5-5 Properties of a Lamina . 152
Figure 5-6 Properties of a Laminate 153
Figure 5-7 Laminate Orientation . 153
Figure 5-8 Scantling Criteria for the Composite Hatch Cover. . 155
Figure 5-9 Thickness of Composite Hatch Cover. 156
Figure 5-10 Thickness of Reinforcements at the Connections between Sides and Stiffeners
. 157
Figure 5-11 IRF of Tsai Wu and Pucks Failure Theories on Composite Hatch Cover 158
Figure 5-12 Deformation of Composite Hatch Cover . 158
Figure 5-13 Thickness of Composite Hatch Cover Number 1 160
Figure 5-14 Thickness of Reinforcements at the Connections between Sides and Stiffeners
. 160
Figure 5-15 IRF of Tsai Wu and Pucks Failure Theories on Composite Hatch Cover
Number 1 . 161
Figure 5-16 Deformation of Composite Hatch Cover Number 1 162
Figure 5-17 Comparison of Steel and Composite Hatch Cover Weights 163
Figure 5-18 Distribution of Hand Layup Costs for HLU Process [Haffner 2002] 164
Figure 5-19 An Illustration of the Concept of Break-Even Analysis (alternative A:
Composite, Alternative B: Steel) . 166x
LIST OF TABLES
Table Page
Table 2-1 Structural performance ranking of conventional materials [Daniel et al. 1994] . 3
Table 2-2 Fiber and wire properties [Jones 1999] . 7
Table 2-3 Description of various forms of reinforcements [Greene 1999] . 15
Table 2-4 Properties of Selected Commercial Reinforcing Fibers [Mallick 2008] . 21
Table 2-5 Relative characteristics of thermoset resin matrices [Campbell 2010] . 25
Table 2-6 Comparative data for some sandwich core materials [Greene 1999] 29
Table 2-7 Characteristics of some foam sandwich materials [Campbell 2010] 32
Table 3-1 Stress notations [Kollar eta al. 2003] 59
Table 3-2 Strain notations [Kollar eta al. 2003] 59
Table 3-3 Typical input and output variables for laminate analysis programs [Greene 1999]
. 81
Table 4-1 Specifications of the Earthrace boat [Earthrace 2008] 92
Table 4-2 Specifications of the Volvo Ocean 65 boat [Volvo Ocean Race 2016b] 95
Table 4-3 Principal particulars of MY Evviva [Super yachts 2016b] . 98
Table 4-4 Particulars of MY Supersport 48M [Palmer johnson 2016a] 99
Table 4-5 Particulars of MY Supersport 72M [Palmer johnson 2016b] 100
Table 4-6 Particulars of M5 [Super yachts 2016c] 101
Table 4-7 Perceived limitations of FRP in ships [Horsmon 1993] 104
Table 4-8 Survey of GRP mine counter measure vessels in-service or under construction as
at 3/12/1999 [Mouritz 2001] 113
Table 4-9 Principal particulars of USS Zumwalt [Naval-technology 2016c] . 119
Table 4-10 The modelled ability to manage global forces in different design solutions
[Evegren et al. 2011] 127
Table 5-1 Principal particulars of selected vessel 147
Table 5-2 Principal particulars of selected vessel 149
Table 5-3 Hatch Covers Dimensions . 150
Table 5-4 Weights of steel hatch covers 150
Table 5-5 Composite material properties . 151
Table 5-6 Design thickness of hatch cover components 156
Table 5-7 Design thickness of the components of hatch cover number 1. 159
Table 5-8 Steel and composite covers weights and weight reduction value . 162
Table 5-9 Summary of basic life cycle cost analysis . 165xi
LIST OF ABBREVIATIONS
AAAV Advanced Amphibious Assault Vehicle
ACP Ansys Composite Preppost
AEM/S Advanced Enclosed Mast/Sensor System
ASROC Anti-Submarine Rocket
ASTM American Society For Testing And Materials
B/E Break-Even
BMIS Bismaleimides
CC Carbon-Carbon
CCA Cellular Cellulose Acetate
CFRP Carbon Fibre Reinforced Plastics
CLT Classical Lamination Theory
CMC Ceramic Matrix Composites
CNC Computer Numerical Control
CSMS Chopped Strand Mats
DMAC Dimethylactamide
DMF Dimethylformamide
DMSO Dimethylsufoxide
DNV Det Norske Veritas
DWT Dead Weight
EFV Expeditionary Fighting Vehicle
EMI Electromagnetic Interference
EMS Electro-Magnetic Signature
FEA Finite Element Analysis
FEM Finite Element Model
FRP Fiber-Reinforced Plastics
GRP Glass Reinforced Plastics
HLU Hand Lay-Up
HMS Her Majesty’s Ship
HSC High Speed Craft
IACS International Association Of Classification Societies
ILLC 66 International Load Line 1966
IMO International Maritime Organization
IR Infrared
IRF Inverse Reserve Factorxii
JIME Japan Institute of Marine Engineering
LCC Life Cycle Cost
LCCA Life Cycle Cost Analysis
MCA Maritime And Coastguard Agency
MCMV Mine Counter Measure Vessels
MLU Mid-Life Upgrades
MMC Metal Matrix Composites
MODU Mobile Offshore Drilling Unit
MY Motor Yacht
NAB Nickel-Aluminum-Bronze
NMP N-Methylpyrrolidone
NVH Noise, Vibration, And Harshness
PJ Palmer Johnson
PMC Polymer Matrix Composites
PMI Polymrthacrylimide
PVA Polyvinyl Acetate
PVC Polyvinyl Chloride
RNLN Royal Netherlands Navy
RORO Roll-On Roll-Off
ROV Remotely Operated Vehicle
RTM Resin Transfer Molding
SCRIMP Seemann Composites Resin Infusion Molding Process
SOLAS Safety Of Life At Sea
SSC Ship Structures Committee
UK United Kingdom
US United States
USS United States Ship
VARTM Vacuum-Assisted Resin Transfer Moldingxiii
NOMENCLATURE
Aij Laminate Extensional Stiffness
Bij Laminate Bending-Extension Coupling Stiffness
Cij Stiffness Matrix
Dij Laminate Bending Stiffness
Ei Young’s (Extension) Moduli in i Direction (Pa)
F Strength Parameter of Quadratic Failure Criterion
Gij Shear Moduli in the i j (i, j = 1, 2, 3) Plane (Pa)
Kf Volume Fraction of the Fibers
Km Volume Fraction of the Matrix
L Freeboard Length, as defined in Regulation 3 of Annex I to the
1966 Load Line Convention (m)
ℓ The Greatest Span of Primary Supporting Members
Mi Moment per Unit Width of the Cross Section of the Laminate in
the i Direction
Ni Force per Unit Width of the Cross Section of the Laminate in
the i Direction
P Pressure Load on Ship’s Hatch Cover (kN/m2)
PFP Pressure at the Forward Perpendicular (kN/m2)
PHi Pressure Load on Hatch cover Number i (kN/m2)
Qij Transformed Reduced Stiffnesses
S+i Tensile Strength in the i Direction (MPa)
S+i j Shear Strength in the i j (i, j = 1, 2, 3) Plane (MPa)
S−i Compressive Strength in the i Direction (MPa)
Sij Compliance Matrix
V Volume of the Composite (m3)
V m Volume of the Matrix (m3)
Vf Volume of the Fiber (m3)
x Distance of the mid length of the hatch cover under examination
from the forward end of L (m)
αf Thermal Expansion Coefficient of the fibers (°C−1)
αi Thermal Expansion Coefficient of the Composite in the i
Direction (°C−1)
αm Thermal Expansion Coefficient of the Matrix (°C−1)
γij Engineering Shear Strain in the i j (i, j = 1, 2, 3) Plane
εi Normal Strain in i Direction
η+i Allowable Tensile Strain in the i Direction
η+ij Allowable Shear Strain in the i j (i, j = 1, 2, 3) Planexiv
η−i Allowable Compressive Strain in the i Direction
νij Poisson’s Ratio (Extension-Extension Coupling Coefficient)
ρ Density of the Composite (t/m3)
ρf Density of the Fiber (t/m3)
ρm Density of the Matrix (t/m3)
σi Normal Stress in i Direction (pa)
τij Shear Stress in the i j (i, j = 1, 2, 3) Plane (pa)
Ө Fiber Orientation Angle (Degree)
كلمة سر فك الضغط : books-world.net
The Unzip Password : books-world.net

تحميل

يجب عليك التسجيل في الموقع لكي تتمكن من التحميل
تسجيل | تسجيل الدخول

التعليقات

اترك تعليقاً