Steel Heat Treatment – Equipment and Process Design
Steel Heat Treatment – Equipment and Process Design
Edited by
George E. Totten, Ph.D., FASM
Portland State University
Portland, Oregon, U.S.A.
Contents
SECTION I: Equipment
Chapter 1 Heat Treatment Equipment 3
George E. Totten, N. Gopinath, and David Pye
Chapter 2 Design of Steel-Intensive Quench Processes .193
Nikolai I. Kobasko, Wytal S. Morhuniuk, and Boris K. Ushakov
Chapter 3 Vacuum Heat Processing .239
Bernd. Edenhofer, Jan W. Bouwman, and Daniel H. Herring
Chapter 4 Induction Heat Treatment: Basic Principles,
Computation, Coil Construction, and Design Considerations 277
Valery I. Rudnev, Raymond L. Cook, Don L. Loveless,
and Micah R. Black
Chapter 5 Induction Heat Treatment: Modern Power Supplies,
Load Matching, Process Control, and Monitoring .395
Don L. Loveless, Raymond L. Cook, and Valery I. Rudnev
Chapter 6 Laser Surface Hardening .435
Janez Grum
SECTION II: Testing
Chapter 7 Metallurgical Property Testing 569
Xiwen Xie
Chapter 8 Mechanical Property Testing Methods .641
D. Scott MacKenzie
Index
1 Heat Treatment Equipment*
George E. Totten, N. Gopinath, and David Pye
CONTENTS
1.1 Introduction 5
1.2 Furnace Transfer Mechanisms 6
1.2.1 Batch Furnaces 7
1.2.1.1 Box Furnace 7
1.2.1.2 Integral Quench (Sealed Quench) Furnace 8
1.2.1.3 Pit Furnaces 10
1.2.1.4 Car-Bottom Furnaces 11
1.2.1.5 Tip-Up (Lift-Off) Furnaces . 11
1.2.2 Continuous Furnaces . 11
1.2.2.1 Walking Beam Furnaces . 11
1.2.2.2 Roller Hearth Furnace 12
1.2.2.3 Pusher Furnaces 12
1.2.2.4 Mesh Belt Conveyor Furnaces 13
1.2.2.5 Shaker Hearth Furnaces 13
1.2.2.6 Screw Conveyor Furnace 14
1.2.2.7 Rotary Hearth Furnace . 14
1.3 Furnace Heating: Electricity or Gas . 14
1.3.1 Furnace Heating Economics . 14
1.3.2 Electric Element Furnace Heating . 18
1.3.3 Gas-Fired Furnaces . 24
1.3.3.1 Gas Combustion 25
1.3.3.2 Burner Selection 30
1.3.4 Heat Recovery . 36
1.3.4.1 Recuperation . 36
1.3.4.2 Regeneration . 38
1.3.4.3 Rapid Heating . 41
1.4 Heat Transfer 43
1.4.1 Convective Heat Transfer 43
1.4.2 Radiant Heat Transfer 49
1.4.3 Conductive Heat Transfer . 51
1.4.4 Furnace Temperature Uniformity . 58
1.4.5 Soaking Time . 61
1.5 Thermocouples 64
1.6 Atmospheres .
1.6.1 Primary Furnace Gases 72
1.6.1.1 Nitrogen . 72
1.6.1.2 Hydrogen 75
1.6.1.3 Carbon Monoxide 78
1.6.1.4 Carbon Dioxide 78
1.6.1.5 Argon and Helium . 82
1.6.1.6 Dissociated Ammonia 83
1.6.1.7 Steam 84
1.6.1.8 Hydrocarbons . 90
1.6.2 Classification 92
1.6.2.1 Protective Atmospheres and Gas Generation 92
1.6.3 Furnace Zoning .102
1.6.4 In Situ Atmosphere Generation 103
1.6.4.1 Nitrogen–Methanol .103
1.7 Atmosphere Sensors .106
1.7.1 Orsat Analyzer 107
1.7.2 Gas Chromatography .107
1.7.3 Thermal Conductivity .108
1.7.4 Oxygen Sensors .109
1.7.4.1 Paramagnetic Oxygen Analyzers .109
1.7.4.2 Electrochemical Oxygen Analyzers .111
1.7.4.3 Infrared Sensors 116
1.7.4.4 Dew-Point Analyzers .117
1.7.5 Adiabatic Expansion .119
1.7.6 Carbon Resistance Gauge .119
1.7.7 Weight Measurement of Equilibrium Shim Stock 119
1.8 Refractory Materials 121
1.8.1 Refractory Classification 123
1.8.1.1 Magnesium Compositions .123
1.8.1.2 Compositions Containing Aluminum Oxide .124
1.8.1.3 Fireclay Compositions .125
1.8.1.4 Silica Refractories 126
1.8.1.5 Monolithic Refractories 126
1.8.2 Design Properties 127
1.8.3 Furnace Refractory Installation .127
1.9 Fans .127
1.9.1 Calculation of Fan Performance (The Fan Laws) 128
1.9.2 Fan Selection 135
1.9.3 Flow Calibration 136
1.10 Fixture Materials 137
1.10.1 Common High-Temperature Alloys .137
1.11 Parts Washing 138
1.11.1 Washing Processes 138
1.11.2 Equipment 143
1.12 Quench System Design .144
1.12.1 Quench Tank Sizing .145
1.12.2 Heat Exchanger Selection .147
1.12.3 Agitator Selection .148
1.12.3.1 Sparging 149
1.12.3.2 Centrifugal Pumps 152
4 Steel Heat Treatment: Equipment and Process Design1.12.3.3 Impeller Agitation 152
1.12.3.4 Draft Tubes 154
1.12.3.5 Multiple Mixers 154
1.12.3.6 Cavitation .156
1.12.4 Computational Fluid Dynamics 157
1.12.5 Chute-Quench Design .159
1.12.6 Flood Quench Systems 162
1.12.7 Filtration .162
1.12.7.1 Membrane Separation 164
1.12.8 Press Die Quenching .165
1.12.8.1 Press Quenching Machines .167
1.13 Furnace Safety 168
1.13.1 Explosive Mixtures 168
1.13.2 Purging 169
1.13.3 Safety of Operation Temperature 169
1.13.4 Power Failures 172
1.14 Salt Bath Furnace .173
1.14.1 Salt Baths 174
1.14.2 Furnace (Salt Pot) Design .175
1.14.2.1 Gas- or Oil-Fired Furnaces 175
1.14.2.2 Electrically Heated Furnaces 176
1.14.3 Salt Bath Furnace Safety 176
1.14.4 Salt Contamination .178
1.14.5 Salt Reclamation .180
1.15 Fluidized Bed Furnaces 180
1.15.1 Design of Fluidized Bed Furnaces 183
1.15.1.1 Heat Transfer Particles .183
1.15.1.2 Retort .183
1.15.1.3 Fluidizing Gas Distributor .184
1.15.1.4 Fluidizing Gas 184
1.15.1.5 Heating Systems .184
1.15.1.6 Retort Support and Casing 184
1.15.2 Development of Fluidized Bed Furnaces—Energy
and Fluidizing Gas Utilization 184
1.15.3 Applications of Fluidized Beds for Metal Processing .185
References .
Design of Steel-Intensive
Quench Processes
Nikolai I. Kobasko, Wytal S. Morhuniuk,
and Boris K. Ushakov
CONTENTS
2.1 Introduction .193
2.2 Mathematical Models and Methods of Calculation of Thermal and
Stress–Strain State 194
2.2.1 Kinetics of Phase Transformations and Mechanical Properties
of Material .195
2.3 Basic Regularities of the Formation of Residual Stresses 197
2.3.1 Modeling of Residual Stress Formation 199
2.3.2 Why Compressive Stresses Remain in the Case of Through-Hardening? 200
2.3.3 Similarity in the Distribution of Residual Stresses 200
2.3.3.1 Opportunities of Natural and Numerical Modeling
of Steel Part Quenching Process .200
2.4 Regularities of Current Stress Distribution 202
2.5 Some Advice on Heat Treatment of Machine Parts 205
2.6 Shell Hardening of Bearing Rings (Through-Surface Hardening) .206
2.6.1 Heating during Through-Surface Hardening .214
2.6.2 Quenching during Through-Surface Hardening 214
2.6.2.1 Through-Surface Hardening of Inner Rings of Bearings
for the Boxes of Railway Cars .214
2.6.2.2 Through-Surface Hardening of Rollers 215
2.7 Designing of Steel-Intensive Quench Processes in Machine Construction . 217
2.7.1 Through-Surface Hardening of Small-Size Driving
Wheels Made Out of 58 (55PP) Steel .217
2.8 New Methods of Quenching 226
2.9 Discussion 230
2.10 Conclusions 234
Acknowledgements .235
References
Vacuum Heat Processing
Bernd Edenhofer, Jan W. Bouwman, and Daniel H. Herring
CONTENTS
3.1 Introduction .240
3.2 Comparison to Atmospheric Processes 241
3.3 Volatilization, Dissociation, and Degassing .243
3.4 Vacuum Furnace Equipment .245
3.4.1 Vessel .246
3.4.2 Pumping System 246
3.4.3 Heating Chamber 247
3.4.4 Heating System 249
3.4.5 Control System 250
3.4.6 Thermocouples 250
3.4.7 Cooling System 250
3.4.8 Workload Support .251
3.4.9 Types of Vacuum Furnaces .251
3.4.9.1 Horizontal Batch Furnaces .251
3.4.9.2 Horizontal Multichamber Furnaces 255
3.4.9.3 Vertical Furnaces 256
3.5 Heat Treatment Processes 256
3.5.1 Annealing 256
3.5.1.1 Stainless Steel 257
3.5.1.2 Carbon and Low-Alloy Steels .257
3.5.1.3 Tool Steels .258
3.5.2 Hardening by Oil Quenching .258
3.5.3 Hardening by Gas Quenching .260
3.5.3.1 Cooling Properties of Gases 260
3.5.3.2 Tool Steels .264
3.5.3.3 Martensitic Stainless Steels .265
3.5.3.4 Heat-Treatable Construction Steels 266
3.5.4 Case Hardening by Carburizing and Carbonitriding 266
3.5.5 Case Hardening by Nitriding 269
3.5.6 Vacuum Brazing 272
3.5.6.1 Brazing with Copper .273
3.5.6.2 Brazing with Nickel-Base Alloys . 273
3.5.6.3 Brazing with Aluminum and Aluminum Alloys .273
3.5.7 Sintering 273
3.5.7.1 Stainless Steel 274
3.5.7.2 High-Speed Steel .274
3.5.8 Tempering and Stress Relieving 274
References .
4 Induction Heat Treatment:
Basic Principles,
Computation, Coil
Construction, and Design
Considerations
Valery I. Rudnev, Raymond L. Cook, Don L. Loveless,
and Micah R. Black
CONTENTS
4.1 Introduction .278
4.2 Prelude to Discussion of Induction Heat Treatment .280
4.2.1 Surface Hardening 282
4.2.2 Through Hardening 285
4.2.3 Tempering .285
4.2.4 Normalizing 286
4.2.5 Annealing 286
4.2.6 Sintering 287
4.3 Theoretical Background and Mathematical Modeling of Modern
Induction Heat Treatment Processes .287
4.3.1 Finite-Difference Method .299
4.3.2 Finite-Element Method 300
4.3.3 A Comparison 303
4.3.4 Summary .304
4.4 Basic Electromagnetic Phenomena in Induction Heating 306
4.4.1 Skin Effect 307
4.4.2 Electromagnetic Proximity Effect .311
4.4.3 Electromagnetic Slot Effect 316
4.4.4 Electromagnetic Ring Effect .317
4.4.5 Heating and Cooling during Induction Heat Treatment 318
4.5 Coil Construction and Design Considerations .322
4.5.1 Foreword to Inductor Design .326
4.5.2 Typical Procedure for Designing Inductor-to-Workpiece Coupling Gaps .328
4.5.3 Mounting Styles 329
4.5.4 Spray Quench .330
4.5.5 Inductor Styles—Scan Inductors 332
4.5.6 Inductor Styles—Single-Shot 333
4.5.6.1 Striping Phenomenon .334
2774.5.7 Gear Hardening 338
4.5.7.1 Material Selection and Required Gear Conditions before
Heat Treatment 338
4.5.7.2 Overview of Hardness Patterns 340
4.5.7.3 Gear Coil Design and Heat Mode .342
4.5.7.4 Lightening Holes 354
4.5.8 Powder Metallurgy Gears .354
4.5.9 Through and Surface Hardening Technology for Gear Hardening 354
4.5.10 Inductor Styles—Specialty Inductors 355
4.5.11 Temper Inductor Styles .356
4.5.11.1 Self-Tempering .358
4.5.11.2 Induction-Tempering Method 360
4.5.12 End and Edge Effects, Longitudinal and Transverse Holes, Keyways .363
4.5.12.1 End and Edge Effects .363
4.5.12.2 Longitudinal Holes 364
4.5.12.3 Transverse Holes, Keyways, Various Oriented Hollow Areas .365
4.5.13 Induction Bar End Heater 369
4.5.14 Induction Strip Heating 375
4.5.14.1 Longitudinal Flux Inductor .375
4.5.14.2 Transverse Flux Inductor .377
4.5.14.3 Traveling Wave Inductor .378
4.5.15 Magnetic Flux Concentrators (Flux Intensifiers, Feux Controllers) 379
4.5.15.1 Application 1. Single-Shot Hardening of Long Shafts .386
4.5.15.2 Application 2. Channel Coil for Continuous Processing .386
4.5.15.3 Application 3. Single-Shot Hardening of the Drive Stem 387
4.5.15.4 Application 4. Hardening a Valve Seat 387
4.5.15.5 Application 5. Surface Hardening of Rocker Arm Tip 388
4.6 Summary 389
References
5 Induction Heat Treatment:
Modern Power Supplies, Load
Matching, Process Control,
and Monitoring
Don L. Loveless, Raymond L. Cook, and Valery I. Rudnev
CONTENTS
5.1 Power Supplies for Modern Induction Heat Treatment 396
5.1.1 Types of Induction Heating Power Supplies 400
5.1.1.1 Full-Bridge Inverter 400
5.1.1.2 Half-Bridge Inverter .401
5.1.1.3 Direct-Current Section . 401
5.1.1.4 Inverter Section 403
5.2 Load Matching 414
5.2.1 Prelude to Discussion of Load Matching 414
5.2.2 Four Steps in Understanding Load Matching for Solid-State
Power Supplies .414
5.2.2.1 Step One .414
5.2.2.2 Step Two 416
5.2.2.3 Step Three 421
5.2.2.4 The Final Step 422
5.2.3 Medium- and High-Frequency Transformers for Modern Heat Treatment 423
5.2.3.1 AC–DC Reactors .423
5.2.3.2 Variable Impedance Transformer .423
5.2.3.3 Heat Station Transformers .424
5.2.3.4 Toroidal Transformers . 424
5.2.3.5 Integrated Magnetic Transformers .425
5.2.3.6 Rectangular (C-Core) Transformers . 425
5.2.3.7 Narrow-Profile Transformers . 425
5.2.3.8 Ferrite-Core Transformers .425
5.2.3.9 Radio-Frequency Transformers .426
5.2.3.10 Maintenance, Sizing, and Specification of Transformers .426
5.3 Process Control and Monitoring .426
5.3.1 Prelude to Discussion of Process Control and Monitoring . 426
5.3.2 Energy Monitor .428
5.3.3 Advanced Monitoring 429
5.4 Summary 432
References .
6 Laser Surface Hardening
Janez Grum
CONTENTS
6.1 Introduction .436
6.2 Laser Surface Hardening 440
6.2.1 Laser Heating and Temperature Cycle 440
6.3 Metallurgical Aspect of Laser Hardening 443
6.4 Microstructural Transformation 448
6.5 Mathematical Modeling .450
6.5.1 Mathematical Prediction of Hardened Depth .450
6.5.2 Mathematical Modeling of Microstructural Changes .453
6.6 Computing Method For Calculating Temperature Cycle 457
6.7 Laser Light Absorptivity 460
6.8 Infrared Energy Coatings .464
6.8.1 Paint and Spray Coatings 465
6.8.2 Chemical Conversion Coatings .465
6.8.3 Linearly Polarized Laser Beam 465
6.9 Influence of Different Absorbers on Absorptivity .467
6.10 Laser-Beam Handling Techniques .477
6.11 Presentation of CO2 Laser Machining Systems .479
6.11.1 Possibilities of Kaleidoscope Use for Low-Power Lasers .484
6.12 Residual Stress After Laser Surface Hardening .489
6.13 Thermal and Transformation Residual Stresses 489
6.14 Mathematical Model for Calculating Residual Stresses .490
6.15 Influence Laser Surface Transformation Hardening Parameters on Residual
Stresses .493
6.16 Residual Stresses, Microstructures, and Microhardnesses .498
6.17 Simple Method for Assessment of Residual Stresses .500
6.18 Influence of Prior Material Heat Treatment on Laser Surface Hardening 502
6.19 Influence of Laser Surface Hardening Conditions on
Residual Stress Profiles and Fatigue Properties .504
6.20 Prediction of Hardened Track and Optimization Process .516
6.21 Microstructure and Residual Stress Analysis After
Laser Surface Remelting Process .517
6.21.1 Dimensions of the Remelted Track 522
6.21.2 Mathematical Modeling of Localized Melting Around Graphite Nodule 523
6.21.3 Transition between the Remelted and Hardened Layers 525
6.21.4 Circumstances for Rapid Solidification Process of Cast Iron .526
6.21.5 Evaluation of Residual Stresses after Laser Remelting of Cast Iron 528
6.22 Assessment of Distortion and Surface Changes .533
6.23 Optimization of the Laser Surface Remelting Process .536
4356.24 Fatigue Properties of Laser Surface Hardened Material .537
6.25 Wear Properties of Laser Surface Hardened Material .538
6.26 Remelting of Various Aluminum Alloys 544
6.27 Corrosion Properties of Laser Surface Remelted Iron .557
References .
7 Metallurgical Property Testing
Xiwen Xie
CONTENTS
7.1 Introduction .570
7.2 Metallographic Technique for Steels 570
7.2.1 Preliminary Stages of Specimen Preparation .571
7.2.1.1 Sampling .571
7.2.1.2 Sectioning .571
7.2.1.3 Mounting 573
7.2.2 Main Stages of Specimen Preparation .577
7.2.2.1 Planar Grinding Stage 577
7.2.2.2 Integrity Stage .582
7.2.2.3 Polishing Stage 586
7.2.3 Etching .588
7.2.3.1 Chemical Etching 589
7.2.3.2 Tint Etching 590
7.2.4 Electrolytic Polishing .590
7.2.5 Vibratory Polishing 595
7.3 The Metallurgical Microscope .597
7.3.1 Image Formation of Metallurgical Microscope .597
7.3.2 Objectives .599
7.3.2.1 Numerical Aperture 599
7.3.2.2 Resolution .599
7.3.2.3 Common Types of Objectives . 600
7.3.3 Eyepieces 601
7.3.4 Parfocality 601
7.3.5 Illumination System .601
7.3.5.1 Principles of Ko¨hler Illumination .601
7.3.5.2 Brightfield Illumination 604
7.3.5.3 Darkfield Illumination 604
7.3.6 The Infinity-Corrected Optical System 606
7.3.7 Polarized Light Illumination 607
7.3.8 Phase Contrast Illumination 609
7.3.9 Differential Interference Contrast Illumination .610
7.3.10 Photomicrography and Photomacrography 613
7.3.10.1 Photomicrography 613
7.3.10.2 Photomacrography .617
7.4 Quantitative Metallography .620
7.4.1 Some Stereology Basics 620
7.4.2 Volume Fraction 621
7.4.3 Statistical Analysis .623
5697.4.3.1 Standard Deviation .623
7.4.3.2 Coefficient of Variation 623
7.4.3.3 95% Confidence Limit 624
7.4.3.4 Percent Relative Accuracy 624
7.4.4 Surface Area per Unit Test Volume and Length of Lineal Traces
per Unit Test Area .625
7.4.5 Grain Size 626
7.4.5.1 Grain Size Characterization 626
7.4.5.2 Comparison Method for Rating Grain Size .627
7.4.5.3 Planimetric (or Jefferies’) Method 631
7.4.5.4 Intercept Method 632
7.4.5.5 Statistical Analysis of the Grain Size Measurement Data 633
7.4.6 Automatic Image Analysis .635
7.4.6.1 Image Acquisition .636
7.4.6.2 Image Processing 637
7.4.6.3 Detection of Image Details .638
7.4.6.4 Quantitative Measurements 638
References
8 Mechanical Property Testing
Methods
D. Scott MacKenzie
CONTENTS
8.1 Introduction .642
8.1.1 Types of Loading 642
8.1.2 Stress and Strain .643
8.1.2.1 Plane Stress .643
8.1.2.2 Plane Strain 644
8.2 Plasticity and Ductile Fracture 644
8.2.1 Ductile Fracture Appearance 644
8.2.2 Theories of Plasticity and Ductile Fracture 645
8.2.2.1 Maximum Normal Stress Theory .645
8.2.2.2 Maximum Shear Stress Theory 646
8.2.2.3 Distortion Energy Theory (von Mices–Hencky Theory) 647
8.2.2.4 A Comparison 648
8.3 Elasticity and Brittle Fracture 648
8.3.1 Brittle Fracture Appearance .649
8.3.2 Theories of Elasticity and Brittle Fracture .649
8.3.2.1 Coulomb–Mohr Theory .651
8.3.2.2 Griffith Microcrack Theory 652
8.4 Fracture Mechanics 654
8.4.1 Effect of Test Temperature .656
8.4.2 Effect of Chemistry, Melt Practice, and Grain Size 658
8.4.3 Microstructure 660
8.4.4 Effect of Strain Rate .660
8.4.5 Effect of Section Size 660
8.5 Fatigue .662
8.5.1 Fatigue Mechanisms .664
8.5.2 Design for Fatigue 666
8.5.2.1 Surface Treatments .668
8.5.2.2 Residual Stresses .670
8.5.2.3 Size Effect .671
8.5.2.4 Stress Concentrations .671
8.6 Creep and Stress Rupture 674
8.7 Tensile Testing .677
8.8 Hardness Testing 681
8.8.1 Brinnell Test 682
8.8.2 Vickers Hardness or Diamond Pyramid Hardness .683
6418.8.3 Rockwell Hardness Test .683
8.8.4 Rockwell Superficial Hardness Test .684
8.8.5 Tukon Microhardness Test .685
8.9 Toughness Testing .686
8.9.1 Charpy V Notch Test .686
8.9.2 Izod Test .687
8.9.3 Dynamic Tear Test .688
8.9.4 Fracture Toughness (KIc) Testing .689
References
كلمة سر فك الضغط : books-world.net
The Unzip Password : books-world.net
تعليقات