Theory of Machines – Kinematics and Dynamics
اسم المؤلف
B.V.R. GUPTA
التاريخ
المشاهدات
546
التقييم
(لا توجد تقييمات)
Loading...
التحميل

Theory of Machines – Kinematics and Dynamics
B.V.R. GUPTA
Principal
Simhadhri Educational Society
Group of Institutions
&
Formerly Professor & Dean
Faculty of Engineering
Andhra University
Visakhapatnam, A.P.
CONTENTS
Abbreviations, Notations and Symbols

  1. Simple Mechanisms
    1.1 Introduction
    1.2 Kinematic Link or Element
    1.3 Kinematic Pair
    Nature of Relative Motion between the Elements
    Nature of Contact between the Elements
    Nature of the Mechanical Arrangement for Complete or
    Successful Constraint between the Elements
    1.4 Kinematic Chain
    1.4.1 First Equation Using Pairs
    1.4.2 Second Equation Using Joints
    1.4.3 According to the Type of Closure between Elements
    1.4.4 Degrees of Freedom
    1.5 Mechanism
    1.6 Inversion
    1.6.1 Single Slider Crank Chain
    1.6.2 Double Slider Crank Chain
    1.6.3 Four-Bar Mechanisms
    1.7 Exercise
    1.7.1 Short Answer Questions
    1.7.2 Problems
    1.7.3 Multiple Choice Questions
    lX
    Xl
    xxxiii
    viixx Contents
  2. Mechanisms with Lower Pairs 25
    2.1 Introduction 27
    2.2 Pantograph 27
    2.3 Mechanisms for Straight Line Motions 28
    2.3.1 Peaucellier Mechanism 29
    2.3.2 Hart Mechanism 29
    2.3.3 Scott-Russell Mechanism 30
    2.4 Approximate Straight Line Mechanism 31
    2.4.1 Watt Mechanism 31
    2.4.2 Grasshopper Mechanism 32
    2.4.3 Tchebicheff Straight Line Motion 32
    2.4.4 Roberts Mechanism 33
    2.5 Steering Gear Mechanism 33
    2.5.1 Davis Steering Gear (Exact) 34
    2.5.2 Ackermann Steering Gear (Approximate) 35
    2.6 Hooke’s Joint (or) Universal Joint 36
    2.7 Double Hooke’s Joint 41
    2.8 Exercise 43
    2.8.1 Short Answer Questions 43
    2.8.2 Problems 45
    2.8.3 Multiple Choice Questions 46
  3. Velocities and Accelerations in Mechanisms 49
    3.1 Introduction 51
    3.2 Motion 51
    3.2.1 Translatory Motion 51
    3.2.2 Rotary Motion 51
    3.2.3 Speed 51
    3.2.4 Angular Displacement (6) 52
    3.2.5 Radian 52
    3.2.6 Angular Velocity (w) 52
    3.2.7 Relation between Linear Velocity and Angular Velocity 53
    3.3 Instantaneous Centre Method 53
    3.3.1 Properties of Instantaneous Centres 54
    3.3.2 Number of Instantaneous Centres in a Mechanism 55
    3.3.3 Types of Instantaneous Centres 55Contents xxi
    3.3.4 Location of Instantaneous Centres 55
    3.3.5 Kennedy’s Theorem or Three-centres-in-line Theorem 56
    3.3.6 Application of Instantaneous Centre to Any Mechanism 57
    3.3.7 Steps in Determining the Unknown Instantaneous Centres 57
    3.4 Relative Velocity Method 64
    3.5 Acceleration in Mechanisms 70
    3.5.1 Introduction 70
    3.5.2 Angular Acceleration 70
    3.5.3 Vector form between Linear and Angular Acceleration 70
    3.5.4 Various Steps to be Followed in the Acceleration Analysis 71
    3.6 Coriolis Component of Acceleration 78
    3.7 Exercise 83
    3.7.1 Short Answer Questions 83
    3.7.2 Problems 83
    3.7.3 Multiple Choice Questions 88
  4. Inertia Forces in Reciprocating Parts 91
    4.1 Introduction 93
    4.1.1 Terms Used in Static 93
    4.1.2 D-Alembert’s Principle 94
    4.2 Analytical Method for Reciprocating Mechanism 95
    4.2.1 Displacement of Piston (Xp) 96
    4.2.2 Velocity of Piston (vp) 97
    4.2.3 Acceleration of Piston (ap) 97
    4.2.4 Angular Velocity of Connecting Rod (cot) 98
    4.2.5 Angular Acceleration (ac) 98
    4.3 Klien’s Construction for Reciprocating Mechanisms 100
    4.3.1 Klien’s Velocity Diagram 100
    4.3.2 Klien’s Acceleration Diagram 101
    4.4 Forces on the Reciprocating parts of an Engine 104
    4.4.1 Neglecting the Weight of the Connecting Rod 104
    4.4.2 Considering the Weight of the Connecting Rod 109
    4.5 Equivalent Dynamical System 110
    4.5.1 Dynamically Equivalent System 110
    4.5.2 Determination of Dynamically Equivalent System of Two Masses Placed
    Arbitrarily (Analytically) 111xxii Contents
    4.5.3 Determination of Dynamically Equivalent System of Two Masses Placed
    Arbitrarily (Graphically) 112
    4.6 Inertia Forces in a Reciprocating Engine 113
    4.6.1 Graphical Method 113
    4.6.2 Analytical Method 114
    4.7 Exercise 120
    4.7.1 Short Answer Questions 120
    4.7.2 Problems 120
    4.7.3 Multiple Choice Questions 122
  5. Turning Moment Diagrams and Design of Flywheel 125
    5.1 Introduction 127
    5.2 Single-Cylinder Double-Acting Steam Engine 127
    5.3 Four-Stroke Cycle Internal Combustion Engine 128
    5.3.1 Fluctuation of Energy 129
    5.4 Flywheel 130
    5.4.1 Coefficient of Fluctuation of Speed 131
    5.4.2 Energy Stored in the Flywheel (E) 131
    5.4.3 Design of Flywheel 132
    5.5 Typical Worked Examples 133
    5.6 Flywheel in Punching Press 141
    5.7 Exercise 144
    5.7.1 Short Answer Questions 144
    5.7.2 Problems 144
    5.7.3 Multiple Choice Questions 145
  6. Friction 147
    6.1 Introduction 149
    6.2 Laws of Friction 150
    6.2.1 Friction between Dry Surfaces 151
    6.2.2 Friction between Rough Surfaces 151
    6.2.3 Friction is Self Adjusting 151
    6.2.4 Angle of Friction (0) 151
    6.2.5 Rolling Friction 152
    6.3 Equilibrium of Body on a Rough Inclined Plane 153
    6.3.1 Motion Up the Plane 154Contents xxiii
    6.3.2 Motion Down the Plane 154
    6.3.3 Maximum Efficiency 155
    6.4 Screw Friction 156
    6.4.1 Square Thread 156
    6.4.2 Relation Between Effort and Weight Lifted by a Screw Jack 157
    6.4.3 V-Thread 158
    6.4.4 Mechanical Advantage 158
    6.5 Pivot and Collar Friction 159
    6.5.1 Uniform Intensity of Pressure 161
    6.5.2 Uniform Rate of Wear 162
    6.6 Clutches 164
    6.6.1 Single-plate Clutch 165
    6.6.2 Multi-plate Clutch 165
    6.6.3 Cone Clutch 166
    6.7 Brakes and Dynamometers 168
    6.7.1 Introduction 168
    6.7.2 Types of Brakes 168
    6.7.3 Dynamometers 176
    6.7.4 Types of Frictions 178
    6.8 Exercise 181
    6.8.1 Short Answer Questions 181
    6.8.2 Problems 182
    6.8.3 Multiple Choice Questions 185
  7. Governors 187
    7.1 Introduction 189
    7.2 Centrifugal Governors 189
    7.3 Various Parts and Terms Used in Governors 191
    7.3.1 Height of the Governor (h) 191
    7.3.2 Equilibrium Speed 191
    7.3.3 Sleeve Lift 191
    7.4 Simple Watt Governor 191
    7.4.1 Analytical Method 192
    7.4.2 Graphical Method 193
    7.5 Porter Governor 194
    7.5.1 Analytical Method 195
    7.5.2 Graphical Method 197xxiv Contents
    7.6 Proell Governor 197
    7.6.1 Analytical Method 198
    7.6.2 Graphical Method 199
    7.6.3 Comparison between Flywheel and Governor 209
    7.7 Hartnell Governor 209
    7.8 Hartung Governor 213
    7.9 Definitions 218
    7.9.1 Sensitiveness 218
    7.9.2 Stable and Unstable 218
    7.9.3 Isochronous/Isochronism 218
    7.9.4 Hunting 218
    7.9.5 Effort 218
    7.9.6 Power 218
    7.9.7 Controlling Force 218
    7.9.8 Coefficient of Insensitiveness 219
    7.10 Wilson-Hartnell Governor 219
    7.11 Exercise 221
    7.11.1 Short Answer Questions 221
    7.11.2 Problems 221
    7.11.3 Multiple Choice Questions 223
  8. Belt, Rope and Chain Drives 225
    8.1 Introduction 227
    8.2 Types of Belts 227
    8.2.1 Flat Belt 228
    8.2.2 V-belt 228
    8.2.3 Circular Belt or Rope 229
    8.3 Types of Belt Drives 230
    8.3.1 Compound Belt Drives 231
    8.3.2 Stepped or Cone Pulley 232
    8.4 Speed Ratio or Velocity Ratio of a Belt Drive 232
    8.4.1 Velocity Ratio of a Compound Belt Drive 233
    8.4.2 Slip of the Belt 234
    8.4.3 Effect of Creep on Velocity Ratio 235
    8.5 Length of an Open Belt 235
    8.6 Length of a Crossed Belt 237
    8.7 Ratio of Tensions 239Contents xxv
    8.7.1 Power Transmitted by a Belt 241
    8.7.2 Effect of Centrifugal Tension Tc on Power Transmitted 241
    8.7.3 Condition for Maximum Power 242
    8.7.4 Effect of Initial Tension (To) 243
    8.8 Rope Drive 243
    8.8.1 Ratio of Tensions 243
    8.9 Chain Drives 245
    8.9.1 Types of Chains 246
    8.10 Exercise 248
    8.10.1 Short Answer Questions 248
    8.10.2 Problems 249
    8.10.3 Multiple Choice Questions 251
  9. Gyroscope 255
    9.1 Introduction 257
    9.2 Gyroscopic Couple and its Effect 258
    9.3 Effect of Gyroscopic Couple on an Aeroplane 259
    9.4 Special Terms Used in Ships 263
    9.4.1 Effect of Gyroscopic Couple on the Ship During Steering 264
    9.4.2 Effect of Gyroscopic Couple on the Ship During Pitching 265
    9.4.3 Effect of Gyroscopic Couple on the Ship During Rolling 266
    9.5 Stability of Four-Wheeler 268
    9.5.1 Effect of the Gyroscopic Couple 269
    9.5.2 Effects of the Centrifugal Couple 270
    9.6 Stability of a Two-wheeler 273
    9.6.1 Effect of the Gyroscopic Couple 274
    9.6.2 Effects of the Centrifugal Couple 275
    9.7 Exercise 278
    9.7.1 Short Answer Questions 278
    9.7.2 Problems 279
    9.7.3 Multiple Choice Questions 280
  10. Cams 283
    10.1 Introduction 285
    10.2 Classification of Followers 286
    10.2.1 Based on the Surface in Contact 287xxvi Contents
    10.2.2 Based on the Type of Movement of the Follower 287
    10.2.3 Based on the Line of Motion of Follower 287
    10.2.4 Based on the Desired Mathematical Motions 288
    10.3 Types of Cams 288
    10.3.1 Based on Follower Motion 288
    10.3.2 Based on the Shape of the Cam 288
    10.4 Terminology 289
    10.4.1 Cam Profile 289
    10.4.2 Base Circle 289
    10.4.3 Trace Point 289
    10.4.4 Pitch Curve 290
    10.4.5 Prime Circle 290
    10.4.6 Pressure Angle 290
    10.4.7 Cam Angle 290
    10.4.8 Pitch Point 290
    10.4.9 Lift or Stroke(s) 290
    10.4.10 Pitch Circle 291
    10.5 Analysis of Motion of the Follower 291
    10.5.1 Uniform Velocity 292
    10.5.2 Simple Harmonic Motion (SHM) 294
    10.5.3 Uniform Acceleration and Retardation 296
    10.5.4 Cycloidal Motion 297
    10.6 Construction of Displacement Diagrams 299
    10.6.1 Displacement Diagram for Uniform Velocity 300
    10.6.2 Displacement Diagram for Simple Harmonic Motion (SHM) 300
    10.6.3 Displacement diagram for Uniform Acceleration and Retardation (UAR) 301
    10.6.4 Displacement Diagram for Cycloidal Motion 302
    10.7 Construction of Cam Profiles 303
    10.7.1 Cam Profile with Radial Knife Edge Follower Having Outward Cycloidal
    Motion and Return Uniform Velocity Motion 303
    10.7.2 Cam Profile with a Radial Knife Edge Follower Having Outward SHM and
    Return Uniform Acceleration and Retardation (UAR) 305
    10.7.3 Cam Profile with an Offset Knife Edge Follower Having Outward SHM and
    Return UAR 305
    10.7.4 Cam Profile with the Radial Roller Follower with Outward Cycloidal Motion
    and Return Uniform Velocity 306
    10.7.5 Cam Profile with an Offset Roller Follower with Outward Cycloidal Motion
    and Return with Uniform Velocity 308Contents xxvii
    10.7.6 Cam Profile for Radial Flat Faced Radial Follower with Outward Cycloidal
    Motion and Return Uniform Velocity 309
    10.8 Cams with Specified Contours 312
    10.8.1 Circular Arc Cam with Flat-faced Reciprocating Follower 312
    10.8.2 Tangent Cam with Reciprocating Roller Follower 315
    10.9 Exercise 318
    10.9.1 Short Answer Questions 318
    10.9.2 Problems 319
    10.9.3 Multiple Choice Questions 320
  11. Toothed Gearing 323
    11.1 Introduction 325
    11.2 Classification of Toothed Gearing 325
    11.2.1 According to Axes 325
    11.2.2 According to the Range of Peripheral Velocity 326
    11.2.3 According to Position of Teeth on the Gear Surface 326
    11.2.4 According to Type of Gearing 327
    11.2.5 According to Materials Used for Gears 328
    11.3 Terminology Used in Gears 328
    11.3.1 Pitch Circle 328
    11.3.2 Addendum (a) 329
    11.3.3 Addendum Circle 329
    11.3.4 Dedendum (d) 330
    11.3.5 Dedendum Circle 330
    11.3.6 Clearance 330
    11.3.7 Face 330
    11.3.8 Flank 330
    11.3.9 Face Width 331
    11.3.10 Top Land 331
    11.3.11 Tooth Profile 331
    11.3.12 Circular Pitch (Pa) 331
    11.3.13 Pitch Point (P) 331
    11.3.14 Diametral Pitch (Pa) 331
    11.3.15 Module (m) 331
    11.3.16 Pressure Angle or Obliquity (p) 332
    11.3.17 Path of Contact 332
    11.3.18 Length of Path of Contact 332xxviii Contents
    11.3.19 Arc of Contact 332
    11.4 Condition for Constant Velocity Ratio or Law of Gearing 332
    11.5 Length of the Arc of Contact 335
    11.6 Minimum Number of Teeth on the Pinion to Avoid Interference 340
    11.7 Interference in Involute Gears 344
    11.8 Methods of Avoiding Interference 344
    11.9 Forms of Teeth 344
    11.9.1 Cycloidal Teeth 345
    11.9.2 Involute Tooth 346
    11.10 Helical Gears 346
    11.11 Bevel Gears 347
    11.12 Spiral Gears 348
    11.13 Exercise 348
    11.13.1 Short Answer Questions 348
    11.13.2 Problems 349
    11.13.3 Multiple Choice Questions 351
  12. Gear Trains 353
    12.1 Introduction 355
    12.2 Simple Gear Train or Simple Gear Drive 355
    12.2.1 Speed Value or Speed Ratio or Velocity Ratio (VR) 356
    12.2.2 Train Value 356
    12.2.3 Power Transmitted by a Simple Gear Train 357
    12.3 Compound Gear Train 358
    12.4 Reverted Gear Train 359
    12.5 Epicyclic Gear Train 362
    12.6 Torque in Epicyclic Gear Trains 369
    12.7 Compound Epicyclic Gear Train 371
    12.8 Epicyclic Gear Trains with Bevel Gears 375
    12.9 Exercise 380
    12.9.1 Short Answer Questions 380
    12.9.2 Problems 382
    12.9.3 Multiple Choice Questions 386Contents xxix
  13. Balancing of Rotating Masses 389
    13.1 Introduction 391
    13.2 Checking of a Rotating Element 391
    13.3 Types of Balancing of Rotating Elements 392
    13.3.1 Balancing of a Single Unbalanced Rotating Mass 392
    13.3.2 Balancing of Several Unbalanced Rotating Masses 392
    13.4 Balancing of a Single Unbalanced Rotating Mass 393
    13.4.1 By a Single Balancing Mass Rotating in the Same Plane 393
    13.4.2 By Two Balancing Masses in Two Different Planes 394
    13.5 Balancing of Several Unbalanced Masses Rotating in the Same Plane 399
    13.5.1 Analytical Method 400
    13.5.2 Graphical Method 400
    13.6 Balancing of Several Unbalanced Masses Rotating in Several Planes 402
    13.7 Exercise 410
    13.7.1 Short Answer Questions 410
    13.7.2 Problems 410
    13.7.3 Multiple Choice Questions 412
  14. Balancing of Reciprocating Masses 413
    14.1 Introduction 415
    14.2 Partial Balancing 416
    14.3 Effect of Partial Balancing in Two-Cylinder Locomotives 417
    14.3.1 Tractive Force (FT) 418
    14.3.2 Swaying Couple 419
    14.3.3 Hammer Blow 419
    14.3.4 Types of Locomotives 420
    14.4 Multi-cylinder In-line Engines 428
    14.5 Radial Engines 434
    14.5.1 Direct and Reverse Crank Method 435
    14.5.2 Analytical Method 436
    14.6 V-Engines 439
    14.6.1 Analytical Method 440
    14.6.2 Direct and Reverse Crank Method 441
    14.7 Exercise 443
    14.7.1 Short Answer Questions 443
    14.7.2 Problems 443
    14.7.3 Multiple Choice Questions 445xxx Contents
  15. Longitudinal and Transverse Vibrations 447
    15.1 Introduction 449
    15.2 Basic Elements of Any Vibratory System 449
    15.2.1 Inertial Element or Mass 449
    15.2.2 Restoring Element or Spring 449
    15.2.3 Damping Elements or Damper 450
    15.3 Various Terms Used in Vibration and their Meanings 450
    15.3.1 Period 450
    15.3.2 Cycle 450
    15.3.3 Frequency 450
    15.3.4 Resonance 450
    15.4 Types of Vibrations 450
    15.4.1 Free or Natural Vibrations 450
    15.4.2 Forced Vibrations 450
    15.4.3 Damped Vibrations 450
    15.5 Types of Vibrations Based on the Deflection 451
    15.5.1 Longitudinal Vibrations 451
    15.5.2 Transverse Vibrations 451
    15.5.3 Torsional Vibrations 451
    15.6 Natural Frequency of Free Longitudinal Vibrations 451
    15.6.1 Equilibrium Method 452
    15.6.2 Energy Method 453
    15.6.3 Rayleigh’s Method 454
    15.7 Natural Frequency of Free Transverse Vibrations 459
    15.7.1 Energy (Rayleigh’s) Method of a Shaft Subjected to Number of Point Loads 464
    15.7.2 Dunkerley’s Method for a Shaft Subjected to a Number of Point Loads 464
    15.8 Critical Speed or Whirling Speed of a Shaft 468
    15.9 Frequency of Free Damped Vibrations (Viscous Damping) 471
    15.9.1 When the Roots are Real (Overdamping or Large Damping) 473
    15.9.2 When the Roots are Equal (Critical Damping) 473
    15.9.3 When the Roots are Complex Conjugate (Underdamping or Small Damping) 473
    15.9.4 Logarithmic Decrement 474
    15.10 Frequency of Forced Damped Vibration 476
    15.10.1 Magnification Factor or Dynamic Magnifier (D) 478
    15.11 Exercise 480
    15.11.1 Short Answer Questions 480
    15.11.2 Problems 481
    15.11.3 Multiple Choice Questions 483Contents xxxi
  16. Torsional Vibrations 485
    16.1 Introduction 487
    16.2 Natural Frequency of Free Torsional Vibrations 487
    16.3 Torsional Vibrations of a Shaft with Number of Rotors 488
    16.3.1 Free Torsional Vibrations of a Single Rotor System 488
    16.3.2 Free Torsional Vibrations of a Two-Rotor System 490
    16.3.3 Free Torsional Vibrations of a Three Rotor System 493
    16.4 Torsionally Equivalent Shaft 499
    16.5 Free Torsional Vibrations of a Geared System 505
    16.6 Exercise 509
    16.6.1 Short Answer Questions 509
    16.6.2 Problems 509
    16.6.3 Multiple Choice Questions 510
    Bibliography 513
    Index 515
    Index
    A
    Accelerating force, 487
    Acceleration, 51, 291, 415
    Ackermann steering gear, 18, 35
    Addendum, 329
    Addendum circle, 329
    Aeroplane, 259
    Aft, 263
    Air pump, 19
    Angle of friction, 151
    Angular acceleration, 40, 98, 259
    Angular displacement, 32, 267, 487
    Angular velocity, 13, 98, 415
    Anti-friction bearing, 178
    Approximate straight line mechanism, 31
    Arc of approach, 332
    Arc of contact, 332
    Arc of recess, 332
    B
    Balancing, 391, 416
    Band and block brake, 168, 174
    Band brake, 168, 170
    Beam engine, 18
    Bed plate, 3
    Belts, 152, 227
    Bevel gears, 347
    Binary, 4
    Block or shoe brake, 168
    Bow, 265
    Brakes, 168
    Bull engine, 14
    C
    Cam angle, 290
    Cam profile, 289
    Cams, 285, 288
    Centre of mass, 93, 391
    Centrifugal couple, 270
    Centrifugal governor, 189
    Centrifugal tension, 241
    Centroid, 93
    Chain, 4, 29, 227
    Circular arc cam, 312
    Circular belt, 229
    Circular pitch, 331
    Clearance, 330
    Clutches, 164
    Coefficient of fluctuation of speed, 131, 215
    Collar bearing, 162
    Complex conjugates, 473
    Compound belt drive, 231
    Compound gear train, 358
    Compound mechanism, 12, 23
    Cone clutch, 166
    Cone pulley, 232
    Connecting rod, 12, 96, 415
    Constraint, 5, 286, 509
    Contact ratio, 337
    Coriolis component, 78
    Couple, 419, 488
    Coupled, 420
    Coupling rod, 18
    Crank-pin, 116, 421
    Crankshaft, 3,127, 416
    Creep , 235
    Critical damping, 473
    Critical speed, 468
    Cross belt drive, 230
    Cross head, 4, 105, 415
    Cycle, 450
    Cycloidal gears, 344
    Cycloidal motion, 288, 309
    Cylinder head, 3
    D
    D-Alembert’s principle, 94
    Damped vibrations, 450
    Damper, 450516 Index
    Four-bar mechanism, 11, 121
    Free vibrations, 450
    Frequency, 450
    Friction, 5, 149
    Friction circle, 180
    Davis steering gear, 34
    Dedendum, 330
    Dedendum circle, 330
    Degrees of freedom, 11, 264
    Design of flywheel, 132
    Diametral pitch, 331
    Differential band brake, 170
    Direct crank method, 435
    Displacement diagram, 299, 309
    Double hooke’s joint, 41
    Double slider crank chain, 15
    Dry surfaces, 151
    Dunkerlay’s method, 464
    Dynamic friction, 150
    Dynamic magnifier, 478
    Dynamically equivalent system, 111
    Dynamics, 3, 93
    Dynamometers, 168, 176
    E
    Effort, 218
    Element, 3, 209, 415
    Ellipse trammel, 15
    Energy method, 453
    Energy stored, 131
    Epi-cyclic gear train, 362, 369
    Equal roots, 473
    Equilibrium method, 452
    Equilibrium of body, 153
    Equilibrium speed, 191
    External gearing, 327
    G
    Gear train, 355
    Geared system, 488, 505
    Governor, 189
    Grass hopper mechanism, 32
    Greasy friction, 180
    Gyroscope, 259
    Gyroscopic couple, 258, 259
    H
    Hammer blow, 419
    Hart mechanism, 30
    Hartnell governor, 209
    Hartung governor, 213
    Height of governor, 193
    Helical gears, 346
    High velocity, 326
    Higher pairs, 5, 20
    Hooke’s joint, 36, 41
    Hunting, 218
    Hydraulic brakes, 4
    Hydraulic jacks, 4
    F
    Face, 330
    Face width, 331
    Flank, 330
    Flat belt, 228
    Flat faced, 309
    Fluctuation of energy, 129
    Fluids, 4
    Flywheel, 3, 127, 488
    Followers, 286, 358
    Foot step bearing, 10
    Forced closed pair, 10
    Forced vibration, 476
    Fore-end, 263
    Four stroke cycle internal combustion engine,
    I
    Idlers, 356
    Indexing mechanism, 11
    Inertia force, 113, 416
    Inertial element, 449
    Initial tension, 243
    Instantaneous centre method, 53, 100
    Interference, 340
    Internal brake, 168
    Internal expanding shoe brake, 176
    Internal gearing, 327
    Intersecting axes, 326
    Inversion, 12, 27, 86
    Inverted chain, 247
    128 Involute gears, 344Index 517
    Inward, 319
    Isochronism, 218
    Isochronous, 218
    K
    Kennedy’s theorem, 56
    Kinematic chain, 7, 11
    Kinematic link, 3, 56
    Kinematic pair, 5, 7, 23
    Kinematics, 3, 53
    Kinetic energy, 505
    Kliens construction, 100
    Knife edge, 287
    L
    Large damping, 473
    Law of gearing, 333
    Laws of friction, 150
    Left turn, 261
    Length of a crossed belt, 237
    Length of an open belt, 235
    Length of path of contact, 332
    Length of the arc of contact, 335
    Lift, 290
    Linear velocity, 53, 259
    Link, 3,121, 245
    Locomotives, 420
    Logarithamic decrement, 474
    Longitudinal vibration, 451
    Low velocity, 326
    Lower pairs, 6, 27
    M
    Machine, 3,141,443
    Magnification factor, 478
    Main bearings, 3
    Mass, 93, 242, 415
    Matter, 93
    Maximum efficiency, 155
    Maximum power, 242
    Mechanical advantage, 158
    Mechanism, 3, 248, 415
    Medium velocity, 326
    Minimum number of teeth, 340
    Modified uniform velocity, 293
    Module, 331
    Motion, 3, 149, 488
    Multi plate clutch, 165
    Multi-cylinder in-line engines, 428
    N
    Natural frequency , 451
    Natural vibrations, 450
    Non-intersecting and non-parallel, 326
    0
    Offset, 287
    Oldham coupling, 16
    Open belt drive, 230
    Oscillating mechanism, 11
    Outward, 291
    Over damping, 473
    P
    Pairs, 4, 166, 337
    Pantograph, 27
    Parallel axes, 326
    Partial balancing, 416
    Peaucellier mechanism, 29
    Pendulum engine, 14
    Period, 450
    Piston, 3, 176, 428
    Piston rod, 3, 84,105
    Pitch circle, 290
    Pitch curve, 290
    Pitch point, 290
    Pitching, 264
    Pivot bearing, 162
    Port side, 265
    Porter governor, 194
    Power, 218
    Power transmitted, 241
    Pressure angle, 290
    Pressure angle, 332
    Primary forces, 416, 429
    Prime circle, 290
    Proell governor, 197
    Proney brake, 176
    Punching press, 17518 Index
    Q
    Quarternary, 4
    Quick return mechanism, 12, 22
    R
    Rack and pinion, 327
    Radial engines, 434
    Radial follower, 287, 309
    Radian, 52
    Ratio of tensions, 239
    Rayleigh’s method, 454
    Real roots, 473
    Reciprocating mass, 415
    Reciprocating mechanism, 10, 95, 415
    Reference plane, 403, 423
    Relative velocity method, 51, 99
    Resonance, 450
    Restoring element, 449
    Restoring force, 487
    Reverse crank method, 435
    Reverted gear train, 359
    Right hand screw rule, 53, 259
    Right turn, 261
    Rigid, 3, 245, 489
    Rigid frame, 8
    Roborts mechanism, 33
    Roller chain, 246
    Rolling, 264, 345
    Rolling friction, 150-152, 178
    Rolling pair, 5, 9, 22
    Rope, 4, 227, 355
    Rope brake dynamometer, 177
    Rotary internal combustion, 14
    Rotary motion, 6, 51, 325
    Rotating masses, 392, 416
    Rough surfaces, 151
    S
    Scotch yoke mechanism, 16
    Screw friction, 156
    Screw pair, 5, 22
    Secondary forces, 429
    Self closed pair, 10
    Sensitiveness, 218
    Several masses, 393
    Shaping machine, 13, 49
    Silent chain, 247
    Simple band brake, 172
    Simple gear train, 355, 357
    Simple harmonic motion (SHM), 288
    Simple mechanism, 3, 12
    Simple watt governor, 191
    Single cylinder double acting steam engine, 127
    Single mass, 410
    Single plate clutch, 165
    Single rotor system, 488
    Single slider crank chain, 16
    Sleeve lift, 191
    Sliding friction, 150
    Sliding pair, 5, 27
    Slip, 234
    Slotting machine, 12
    Small damping, 473
    Specified contour, 312
    Speed, 17, 93, 416
    Speed ratio, 232
    Speed value, 356
    Spherical pair, 5
    Spiral gears, 348
    Spring, 449
    Square thread, 156
    Stability, 219, 268
    Stable, 218
    Star board, 264
    Static, 3, 151, 420
    Static friction, 149
    Steering gear mechanism, 33
    Stepped pulley, 232
    Stern, 263
    Straight line motion, 27
    Strain energy, 505
    Stroke, 290
    Swaying couple, 419
    T
    Tabular method, 364
    Tangent cam, 315
    Tchebicheff straight line motion, 32
    Tensile force, 4
    Ternary, 4
    Three rotor system, 493
    Three-centres-in-line theorem, 56
    Tooth profile, 331
    Toothed gearing, 325Index 519
    Top land, 331
    Torque, 369, 420
    Torsional vibrations, 451
    Torsionally equivalent shaft, 499
    Tractive force, 418
    Train value, 356
    Transformation, 11
    Translatory motion, 51
    Transverse vibrations, 449
    Turning moment diagram, 127
    Turning pair, 4, 28
    Two cylinder locomotives, 417
    Two rotor system, 490
    Two way brand brake, 172
    Types of frictions, 178
    U
    Uncoupled, 420
    Under damping , 473
    Uniform acceleration and retardation,
    Uniform pressure, 163
    Uniform velocity, 153, 288
    Uniform wear, 163
    Universal joint, 36, 43
    Unstable, 218
    V
    V-belt, 228
    Velocity – 13, 134, 291
    Velocity of sliding, 334
    Velocity ratio, 232
    Velocity ratio, 325
    V-Engines, 439
    Viscous damping, 471
    V-thread, 158
    w
    Watt mechanism, 31
    Weight, 93, 315, 510
    Weight lifting jack, 19
    288 Whirling speed, 468
    Work, 3, 241, 435

كلمة سر فك الضغط : books-world.net
The Unzip Password : books-world.net

تحميل

يجب عليك التسجيل في الموقع لكي تتمكن من التحميل

تسجيل | تسجيل الدخول