Springer Handbook of Crystal Growth
Govindhan Dhanaraj, Kullaiah Byrappa, Vishwanath Prasad, Michael Dudley
Contents
List of Abbreviations . XXXI
Part A Fundamentals of Crystal Growth and Defect Formation
1 Crystal Growth Techniques and Characterization: An Overview
Govindhan Dhanaraj, Kullaiah Byrappa, Vishwanath (Vish) Prasad,
Michael Dudley 3
1.1 Historical Developments 3
1.2 Theories of Crystal Growth . 4
1.3 Crystal Growth Techniques . 6
1.4 Crystal Defects and Characterization . 11
References 15
2 Nucleation at Surfaces
Ivan V. Markov 17
2.1 Equilibrium Crystal–Ambient Phase 18
2.2 Work for Nucleus Formation . 24
2.3 Rate of Nucleation . 28
2.4 Saturation Nucleus Density 35
2.5 Second-Layer Nucleation in Homoepitaxy 38
2.6 Mechanism of Clustering in Heteroepitaxy 43
2.7 Effect of Surfactants on Nucleation . 45
2.8 Conclusions and Outlook 48
References 48
3 Morphology of Crystals Grown from Solutions
Francesco Abbona, Dino Aquilano 53
3.1 Equilibrium Shape . 55
3.2 The Theoretical Growth Shape 64
3.3 Factors Influencing the Crystal Habit 71
3.4 Surface Structure . 72
3.5 Crystal Defects . 73
3.6 Supersaturation – Growth Kinetics . 73
3.7 Solvent . 75
3.8 Impurities . 78
3.9 Other Factors . 84
3.10 Evolution of Crystal Habit . 85
3.11 A Short Conclusion . 86
3.A Appendix 86
References 87XVIII Contents
4 Generation and Propagation of Defects During Crystal Growth
Helmut Klapper . 93
4.1 Overview . 94
4.2 Inclusions . 95
4.3 Striations and Growth Sectors 101
4.4 Dislocations 107
4.5 Twinning 120
4.6 Perfection of Crystals Grown Rapidly from Solution . 125
References 127
5 Single Crystals Grown Under Unconstrained Conditions
Ichiro Sunagawa . 133
5.1 Background 134
5.2 Smooth and Rough Interfaces: Growth Mechanism and Morphology 136
5.3 Surface Microtopography . 139
5.4 Growth Forms of Polyhedral Crystals . 143
5.5 Internal Morphology 146
5.6 Perfection of Single Crystals . 152
References 156
6 Defect Formation During Crystal Growth from the Melt
Peter Rudolph 159
6.1 Overview . 159
6.2 Point Defects . 163
6.3 Dislocations 176
6.4 Second-Phase Particles . 188
6.5 Faceting 191
6.6 Twinning 193
6.7 Summary 194
References
Part B Crystal Growth from Melt Techniques
7 Indium Phosphide: Crystal Growth and Defect Control
by Applying Steady Magnetic Fields
David F. Bliss . 205
7.1 Historical Overview 205
7.2 Magnetic Liquid-Encapsulated Growth . 206
7.3 Magnetic Field Interactions with the Melt . 209
7.4 Dislocation Density 216
7.5 Magnetic Field Effects on Impurity Segregation . 220
7.6 Optical Characterization of InP:Fe . 224
7.7 Summary 226
References 227Contents XIX
8 Czochralski Silicon Single Crystals for Semiconductor
and Solar Cell Applications
Koichi Kakimoto 231
8.1 Silicon Single Crystals for LSIs and Solar Applications . 232
8.2 Control of Crystal Defects in Czochralski Silicon 237
8.3 Growth and Characterization of Silicon Multicrystal
for Solar Cell Applications 239
8.4 Summary 240
References 241
9 Czochralski Growth of Oxide Photorefractive Crystals
Ernesto Diéguez, Jose Luis Plaza, Mohan D. Aggarwal, Ashok K. Batra . 245
9.1 Background 246
9.2 Crystal Growth . 246
9.3 Design and Development of Czochralski Growth System 247
9.4 Growth of Lithium Niobate Crystals and Its Characteristics . 252
9.5 Other Oxide Photorefractive Crystals . 262
9.6 Growth of Sillenite Crystals and Its Characteristics . 264
9.7 Conclusions . 273
References 273
10 Bulk Crystal Growth of Ternary III–V Semiconductors
Partha S. Dutta 281
10.1 III–V Ternary Semiconductors . 282
10.2 Need for Ternary Substrates . 283
10.3 Criteria for Device-Grade Ternary Substrates . 284
10.4 Introduction to Bridgman Crystal Growth Techniques 286
10.5 Overview of III–V Binary Crystal Growth Technologies 292
10.6 Phase Equilibria for Ternary Compounds . 300
10.7 Alloy Segregation in Ternary Semiconductors 302
10.8 Crack Formation in Ternary Crystals 304
10.9 Single-Crystalline Ternary Seed Generation Processes 308
10.10 Solute Feeding Processes for Homogeneous Alloy Growth 311
10.11 Role of Melt–Solid Interface Shapes . 318
10.12 Conclusion 321
References 321
11 Growth and Characterization
of Antimony-Based Narrow-Bandgap III–V Semiconductor Crystals
for Infrared Detector Applications
Vijay K. Dixit, Handady L. Bhat . 327
11.1 Importance of Antimony-Based Semiconductors . 329
11.2 Phase Diagrams . 330
11.3 Crystal Structure and Bonding 331
11.4 Material Synthesis and Purification 333XX Contents
11.5 Bulk Growth of InSb 334
11.6 Structural Properties of InSb, InAsxSb1?x, and InBixSb1?x 340
11.7 Physical Properties of InSb, InAsxSb1?x, and InBixSb1?x . 346
11.8 Applications 357
11.9 Concluding Remarks and Future Outlook 359
References
12 Crystal Growth of Oxides by Optical Floating Zone Technique
Hanna A. Dabkowska, Antoni B. Dabkowski 367
12.1 Historical Notes . 367
12.2 Optical Floating Zone Technique – Application for Oxides 368
12.3 Optical Floating Zone
and Traveling Solvent Crystal Growth Techniques 369
12.4 Advantages and Limitations of the Floating Zone Techniques 370
12.5 Optical Floating Zone Furnaces . 371
12.6 Experimental Details of Ceramics and Rod Preparation for OFZT . 372
12.7 Stable Growth of Congruently and Incongruently Melting Oxides . 373
12.8 Constitutional Supercooling and Crystallization Front Stability . 375
12.9 Crystal Growth Termination and Cooling . 377
12.10 Characterization of Crystals Grown by the OFZ Technique . 377
12.11 Determination of Defects in Crystals – The Experimental Approach 380
12.12 Details of Conditions for Growth of Selected Oxide Single Crystals
by OFZ and TSFZ Methods . 383
12.13 Conclusions . 386
References 386
13 Laser-Heated Pedestal Growth of Oxide Fibers
Marcello R.B. Andreeta, Antonio Carlos Hernandes 393
13.1 Fiber-Pulling Research 394
13.2 The Laser-Heated Pedestal Growth Technique 399
13.3 Fundamentals . 402
13.4 Fiber Growth Aspects . 409
13.5 Conclusions . 418
References 419
14 Synthesis of Refractory Materials by Skull Melting Technique
Vyacheslav V. Osiko, Mikhail A. Borik, Elena E. Lomonova 433
14.1 Overview . 433
14.2 Techniques for Growth of Single Crystals in a Cold Crucible 435
14.3 Growth of Single Crystals Based on Zirconium Dioxide . 443
14.4 Glass Synthesis by Skull Melting in a Cold Crucible 465
14.5 Conclusion 469
References 469Contents XXI
15 Crystal Growth of Laser Host Fluorides and Oxides
Hongjun Li, Jun Xu . 479
15.1 Crystal Growth of Laser Fluorides and Oxides from Melt . 479
15.2 Laser Crystal Defects 487
15.3 Crystal Growth Techniques Characterization 501
References 503
16 Shaped Crystal Growth
Vitali A. Tatartchenko . 509
16.1 Definitions and Scope of Discussion: SCG by CST 510
16.2 DSC – Basis of SCG by CST 512
16.3 SA and SCG by CZT 517
16.4 SA and SCG by VT . 519
16.5 SA and SCG by FZT 522
16.6 TPS Capillary Shaping . 522
16.7 TPS Sapphire Growth . 539
16.8 TPS Silicon Growth . 546
16.9 TPS Metals Growth . 551
16.10 TPS Peculiarities 552
References 552
Part C Solution Growth of Crystals
17 Bulk Single Crystals Grown from Solution on Earth
and in Microgravity
Mohan D. Aggarwal, Ashok K. Batra, Ravindra B. Lal, Benjamin G. Penn,
Donald O. Frazier . 559
17.1 Crystallization: Nucleation and Growth Kinetics 561
17.2 Low-Temperature Solution Growth 566
17.3 Solution Growth by Temperature Lowering . 567
17.4 Triglycine Sulfate Crystal Growth: A Case Study 574
17.5 Solution Growth of Triglycine Sulfate Crystals in Microgravity . 582
17.6 Protein Crystal Growth . 592
17.7 Concluding Remarks 594
References 594
18 Hydrothermal Growth of Polyscale Crystals
Kullaiah Byrappa . 599
18.1 History of Hydrothermal Growth of Crystals . 603
18.2 Thermodynamic Basis of the Hydrothermal Growth of Crystals . 606
18.3 Apparatus Used in the Hydrothermal Growth of Crystals 615
18.4 Hydrothermal Growth of Some Selected Crystals 620
18.5 Hydrothermal Growth of Fine Crystals . 634
18.6 Hydrothermal Growth of Nanocrystals 637
18.7 Concluding Remarks 640
18.A Appendix 641
References 646
19 Hydrothermal and Ammonothermal Growth of ZnO and GaN
Michael J. Callahan, Qi-Sheng Chen . 655
19.1 Overview of Hydrothermal and Ammonothermal Growth
of Large Crystals 657
19.2 Requirements for Growth of Large, Low-Defect Crystals . 661
19.3 Physical and Mathematical Models . 666
19.4 Process Simulations . 669
19.5 Hydrothermal Growth of ZnO Crystals . 674
19.6 Ammonothermal GaN 681
19.7 Conclusion 685
References 685
20 Stoichiometry and Domain Structure
of KTP-Type Nonlinear Optical Crystals
Michael Roth . 691
20.1 Background 691
20.2 Stoichiometry and Ferroelectric Phase Transitions . 697
20.3 Growth-Induced Ferroelectric Domains 703
20.4 Artificial Domain Structures 708
20.5 Nonlinear Optical Crystals 713
References 716
21 High-Temperature Solution Growth:
Application to Laser and Nonlinear Optical Crystals
Joan J. Carvajal, Maria Cinta Pujol, Francesc D?az 725
21.1 Basics . 726
21.2 High-Temperature Solution Growth . 731
21.3 Growth of Bulk Laser and NLO Single Crystals by the TSSG Method 736
21.4 Liquid-Phase Epitaxy:
Growth of Epitaxial Films of Laser and NLO Materials . 746
References 752
22 Growth and Characterization of KDP and Its Analogs
Sheng-Lai Wang, Xun Sun, Xu-Tang Tao 759
22.1 Background 759
22.2 Mechanism and Kinetics of Crystallization 761
22.3 Growth Techniques for Single Crystals . 769
22.4 Effect of Growth Conditions on Defects of Crystals . 776
22.5 Inves
Part D Crystal Growth from Vapor
23 Growth and Characterization of Silicon Carbide Crystals
Govindhan Dhanaraj, Balaji Raghothamachar, Michael Dudley . 797
23.1 Silicon Carbide – Background and History 797
23.2 Vapor Growth 799
23.3 High-Temperature Solution Growth . 801
23.4 Industrial Bulk Growth by Seed Sublimation . 802
23.5 Structural Defects and Their Configurations . 805
23.6 Concluding Remarks 816
References 817
24 AlN Bulk Crystal Growth by Physical Vapor Transport
Rafael Dalmau, Zlatko Sitar 821
24.1 PVT Crystal Growth . 822
24.2 High-Temperature Materials Compatibility . 825
24.3 Self-Seeded Growth of AlN Bulk Crystals . 827
24.4 Seeded Growth of AlN Bulk Crystals 829
24.5 Characterization of High-Quality Bulk Crystals . 832
24.6 Conclusions and Outlook 839
References 839
25 Growth of Single-Crystal Organic Semiconductors
Christian Kloc, Theo Siegrist, Jens Pflaum 845
25.1 Basics . 845
25.2 Theory of Nucleation and Crystal Growth 847
25.3 Organic Materials of Interest for Semiconducting Single Crystals 848
25.4 Pregrowth Purification . 850
25.5 Crystal Growth . 854
25.6 Quality of Organic Semiconducting Single Crystals . 862
25.7 Organic Single-Crystalline Field-Effect Transistors . 863
25.8 Conclusions . 864
References 865
26 Growth of III-Nitrides with Halide Vapor Phase Epitaxy (HVPE)
Carl Hemmingsson, Bo Monemar, Yoshinao Kumagai, Akinori Koukitu . 869
26.1 Growth Chemistry and Thermodynamics . 869
26.2 HVPE Growth Equipment 872
26.3 Substrates and Templates for Bulk GaN Growth . 875
26.4 Substrate Removal Techniques . 879
26.5 Doping Techniques for GaN in HVPE 882
26.6 Defect Densities, Dislocations, and Residual Impurities . 883
26.7 Some Important Properties of HVPE-Grown Bulk GaN Material . 887
26.8 Growth of AlN by HVPE: Some Preliminary Results . 888
26.9 Growth of InN by HVPE: Some Preliminary Results . 890
References 891XXIV Contents
27 Growth of Semiconductor Single Crystals from Vapor Phase
Ramasamy Dhanasekaran . 897
27.1 Classifications of Vapor Growth 899
27.2 Chemical Vapor Transport – Transport Kinetics 901
27.3 Thermodynamic Considerations . 905
27.4 Growth of II–VI Compound Semiconductors by CVT 912
27.5 Growth of Nanomaterial from Vapor Phase . 916
27.6 Growth of I–III–VI2 Compounds 917
27.7 Growth of GaN by VPE 925
27.8 Conclusion 929
References 930
Part E Epitaxial Growth and Thin Films
28 Epitaxial Growth of Silicon Carbide by Chemical Vapor Deposition
Ishwara B. Bhat 939
28.1 Polytypes of Silicon Carbide . 941
28.2 Defects in SiC . 942
28.3 Epitaxial Growth of Silicon Carbide . 944
28.4 Epitaxial Growth on Patterned Substrates . 952
28.5 Conclusions . 961
References 961
29 Liquid-Phase Electroepitaxy of Semiconductors
Sadik Dost . 967
29.1 Background 967
29.2 Early Theoretical and Modeling Studies 971
29.3 Two-Dimensional Continuum Models . 977
29.4 LPEE Growth Under a Stationary Magnetic Field 978
29.5 Three-Dimensional Simulations . 981
29.6 High Growth Rates in LPEE: Electromagnetic Mobility 992
References 996
30 Epitaxial Lateral Overgrowth of Semiconductors
Zbigniew R. Zytkiewicz . 999
30.1 Overview . 1000
30.2 Mechanism of Epitaxial Lateral Overgrowth from the Liquid Phase . 1002
30.3 Dislocations in ELO Layers 1011
30.4 Strain in ELO Layers . 1016
30.5 Recent Progress in Lateral Overgrowth of Semiconductor Structures . 1026
30.6 Conc
31 Liquid-Phase Epitaxy of Advanced Materials
Christine F. Klemenz Rivenbark . 1041
31.1 Historical Development of LPE 1042
31.2 Fundamentals of LPE and Solution Growth . 1042
31.3 Requirements for Liquid-Phase Epitaxy 1044
31.4 Developing New Materials:
On the Choice of the Epitaxial Deposition Method . 1044
31.5 LPE of High-Temperature Superconductors . 1046
31.6 LPE of Calcium Gallium Germanates 1055
31.7 Liquid-Phase Epitaxy of Nitrides 1059
31.8 Conclusions . 1063
References 1064
32 Molecular-Beam Epitaxial Growth of HgCdTe
James W. Garland, Sivalingam Sivananthan . 1069
32.1 Overview . 1070
32.2 Theory of MBE Growth . 1073
32.3 Substrate Materials 1076
32.4 Design of the Growth Hardware . 1088
32.5 In situ Characterization Tools
for Monitoring and Controlling the Growth . 1090
32.6 Nucleation and Growth Procedure 1101
32.7 Dopants and Dopant Activation 1104
32.8 Properties of HgCdTe Epilayers Grown by MBE . 1107
32.9 HgTe/CdTe Superlattices . 1112
32.10 Architectures of Advanced IR Detectors . 1115
32.11 IR Focal-Plane Arrays (FPAs) . 1118
32.12 Conclusions . 1119
References 1121
33 Metalorganic Vapor-Phase Epitaxy
of Diluted Nitrides and Arsenide Quantum Dots
Udo W. Pohl 1133
33.1 Principle of MOVPE . 1133
33.2 Diluted Nitride InGaAsN Quantum Wells 1137
33.3 InAs/GaAs Quantum Dots 1142
33.4 Concluding Remarks 1148
References 1148
34 Formation of SiGe Heterostructures and Their Properties
Yasuhiro Shiraki, Akira Sakai 1153
34.1 Background 1153
34.2 Band Structures of Si/Ge Heterostructures . 1154
34.3 Growth Technologies . 1156
34.4 Surface Segregation . 1157
34.5 Critical Thickness . 1161
34.6 Mechanism of Strain Relaxation . 1163XXVI Contents
34.7 Formation of Relaxed SiGe Layers . 1165
34.8 Formation of Quantum Wells, Superlattices, and Quantum Wires . 1173
34.9 Dot Formation . 1177
34.10 Concluding Remarks and Future Prospects 1184
References 1184
35 Plasma Energetics in Pulsed Laser and Pulsed Electron Deposition
Mikhail D. Strikovski, Jeonggoo Kim, Solomon H. Kolagani 1193
35.1 Energetic Condensation in Thin Film Deposition 1193
35.2 PLD and PED Techniques 1194
35.3 Transformations of Atomic Energy in PLD and PED . 1195
35.4 Optimization of Plasma Flux for Film Growth 1204
35.5 Conclusions . 1208
References 1209
Part F Modeling in Crystal Growth and Defects
36 Convection and Control in Melt Growth of Bulk Crystals
Chung-Wen Lan 1215
36.1 Physical Laws for Transport Processes . 1217
36.2 Flow Structures in the Melt 1219
36.3 Flow Control by External Forces 1228
36.4 Outlook . 1238
References 1238
37 Vapor Growth of III Nitrides
Dang Cai, Lili Zheng, Hui Zhang . 1243
37.1 Overview of Vapor Growth of III Nitrides . 1244
37.2 Mathematical Models for AlN/GaN Vapor Deposition 1248
37.3 Characteristics of AlN/GaN Vapor Deposition 1251
37.4 Modeling of GaN IVPE Growth – A Case Study 1258
37.5 Surface Evolution of GaN/AlN Film Growth from Vapor . 1274
37.6 Concluding Remarks 1275
References 1276
38 Continuum-Scale Quantitative Defect Dynamics
in Growing Czochralski Silicon Crystals
Milind S. Kulkarni 1281
38.1 The Discovery of Microdefects . 1283
38.2 Defect Dynamics in the Absence of Impurities . 1284
38.3 Czochralski Defect Dynamics in the Presence of Oxygen . 1304
38.4 Czochralski Defect Dynamics in the Presence of Nitrogen . 1313
38.5 The Lateral Incorporation of Vacancies in Czochralski Silicon Crystals 1321
38.6 Conclusions . 1328
References 1332Contents XXVII
39 Models for Stress and Dislocation Generation
in Melt Based Compound Crystal Growth
Vishwanath (Vish) Prasad, Srinivas Pendurti . 1335
39.1 Overview . 1335
39.2 Crystal Growth Processes 1336
39.3 Dislocations in Semiconductors Materials . 1337
39.4 Models for Dislocation Generation 1339
39.5 Diamond Structure of the Crystal 1343
39.6 Deformation Behavior of Semiconductors . 1346
39.7 Application of the Haasen Model to Crystal Growth . 1350
39.8 An Alternative Model . 1351
39.9 Model Summary and Numerical Implementation 1360
39.10 Numerical Results 1362
39.11 Summary 1374
References 1375
40 Mass and Heat Transport in BS and EFG Systems
Thomas F. George, Stefan Balint, Liliana Braescu 1379
40.1 Model-Based Prediction of the Impurity Distribution –
Vertical BS System . 1380
40.2 Model-Based Prediction of the Impurity Distribution – EFG System 1389
References 1400
Part G Defects Characterization and Techniques
41 Crystalline Layer Structures with X-Ray Diffractometry
Paul F. Fewster 1405
41.1 X-Ray Diffractometry . 1406
41.2 Basic Direct X-Ray Diffraction Analysis from Layered Structures 1407
41.3 Instrumental and Theoretical Considerations 1412
41.4 Examples of Analysis from Low to High Complexity . 1413
41.5 Rapid Analysis . 1419
41.6 Wafer Micromapping . 1420
41.7 The Future 1421
References 1422
42 X-Ray Topography Techniques for Defect Characterization
of Crystals
Balaji Raghothamachar, Michael Dudley, Govindhan Dhanaraj . 1425
42.1 Basic Principles of X-Ray Topography . 1426
42.2 Historical Development of the X-Ray Topography Technique 1428
42.3 X-Ray Topography Techniques and Geometry . 1430
42.4 Theoretical Background for X-Ray Topography 1435
42.5 Mechanisms for Contrast on X-Ray Topographs
42.6 Analysis of Defects on X-Ray Topographs 1445
42.7 Current Application Status and Development 1449
References 1450
43 Defect-Selective Etching of Semiconductors
Jan L. Weyher, John J. Kelly 1453
43.1 Wet Etching of Semiconductors: Mechanisms 1454
43.2 Wet Etching of Semiconductors: Morphology and Defect Selectivity 1459
43.3 Defect-Selective Etching Methods 1461
References 1473
44 Transmission Electron Microscopy Characterization of Crystals
Jie Bai, Shixin Wang, Lu-Min Wang, Michael Dudley . 1477
44.1 Theoretical Basis of TEM Characterization of Defects 1477
44.2 Selected Examples of Application of TEM to Semiconductor Systems . 1493
44.3 Concluding Remarks: Current Application Status and Development 1514
References 1515
45 Electron Paramagnetic Resonance Characterization
of Point Defects
Mary E. Zvanut 1521
45.1 Electronic Paramagnetic Resonance . 1522
45.2 EPR Analysis 1524
45.3 Scope of EPR Technique . 1534
45.4 Supplementary Instrumentation and Supportive Techniques . 1538
45.5 Summary and Final Thoughts . 1545
References 1546
46 Defect Characterization in Semiconductors
with Positron Annihilation Spectroscopy
Filip Tuomisto 1551
46.1 Positron Annihilation Spectroscopy 1552
46.2 Identification of Point Defects and Their Charge States 1560
46.3 Defects, Doping, and Electrical Compensation . 1565
46.4 Point Defects and Growth Conditions . 1569
46.5 Summary 1576
References 1576
Part H Special Topics in Crystal Growth
47 Protein Crystal Growth Methods
Andrea E. Gutiérrez-Quezada, Roberto Arregu?n-Espinosa, Abel Moreno 1583
47.1 Properties of Biomacromolecular Solutions . 1584
47.2 Transport Phenomena and Crystallization . 1587
47.3 Classic Methods of Crystal Growth . 1587
47.4 Protein Crystallization by Diffusion-Controlled Methods 1588Contents XXIX
47.5 New Trends in Crystal Growth (Crystal Quality Enhancement) . 1591
47.6 2-D Characterization via Atomic Force Microscopy (Case Study) . 1595
47.7 3-D Characterization via X-Ray Diffraction and Related Methods . 1598
References 1599
48 Crystallization from Gels
S. Narayana Kalkura, Subramanian Natarajan . 1607
48.1 Gel Growth in Crystal Deposition Diseases . 1608
48.2 Experimental Methods . 1609
48.3 Pattern Formation in Gel Systems . 1610
48.4 Crystals Grown Using Gel Technique . 1611
48.5 Application in Crystal Deposition Diseases 1614
48.6 Crystal-Deposition-Related Diseases 1616
48.7 Calcium Oxalate . 1617
48.8 Calcium Phosphates 1619
48.9 Hydroxyapatite (HAP) . 1620
48.10 Dicalcium Phosphate Dihydrate (DCPD) . 1620
48.11 Calcium Sulfate . 1623
48.12 Uric Acid and Monosodium Urate Monohydrate . 1623
48.13 L-Cystine 1624
48.14 L-Tyrosine, Hippuric Acid, and Ciprofloxacin . 1625
48.15 Atherosclerosis and Gallstones . 1625
48.16 Crystallization of Hormones: Progesterone and Testosterone . 1628
48.17 Pancreatitis . 1628
48.18 Conclusions . 1629
References 1630
49 Crystal Growth and Ion Exchange in Titanium Silicates
Aaron J. Celestian, John B. Parise, Abraham Clearfield . 1637
49.1 X-Ray Methods 1637
49.2 Equipment for Time-Resolved Experiments 1642
49.3 Detectors 1642
49.4 Software . 1644
49.5 Types of In Situ Cells 1645
49.6 In-Situ Studies of Titanium Silicates (Na-TS) with Sitinakite
Topology . 1649
49.7 Discussion of In Situ Studies . 1658
49.8 Summary 1660
References 1660
50 Single-Crystal Scintillation Materials
Martin Nikl, Anna Vedda, Valentin V. Laguta 1663
50.1 Background 1663
50.2 Scintillation Materials 1670
50.3 Future Prospects 1689
50.4 Conclusions . 1691
References 1691XXX Contents
51 Silicon Solar Cells: Materials, Devices, and Manufacturing
Mohan Narayanan, Ted Ciszek 1701
51.1 Silicon Photovoltaics 1701
51.2 Crystal Growth Technologies for Silicon Photovoltaics 1704
51.3 Cell Fabrication Technologies . 1711
51.4 Summary and Discussion . 1715
References 1716
52 Wafer Manufacturing and Slicing Using Wiresaw
Imin Kao, Chunhui Chung, Roosevelt Moreno Rodriguez 1719
52.1 From Crystal Ingots to Prime Wafers . 1721
52.2 Slicing: The First Postgrowth Process in Wafer Manufacturing 1726
52.3 Modern Wiresaw in Wafer Slicing . 1730
52.4 Conclusions and Further Reading . 1733
References 1733
Acknowledgements . 1737
About the Authors . 1741
Detailed Contents 1759
Subject Index.
كلمة سر فك الضغط : books-world.net
The Unzip Password : books-world.net
تحميل
يجب عليك التسجيل في الموقع لكي تتمكن من التحميل
تسجيل | تسجيل الدخول