**Shigley’s Mechanical Engineering Design **

**Eleventh Edition **

**Richard G. Budynas**

**Professor Emeritus, Kate Gleason College of Engineering,**

**Rochester Institute of Technology**

**J. Keith Nisbett**

**Associate Professor of Mechanical Engineering,**

**Missouri University of Science and Technology **

**Contents**

**Preface xv**

**Part **

**Basics **

**Chapter **

**Introduction to Mechanical**

**Engineering Design **

** – Design **

** – Mechanical Engineering Design **

** – Phases and Interactions of the Design**

**Process **

** – Design Tools and Resources **

** – The Design Engineer’s Professional**

**Responsibilities **

** – Standards and Codes **

** – Economics **

** – Safety and Product Liability **

** – Stress and Strength **

** – Uncertainty **

** – Design Factor and Factor of Safety **

** – Reliability and Probability of Failure **

** – Relating Design Factor to Reliability **

** – Dimensions and Tolerances **

** – Units **

** – Calculations and Significant Figures **

** – Design Topic Interdependencies **

** – Power Transmission Case Study**

**Specifications **

**Problems **

**Chapter **

**Materials **

** – Material Strength and Stiffness **

** – The Statistical Significance of Material**

**Properties **

** – Plastic Deformation and Cold Work **

** – Cyclic Stress-Strain Properties **

** – Hardness **

** – Impact Properties **

** – Temperature Effects **

** – Numbering Systems **

** – Sand Casting **

** – Shell Molding **

** – Investment Casting **

** – Powder-Metallurgy Process **

** – Hot-Working Processes **

** – Cold-Working Processes **

** – The Heat Treatment of Steel **

** – Alloy Steels **

** – Corrosion-Resistant Steels **

** – Casting Materials **

** – Nonferrous Metals **

** – Plastics **

** – Composite Materials **

** – Materials Selection **

**Problems **

**Chapter **

**Load and Stress Analysis **

** – Equilibrium and Free-Body Diagrams **

** – Shear Force and Bending Moments in**

**Beams **

** – Singularity Functions **

** – Stress **

** – Cartesian Stress Components **

** – Mohr’s Circle for Plane Stress **

** – General Three-Dimensional Stress **

** – Elastic Strain **

** – Uniformly Distributed Stresses **

** – Normal Stresses for Beams in**

**Bending Contents xi**

** – Shear Stresses for Beams in Bending **

** – Torsion **

** – Stress Concentration **

** – Stresses in Pressurized Cylinders **

** – Stresses in Rotating Rings **

** – Press and Shrink Fits **

** – Temperature Effects **

** – Curved Beams in Bending **

** – Contact Stresses **

** – Summary **

**Problems **

**Chapter **

**Deflection and Stiffness **

** – Spring Rates **

** – Tension, Compression, and Torsion **

** – Deflection Due to Bending **

** – Beam Deflection Methods **

** – Beam Deflections by Superposition **

** – Beam Deflections by Singularity Functions **

** – Strain Energy **

** – Castigliano’s Theorem **

** – Deflection of Curved Members **

** – Statically Indeterminate Problems **

** – Compression Members—General **

** – Long Columns with Central Loading **

** – Intermediate-Length Columns with Central**

**Loading **

** – Columns with Eccentric Loading **

** – Struts or Short Compression Members **

** – Elastic Stability **

** – Shock and Impact **

**Problems **

**Part **

**Failure Prevention **

**Chapter **

**Failures Resulting from Static Loading **

** – Static Strength **

** – Stress Concentration **

** – Failure Theories **

** – Maximum-Shear-Stress Theory for Ductile**

**Materials **

** – Distortion-Energy Theory for Ductile**

**Materials **

** – Coulomb-Mohr Theory for Ductile**

**Materials **

** – Failure of Ductile Materials Summary **

** – Maximum-Normal-Stress Theory for Brittle**

**Materials **

** – Modifications of the Mohr Theory for Brittle**

**Materials **

** – Failure of Brittle Materials Summary **

** – Selection of Failure Criteria **

** – Introduction to Fracture Mechanics **

** – Important Design Equations **

**Problems **

**Chapter **

**Fatigue Failure Resulting from**

**Variable Loading **

** – Introduction to Fatigue **

** – Chapter Overview **

** – Crack Nucleation and Propagation **

** – Fatigue-Life Methods **

** – The Linear-Elastic Fracture Mechanics**

**Method **

** – The Strain-Life Method **

** – The Stress-Life Method and the**

**S-N Diagram **

** – The Idealized S-N Diagram for Steels **

** – Endurance Limit Modifying Factors **

** – Stress Concentration and Notch Sensitivity **

** – Characterizing Fluctuating Stresses **

** – The Fluctuating-Stress Diagram **

** – Fatigue Failure Criteria **

** – Constant-Life Curves **

** – Fatigue Failure Criterion for Brittle**

**Materials **

** – Combinations of Loading Modes **

** – Cumulative Fatigue Damage **

** – Surface Fatigue Strength **

** – Road Maps and Important Design Equations**

**for the Stress-Life Method **

**Problems xii Mechanical Engineering Design**

**Part **

**Design of Mechanical Elements **

**Chapter **

**Shafts and Shaft Components **

** – Introduction **

** – Shaft Materials **

** – Shaft Layout **

** – Shaft Design for Stress **

** – Deflection Considerations **

** – Critical Speeds for Shafts **

** – Miscellaneous Shaft Components **

** – Limits and Fits **

**Problems **

**Chapter **

**Screws, Fasteners, and the Design**

**of Nonpermanent Joints **

** – Thread Standards and Definitions **

** – The Mechanics of Power Screws **

** – Threaded Fasteners **

** – Joints—Fastener Stiffness **

** – Joints—Member Stiffness **

** – Bolt Strength **

** – Tension Joints—The External Load **

** – Relating Bolt Torque to Bolt Tension **

** – Statically Loaded Tension Joint with**

**Preload **

** – Gasketed Joints **

** – Fatigue Loading of Tension Joints **

** – Bolted and Riveted Joints Loaded in Shear **

**Problems **

**Chapter **

**Welding, Bonding, and the Design of**

**Permanent Joints **

** – Welding Symbols **

** – Butt and Fillet Welds **

** – Stresses in Welded Joints in Torsion **

** – Stresses in Welded Joints in Bending **

** – The Strength of Welded Joints **

** – Static Loading **

** – Fatigue Loading **

** – Resistance Welding **

** – Adhesive Bonding **

**Problems **

**Chapter **

**Mechanical Springs **

** – Stresses in Helical Springs **

** – The Curvature Effect **

** – Deflection of Helical Springs **

** – Compression Springs **

** – Stability **

** – Spring Materials **

** – Helical Compression Spring Design for Static**

**Service **

** – Critical Frequency of Helical Springs **

** – Fatigue Loading of Helical Compression**

**Springs **

** – Helical Compression Spring Design for**

**Fatigue Loading **

** – Extension Springs **

** – Helical Coil Torsion Springs **

** – Belleville Springs **

** – Miscellaneous Springs **

** – Summary **

**Problems **

**Chapter **

**Rolling-Contact Bearings **

** – Bearing Types **

** – Bearing Life **

** – Bearing Load Life at Rated Reliability **

** – Reliability versus Life—The Weibull**

**Distribution **

** – Relating Load, Life, and Reliability **

** – Combined Radial and Thrust Loading **

** – Variable Loading **

** – Selection of Ball and Cylindrical Roller**

**Bearings **

** – Selection of Tapered Roller Bearings **

** – Design Assessment for Selected**

**Rolling-Contact Bearings Contents xiii**

** – Lubrication **

** – Mounting and Enclosure **

**Problems **

**Chapter **

**Lubrication and Journal Bearings **

** – Types of Lubrication **

** – Viscosity **

** – Petroff’s Equation **

** – Stable Lubrication **

** – Thick-Film Lubrication **

** – Hydrodynamic Theory **

** – Design Variables **

** – The Relations of the Variables **

** – Steady-State Conditions in Self-Contained**

**Bearings **

** – Clearance **

** – Pressure-Fed Bearings **

** – Loads and Materials **

** – Bearing Types **

** – Dynamically Loaded Journal**

**Bearings **

** – Boundary-Lubricated Bearings **

**Problems **

**Chapter **

**Gears—General **

** – Types of Gears **

** – Nomenclature **

** – Conjugate Action **

** – Involute Properties **

** – Fundamentals **

** – Contact Ratio **

** – Interference **

** – The Forming of Gear Teeth **

** – Straight Bevel Gears **

** – Parallel Helical Gears **

** – Worm Gears **

** – Tooth Systems **

** – Gear Trains **

** – Force Analysis—Spur Gearing **

** – Force Analysis—Bevel Gearing **

** – Force Analysis—Helical Gearing **

** – Force Analysis—Worm Gearing **

**Problems **

**Chapter **

**Spur and Helical Gears **

** – The Lewis Bending Equation **

** – Surface Durability **

** – AGMA Stress Equations **

** – AGMA Strength Equations **

** – Geometry Factors I and J**

**(ZI and YJ) **

** – The Elastic Coefficient C**

**p (ZE) **

** – Dynamic Factor Kv **

** – Overload Factor K**

**o **

** – Surface Condition Factor C**

**f (ZR) **

** – Size Factor K**

**s **

** – Load-Distribution Factor K**

**m (KH) **

** – Hardness-Ratio Factor CH (ZW) **

** – Stress-Cycle Factors YN and ZN **

** – Reliability Factor KR (YZ) **

** – Temperature Factor KT (Yθ) **

** – Rim-Thickness Factor KB **

** – Safety Factors SF and SH **

** – Analysis **

** – Design of a Gear Mesh **

**Problems **

**Chapter **

**Bevel and Worm Gears **

** – Bevel Gearing—General **

** – Bevel-Gear Stresses and Strengths **

** – AGMA Equation Factors **

** – Straight-Bevel Gear Analysis **

** – Design of a Straight-Bevel Gear**

**Mesh **

** – Worm Gearing—AGMA Equation **

** – Worm-Gear Analysis **

** – Designing a Worm-Gear Mesh **

** – Buckingham Wear Load **

**Problems xiv Mechanical Engineering Design**

**Chapter **

**Clutches, Brakes, Couplings, and**

**Flywheels **

** – Static Analysis of Clutches and Brakes **

** – Internal Expanding Rim Clutches and**

**Brakes **

** – External Contracting Rim Clutches and**

**Brakes **

** – Band-Type Clutches and Brakes **

** – Frictional-Contact Axial Clutches **

** – Disk Brakes **

** – Cone Clutches and Brakes **

** – Energy Considerations **

** – Temperature Rise **

** – Friction Materials **

** – Miscellaneous Clutches and Couplings **

** – Flywheels **

**Problems **

**Chapter **

**Flexible Mechanical Elements **

** – Belts **

** – Flat- and Round-Belt Drives **

** – V Belts **

** – Timing Belts **

** – Roller Chain **

** – Wire Rope **

** – Flexible Shafts **

**Problems **

**Chapter **

**Power Transmission Case Study **

** – Design Sequence for Power**

**Transmission **

** – Power and Torque Requirements **

** – Gear Specification **

** – Shaft Layout **

** – Force Analysis **

** – Shaft Material Selection **

** – Shaft Design for Stress **

** – Shaft Design for Deflection **

** – Bearing Selection **

** – Key and Retaining Ring Selection **

** – Final Analysis **

**Problems **

**Part **

**Special Topics **

**Chapter **

**Finite-Element Analysis **

** – The Finite-Element Method **

** – Element Geometries **

** – The Finite-Element Solution Process **

** – Mesh Generation **

** – Load Application **

** – Boundary Conditions **

** – Modeling Techniques **

** – Thermal Stresses **

** – Critical Buckling Load **

** – Vibration Analysis **

** – Summary **

**Problems **

**Chapter **

**Geometric Dimensioning and**

**Tolerancing **

** – Dimensioning and Tolerancing Systems **

** – Definition of Geometric Dimensioning and**

**Tolerancing **

** – Datums **

** – Controlling Geometric Tolerances **

** – Geometric Characteristic Definitions **

** – Material Condition Modifiers **

** – Practical Implementation **

** – GD&T in CAD Models **

** – Glossary of GD&T Terms **

**Problems **

**Appendixes**

**A Useful Tables **

**B Answers to Selected Problems **

**Index **

**Index Mechanical Engineering Design**

**AGMA symbols for bevel gear**

**rating equations, – **

**Buckingham wear load and, – **

**classification of, – **

**straight-bevel gear analysis and,**

** – **

**straight-bevel gear mesh design**

**and, – **

**stresses and strengths of, – **

**worm-gear mesh design**

**and, – **

**Bevel gears. See also Bevel and**

**worm gears**

**analysis of straight, – **

**description of, **

**force analysis and, – **

**hypoid, **

**spiral, **

**straight, – , **

**stresses and strengths of, – **

**zerol, – **

**Big-end connecting rod**

**bearings, – **

**Bilateral tolerance, **

**Blake, J. C., **

**Blanking, **

**Bolted joints**

**loaded in shear, – **

**tension-loaded, **

**Bolts. See also Joints**

**function of, **

**preload and, **

**relating bolt torque to bolt**

**tension, – **

**stiffness and, **

**strength of, – **

**thread length of, **

**torquing of, **

**Bonds, adhesive. See Adhesive bonds**

**Bonus tolerance, **

**Booker, J. F., **

**Bottom land, **

**Boundary conditions, **

**Boundary elements, **

**Boundary-lubricated bearings**

**bushing wear and, – **

**description of, – **

**linear sliding wear and, **

**temperature rise and, **

**Boundary lubrication, – **

**Boundary representation (B-rep), **

**Bowman Distribution, **

**Boyd, John, **

**Brakes**

**band-type, – **

**cone, – **

**antifriction, **

**ball and cylindrical roller, **

** – , – **

**big-end connecting rod, – **

**boundary-lubricated, – **

**collar, **

**combined radial and thrust loading**

**in, – **

**double-row, **

**life of, – , **

**load life at rated reliability and,**

** – **

**lubrication of, – **

**material choice for, – **

**mounting and enclosure of, – **

**needle, **

**overview of, **

**related load, life, and reliability and,**

** – **

**reliability vs. life of, – **

**rolling-contact, – **

**screw, , **

**selection of, – **

**self-aligning, **

**self-contained, – **

**sleeve, **

**tapered roller, – **

**thrust and, **

**types of, – **

**variable loading in, – **

**Bearing stress, **

**Belleville springs, – **

**Belting equation, **

**Belts**

**flat metal, – **

**timing, – , – **

**types of, – **

**V, , – **

**Bending moments**

**in beams, – , – , – ,**

** – (See also Beams)**

**fundamental equations for, **

**on shafts, **

**in springs, **

**Bending-strength geometry factor, **

** , **

**Bending stress, – , – ,**

** – , – , , .**

**See also Lewis bending equation**

**Bergsträsser factor, **

**Beryllium bronze, **

**Beryllium copper, **

**Bevel and worm gears. See also Gears;**

**Worm gears**

**AGMA equation factors for,**

** – , – **

**Axial clutch, frictional contact, – **

**Axial layout, for shaft components,**

** – **

**Axial loads, – **

**Axial pitch, **

**Axial stresses, on shafts, **

**Axle, **

**B**

**Backlash, **

**Back to back mounting (DB), **

**Bainite, **

**Ball bearings. See also Bearings**

**selection of, – **

**thrust and, , – **

**types of, **

**Ball bushings, **

**Band-type clutches and brakes,**

** – **

**Barth, Carl G., **

**Barth equation, **

**Base circle, **

**Base pitch, – **

**Basic dimension, **

**Basic Dynamic Load Rating, **

**Basic static load rating, **

**Basquin’s equation, **

**Bauschinger effect, – **

**Beach marks, **

**Beam deflections**

**due to bending, – **

**methods for, **

**by singularity functions, – **

**by superposition, – **

**Beams**

**with asymmetrical sections, – **

**bending in curved, – **

**bending moment and curvature**

**of, – **

**normal stresses and beams in**

**bending, – **

**shear force and bending moments**

**in, – **

**shear stresses for beams in bending,**

** – **

**two-plane bending and, – **

**Bearing alloys, – **

**Bearing characteristic number, **

**Bearing life, – , **

**Bearing pressure, **

**Bearing reliability, – **

**Bearings. See also Journal bearings;**

**Rolling-contact bearings; specific**

**types of bearings**

**alignment of, , **

**alloys for, – Index **

**Codes, – **

**Coefficient of friction**

**journal bearings and, **

**in screw threads, **

**torque and, **

**Coefficients of variance, **

**Coining, **

**Cold-drawn steel, **

**Cold rolling, **

**Cold-work factor, **

**Cold working, – , – **

**Cold-working processes, – **

**Collins, J. A., **

**Columns**

**classification of, **

**with eccentric loading, – **

**intermediate-length with central**

**loading, – **

**long with central loading, – **

**Commercial bronze, **

**Commercial seal, **

**Complete journal bearing, **

**Completely reversed stress, **

**Completely reversing simple loading,**

** – **

**Composite materials, **

**Compound gear train, **

**Compound reverted gear train, **

**Compression, **

**Compression members, analysis and**

**design of, **

**Compression springs**

**description of, – **

**extension springs vs., **

**helical, – **

**Compression tests, stress-strain**

**relationships from, **

**Compressive stress, **

**Computational errors, **

**Computational fluid dynamics (CFD)**

**programs, **

**Computation frame, **

**Computer-aided design (CAD)**

**software, – , **

**Computer-aided engineering (CAE), **

**Concentrated force function, **

**Concentrated moment**

**function, **

**Concentricity control, **

**Concept design, – **

**Cone angle, – **

**Cone clutch**

**description of, – **

**uniform pressure in, **

**uniform wear in, – **

**Conical springs, **

**of gear teeth, **

**investment, **

**materials for, – **

**permanent-mold, **

**sand, **

**Casting alloys, **

**Cast irons**

**hardness, **

**numbering system for, – **

**shafts and, **

**stress concentration and, **

**types of, – **

**Cast steels, **

**Catalog load rating, **

**Centrifugal casting, **

**Centrifugal clutch, **

**Cermet pads, **

**CES Edupack software, **

**Chain dimensioning, – **

**Chains, **

**Chains for Power Transmissions and**

**Materials Handling (American**

**Chain Association), **

**Charpy notched-bar test, **

**Chevron lines, **

**Chordal speed variation, **

**Choudury, M., **

**Chrome-silicon wire, **

**Chrome-vanadium wire, **

**Chromium, **

**Circularity control, – **

**Circular pad caliper brake, – **

**Circular pitch p, **

**Circular runout, – **

**Classical method of design, **

**Clearance, **

**journal bearings and, – **

**Clearance c, **

**Clearance circle, **

**Close-wound extension springs, **

**Clough, R. W., **

**Clutches**

**band-type, – **

**cone, – **

**energy considerations for,**

** – **

**external contracting rim, – **

**friction, **

**frictional-contact axial, – **

**friction materials for, – **

**internal expanding rim, – **

**miscellaneous, – **

**static analysis of, – **

**temperature rise for, – **

**uniform pressure in, **

**uniform wear in, – **

**disk, – **

**energy considerations for, – **

**external contracting rim, – **

**friction materials for, – **

**internal expanding rim, – **

**linings for, **

**static analysis of, – **

**temperature rise for, – **

**Brake shoe, **

**Brass, – **

**Breakeven points, **

**Brinell hardness, **

**Brittle-Coulomb-Mohr (BCM)**

**theory, **

**Brittle-ductile transition temperature, **

**Brittle materials**

**Brittle-Coulomb-Mohr (BCM)**

**theory, **

**classification of, **

**failure of, – **

**fatigue failure criteria for, – **

**modifications of Mohr theory for,**

** – **

**relatively, **

**Smith-Dolan fracture criteria**

**for, – **

**stress-concentration factor and, **

**Broghamer, E. I., **

**Bronze, **

**Bubble chart, **

**Buckingham, E., **

**Buckingham load-stress factor,**

** , **

**Burnishing, gear, **

**Bushings, – **

**Bushing wear, – **

**Button pad caliper brake, – **

**Butt welds, – **

**C**

**CAD software**

**applications for, – **

**GD&T and, **

**Caliper brakes, – **

**Cap screws, – **

**Carbon steels, , **

**Cartesian stress components, – **

**Cartridge brass, **

**Case hardening, – **

**Case study (power transmission). See**

**Power transmission (case study)**

**Castigliano’s theorem, – ,**

** – , , **

**Casting**

**centrifugal, **

**die, Mechanical Engineering Design**

**long columns with central loading**

**and, – **

**shock and impact and, – **

**spring rates and, – **

**statically indeterminate problems,**

** – **

**strain energy and, – **

**struts or short compression members**

**and, – **

**tension, compression, and torsion**

**and, **

**Deflection equations, **

**Deformation equation, **

**DE-Gerber criteria, **

**Degrees of freedom (dof’s), **

**DE-Morrow criteria, **

**Derived unit, **

**Design basics**

**calculations and significant**

**figures, – **

**case study specifications, – **

**considerations, **

**design factor/factor of**

**safety, – **

**dimensions and tolerances,**

** – **

**economics, – **

**in general, – **

**information sources, – **

**phases and interactions of, – **

**relating design factor to**

**reliability, – **

**reliability and probability of**

**failure, – **

**safety/product liability, **

**standards and codes, – **

**stress and strength, **

**tools and resources, – **

**topic interdependencies, **

**uncertainty in, – **

**units, – **

**Design engineer**

**communication and, – **

**professional responsibilities**

**of, – **

**Design factor, **

**Design Manual for Cylindrical**

**Wormgearing, **

**DE-SWT, **

**Deterministic design factor**

**method, **

**Deviation, **

**Diametral interference, between shaft**

**and hub, **

**Diametrical pitch P, **

**Die castings, **

**Cyclic frequency, **

**Cyclic hardening, **

**Cyclic-minimum film thickness, **

**Cyclic Ramberg-Osgood, **

**Cyclic softening, **

**Cyclic strain strengthening**

**exponent, **

**Cyclic strength coefficient, **

**Cyclic stress-strain curve, – **

**Cyclic stress-strain properties, – **

**Cyclic yield strength, **

**Cylindrical contact stresses,**

** – **

**Cylindrical roller bearings, **

** – , – **

**Cylindricity control, **

**D**

**Damage-tolerant design, **

**Datum features, – , – ,**

** – , **

**Datum feature simulator, , **

**Datum reference frame, **

**Datums. See also Geometric**

**Dimensioning and Tolerancing**

**(GD&T)**

**actual mating envelopes**

**and, – **

**description of, – **

**feature symbol for, – **

**immobilization of part and, **

**nonplanar features of, **

**order of, – **

**Dedendum b, **

**Deflection analysis, **

**shafts and, – , – **

**in springs, , – **

**Deflection and stiffness, .**

**See also Stiffness**

**beam deflection methods and, **

**beam deflections by singularity**

**functions and, – **

**beam deflections by superposition**

**and, – **

**bending and, – **

**Castigliano’s theorem and,**

** , – **

**columns with eccentric loading**

**and, – **

**compression members and, **

**deflection of curved members**

**and, – **

**elastic stability and, – **

**helical springs and, **

**intermediate-length columns with**

**central loading and, – **

**Conjugate action, – **

**Constant amplitude loading, **

**Constant-force springs, **

**Constant-life approach, **

**Constant-life curves, – **

**Constructive solid geometry**

**(CSG), **

**Contact adhesives, **

**Contact ratio, – **

**Contact strength (contact fatigue**

**strength), **

**Contact stresses**

**cylindrical, – **

**description of, – , **

**spherical, – **

**Continuing education, **

**Coordinate dimensioning system, .**

**See also Geometric Dimensioning**

**and Tolerancing (GD&T)**

**Copper-base alloys, **

**Corrosion (endurance limit), **

**Corrosion-resistant steels, **

**Cost considerations. See Economics**

**Cost estimates, **

**Coulomb-Mohr theory, – ,**

** , **

**Couplings, – **

**Courant, R., **

**Crack growth, **

**Crack modes, stress intensity factor**

**and, – **

**Crack nucleation, fatigue failure from,**

** – **

**Crack propagation, fatigue failure**

**from, **

**Cracks, . See also Fracture**

**mechanics**

**Creep, , **

**Creep test, **

**Creep-time curve, **

**Critical buckling load, **

**Critical deflection, of springs, **

**Critical speeds, for shafts, – **

**Critical stress intensity factor, **

**Critical unit load, **

**Crossed belts, **

**Crowned pulleys, **

**Crowning factor for pitting, **

**Cumulative fatigue damage, – **

**Curvature effect, **

**Curve-beam theory, **

**Curved beams, bending in, – **

**Curved members, deflection**

**in, – **

**Curve-fit equations, **

**Curve-fit polynomials, – Index **

**Engineers’ Creed (NSPE), **

**Engraver’s brass, **

**Envelope principle, **

**Epicyclic gear trains, **

**Equilibrium, **

**unstable, **

**Equivalent bending load, **

**Equivalent radial load, **

**Euler column formula, **

**Euler equation, **

**Euler’s method, – ,**

** – , **

**Evaluation, **

**Expanding-ring clutch, **

**Extension springs**

**close-wound, **

**compression springs vs., **

**correction stresses for, – **

**description of, – **

**ends for, **

**fatigue and, – **

**function of, **

**initial tension in, **

**Extreme-pressure (EP) lubricants,**

** – **

**Extrusion, **

**F**

**Face-contact ratio, **

**Face load distribution factor, – **

**Face-to-face mounting (DF), **

**Factor of safety, – , , **

** , , , .**

**See also Safety**

**Fail-safe design, **

**Failure. See also Fatigue failure;**

**Fatigue failure from variable**

**loading; Static loading, failures**

**resulting from**

**examples of, – **

**meaning of, **

**Mohr theory of, – , **

**probability of, – **

**selection of criteria for, **

**theories of, , **

**Failure prevention, knowledge of, **

**Failure theory flowchart, **

**Fasteners. See also specific types**

**of fasteners**

**eccentric loading of, **

**overview of, **

**stiffness of, – **

**threaded, – **

**Fatigue damage, cumulative, – **

**Fatigue ductility coefficient, **

**Fatigue ductility exponent, **

**Eccentricity ratio, **

**Eccentric loading**

**columns with, – **

**shear joints with, – **

**Economics**

**breakeven points, **

**cost estimates, **

**large tolerances, – **

**standard sizes, **

**Edge shearing, – **

**Effective arc, **

**Effective slenderness ratio, **

**Effective stress, **

**Effective viscosity, **

**Eigenvalues, **

**Eigenvectors, **

**Elastic coefficient, – , **

**Elastic creep, **

**Elastic deformation, **

**Elastic instability, **

**Elasticity, **

**Elastic limit, **

**Elastic stability, – **

**Elastic strain, – **

**Elastic-strain Basquin equation, **

**Elastohydrodynamic lubrication**

**(EHL), **

**Electrolytic plating, **

**Element geometries, – **

**Element library, **

**Element loads, **

**Elimination approach, **

**Enclosures (bearings), – **

**End-condition constant, , **

**Endurance limit modifying factors**

**application of, – **

**corrosion, **

**cyclic frequency, **

**electrolytic plating, **

**frettage corrosion, **

**loading factor, **

**metal spraying, **

**miscellaneous-effects factor, – **

**reliability factor, – **

**size factor, – **

**surface factor, – **

**temperature factor, – **

**Endurance limits**

**estimation of, – **

**flexural, **

**Energy absorption, properties**

**of, – **

**Energy considerations, for brakes and**

**clutches, – **

**Engineering stress-strain diagrams,**

** , **

**Dimensioning. See Geometric**

**Dimensioning and Tolerancing**

**(GD&T)**

**Dimensions**

**choice of, – **

**terminology of, – **

**Dimension-series code, – **

**Direct load, **

**Direct mounting, **

**Discrete distributions, **

**Discretization errors, – **

**Disk brakes**

**description of, – **

**uniform pressure in, **

**uniform wear in, **

**Disk clutches, . See also Disk brakes**

**Dislocations, **

**Distortion-energy (DE) theory, –**

** , , , **

**yield strength in shear and, – **

**Dolan, T. J., **

**Doorstops, **

**Double-row bearings, **

**Dowling, N., **

**Drawing (tempering), **

**Drum brake, **

**Ductile cast iron, **

**Ductile materials**

**classification of, **

**Coulomb-Mohr theory for, – **

**distortion-energy theory for, – **

**failure of, – **

**maximum-shear-stress theory for,**

** – **

**selection of failure criteria for, **

**static loading and, – **

**stress-strain diagram of, – **

**Ductility, **

**Dunkerley’s equation, **

**Duplexing, **

**Duplex mounting, **

**Dynamically loaded journal bearings,**

** – **

**Dynamic factor, spur and helical gears**

**and, – , **

**Dynamic loads**

**as element loads, **

**journal bearings and, – **

**stress concentration effect and, **

**Dynamic viscosity, **

**Dyne, **

**E**

**Eccentricity, centrifugal force**

**deflection in shafts and, **

**Eccentricity rate, – Mechanical Engineering Design**

**tension and, – **

**theory of, – **

**Flat belts, , **

**Flat metal belts, – **

**Flatness control, – **

**Flat springs, . See also Springs**

**Flexible mechanical elements**

**belts as, – **

**flat-and round-belt drives as, – **

**flexible shafts as, **

**roller chains as, – **

**timing belts as, – ,**

** – **

**V belts as, , – **

**wire rope as, – **

**Flexible shafts, **

**Flexural endurance limit, **

**Floating caliper brake, – **

**Fluctuating simple loading, – **

**Fluctuating-stress diagram, – **

**Fluctuating stresses**

**fatigue cracks and, **

**fatigue failure criterion and, **

**issues characterizing, – **

**Fluctuating-stress values, **

**Fluid lubrication, **

**Flywheels, – **

**Foot-pound-second system (fps), **

**Force analysis**

**of bevel gearing, – **

**free-body diagrams for, – **

**guidelines for, **

**of helical gearing, – **

**of spur gearing, – **

**of worm gearing, – **

**Forging, **

**Forming, **

**Fracture mechanics**

**background on, – **

**crack modes and stress intensity**

**factor and, – **

**equation for, **

**fatigue failure and, – **

**fracture toughness and, – **

**quasi-static fracture and, – **

**Fracture toughness, , **

**Free-body diagrams, for force**

**analysis, – **

**Free-body force analysis, **

**Free-cutting brass, **

**Frettage corrosion, **

**Frictional-contact axial clutches**

**description of, **

**uniform pressure in, – **

**uniform wear in, – **

**Friction clutch, **

**Fatigue strength**

**data for, – **

**estimated at cycles, **

**nature of, **

**of springs, – **

**Fatigue strength coefficient, **

**Fatigue strength exponent, **

**Fatigue stress-concentration factor,**

** , – , , **

**Fazekas, G. A., **

**FEA. See Finite-element analysis (FEA)**

**Feature, **

**Feature control frame, – , **

**Feature of size, **

**Felt seals, **

**Ferritic chromium steels, **

**Field, J., **

**Filler, **

**Fillet welds, – **

**bending properties of, – **

**steady loads and size of, **

**torsional properties of, **

**Filling notch, **

**Film pressure, – **

**Finite element, **

**Finite-element analysis (FEA)**

**applications for, , – **

**beam deflections and, **

**boundary conditions and, **

**critical buckling load and, **

**element geometries and, – **

**load application and, – **

**mesh generation and, – **

**method of, – **

**modeling techniques and, – **

**software programs for, ,**

** , **

**solution process and, – **

**stress-concentration factors and, **

**stress interactions and, **

**summary of, **

**thermal stresses and, – **

**vibration analysis and, – **

**Firbank, T. C., **

**Fits**

**description of shaft, – **

**interference, – **

**using basic hole system, **

**Fitted bearing, **

**Flat-belt and round-belt drives**

**analysis of, – **

**description of, , **

**flat metal belts and, – **

**function of, – **

**materials for, **

**pulley size and, – **

**Fatigue failure**

**background on, **

**examples of, – **

**low-cycle, – **

**mechanisms of, – **

**shaft materials and, **

**stages of, – **

**Fatigue failure criteria**

**applications of, – **

**ASME-Elliptic, **

**for brittle materials, – **

**Gerber, , **

**Goodman, – , – **

**Morrow, **

**in pure shear case, **

**recommendations, – **

**Smith-Watson-Topper, **

**Soderberg, – **

**Walker, **

**Fatigue failure from variable loading**

**characterizing fluctuating stresses**

**and, – **

**combinations of loading modes**

**and, – **

**constant-life curves and, – **

**crack formation and propagation**

**and, – **

**cumulative fatigue damage**

**and, – **

**endurance limit modifying factors**

**and, – **

**fatigue failure criteria and, – **

**fatigue failure criterion for brittle**

**materials and, – **

**fatigue-life methods and, – **

**fluctuating-stress diagram**

**and, – **

**idealized S-N diagram for steels and,**

** – **

**linear-elastic fracture mechanics**

**method and, – **

**road maps and important design**

**equations for the stress-life method**

**and, – **

**strain-life method and, – **

**stress concentration and notch**

**sensitivity and, – **

**stress-life method and, – **

**surface fatigue strength**

**and, – **

**Fatigue-life methods, – **

**Fatigue loading**

**of helical compression**

**springs, – **

**of tension joints, – **

**of welded joints, – Index **

**Grooved pulleys, **

**Grossman, M. A., **

**Guest theory. See Maximumshear-stress theory (MSS)**

**H**

**Hagen-Poiseuille law, **

**Haigh diagram, **

**Ham, C. W., **

**Hard-drawn steel spring wire, **

**Hardness, **

**Hardness-ratio factor, – ,**

** – **

**Hardness testing, **

**Haringx, J. A., **

**Haugen, E. B., **

**Heading, **

**Heat transfer analysis, – **

**Heat transfer rate, **

**Heat treatment, of steel, – **

**Helical coil torsion springs**

**bending stress in, – **

**deflection and spring rate**

**in, – **

**description of, – **

**end location of, – **

**fatigue strength in, – **

**static strength in, – **

**Helical compression spring design,**

**for static service, – **

**Helical compression springs**

**design for fatigue loading, – **

**fatigue loading of, – **

**Helical gears. See also Gears; Spur**

**and helical gears**

**crossed, **

**description of, **

**force analysis and, – **

**parallel, – **

**standard tooth proportions for, **

**Helical rollers, **

**Helical springs**

**critical frequency of, – **

**deflection of, **

**fatigue loading of, – **

**maximum allowable torsional**

**stresses for, **

**for static service, – **

**stresses in, – **

**Hertz, H., **

**Hertzian contact pressure, **

**Hertzian endurance strength, **

**Hertzian field, – **

**Hertzian stress, , **

**Hertz theory, **

**Hexagonal-head bolts, **

**Gear trains**

**axes rotation and, **

**description of, – **

**train value and, – **

**two-stage compound, **

**Gear wheel, **

**Generating line, **

**Geometric characteristic controls and**

**symbols, **

**Geometric controls**

**form, – **

**location, – **

**orientation, – **

**profile, – **

**runout, – **

**Geometric Dimensioning and**

**Tolerancing (GD&T), **

**CAD models and, **

**control of, – **

**datums and, – **

**defined, – **

**geometric attributes of features**

**for, – **

**geometric characteristic definitions**

**and, – **

**glossary of terms for, – **

**material condition modifiers**

**and, – **

**overview of, , – **

**practical implementation**

**of, – **

**standards for, **

**symbolic language for, – **

**Geometric stress-concentration**

**factor, **

**Geometry factor, – **

**Gerber fatigue-failure criterion,**

** , , **

**Gerber line, **

**Gib-head key, **

**Gilding brass, **

**Glasses, **

**Global instabilities, **

**Goodman, John, **

**Goodman diagram, **

**Goodman failure criterion, **

**Goodman failure line, **

**Goodman-Haigh diagram, **

**Goodman line, – , , **

**Government information sources, **

**Gravitational mass of units, **

**Gravity loading, **

**Gray cast iron, – , **

**Green, I., **

**Griffith, A. A., **

**Grip l, **

**Friction materials, – **

**Friction variable, **

**Full-film lubrication, **

**Functions, singularity, – **

**Fundamental contact stress**

**equation, – **

**Fundamental deviation, for**

**shafts, **

**G**

**Gamma function, **

**Gasketed joints, **

**Gaskets, soft, **

**Gates Rubber Company, **

**Gaussian (normal) distribution, **

**GD&T (Geometric Dimensioning and**

**Tolerancing). See Geometric**

**Dimensioning and Tolerancing**

**(GD&T)**

**Gear bending strength, – **

**Gear mesh**

**analysis of, – **

**design of, – , – **

**Gears. See also Bevel and worm gears;**

**Spur and helical gears; specific**

**types of gears**

**AGMA approach and, – **

**conjugate action in, – **

**contact ratio and, – **

**fundamentals of, – **

**interference in, – **

**involute properties of, – **

**nomenclature for, – **

**parallel helical, – **

**selecting appropriate, – **

**straight bevel, – , **

**tooth systems for, – **

**types of, **

**worm, , – , **

**Gear strength, – **

**Gear teeth**

**bending stress in, – **

**conjugate action and, – **

**contact ratio and, – **

**formation of, – **

**helical, – **

**interference and, – **

**terminology of, – **

**Gear tooth bending, , **

**Gear tooth wear, , **

**Gear train force analysis**

**bevel gearing, – **

**helical gearing, – **

**notation for, **

**spur gearing, – **

**worm gearing, – Mechanical Engineering Design**

**Lap joints, – **

**Law of action and reaction**

**(Newton), **

**Least material condition**

**(LMC), – , **

**Leibensperger, R. L., **

**Lengthwise curvature factor for**

**bending strength, **

**Lewis, Wilfred, **

**Lewis bending equation, **

** – , **

**Lewis form factor, **

**Limits, **

**Limits (shaft), – **

**Linear-elastic fracture mechanics**

**(LEFM) method, – **

**Linear sliding wear, **

**Linear springs, **

**Linear stress analysis, **

**Linear transverse line loads, **

**Lined bushing, **

**Line elements, **

**Line of action, **

**Line of contact, **

**Lipson, C., **

**Little, R. E., **

**Load and stress analysis**

**Cartesian stress components**

**and, – **

**contact stresses and, – **

**curved beams in bending, – **

**elastic strain and, – **

**general three-dimensional stress**

**and, – **

**Mohr’s circle for plane stress and,**

** , – **

**normal stresses for beams in bending**

**and, – **

**press and shrink fits and, – **

**shear stresses for beams in bending**

**and, – **

**singularity functions and, **

** – **

**stress and, , – **

**stress concentration and, – **

**stresses in pressurized cylinders**

**and, – **

**stresses in rotating rings**

**and, – **

**temperature effects and, – **

**torsion and, – **

**uniformly distributed stresses**

**and, – **

**Load-application factor, **

**Load-distribution factor, – , **

**Load factor, **

**malleable cast, – **

**white cast, **

**Ito, Y., **

**Izod notched-bar test, **

**J**

**J. B. Johnson formula, – , **

**Joerres, R. E., **

**Joints. See also specific types of joints**

**arrow side of, **

**bolted, **

**bolted and riveted, – **

**eccentric loading in shear, – **

**fastener stiffness and, – **

**fatigue loading of, – **

**gasketed, **

**lap, – **

**member stiffness and, – **

**statically loaded, – , – **

**stiffness constant of, **

**strength of welded, – **

**tension, – **

**tension-loaded bolted, **

**welded, – , – **

**Jominy test, **

**Journal bearings. See also Bearings;**

**Lubrication and journal bearings**

**alloys for, – **

**big-end connecting rod, – **

**boundary-lubricated, – **

**design variables for, – **

**dynamically loaded, – **

**fitted, **

**material choice for, – **

**nomenclature of complete, **

**partial, **

**pressure-fed, – **

**self-contained, – **

**Trumpler’s design criteria**

**for, – **

**types of, – **

**Journal orbit, – **

**Journal translational velocity, – **

**K**

**Karelitz, G. B., **

**Keys (shafts), – , – **

**Kinematic viscosity, **

**Kuhn, P., **

**Kurtz, H. J., **

**L**

**Labyrinth seal, **

**Lamont, J. L., **

**Langer lines, **

**Lang-lay rope, **

**Hexagon-head cap screws, **

**Hexagon nuts, **

**Hobbing, **

**Holding power, **

**Hole basis, **

**Hooke’s law, , **

**Hoop stress, **

**Hot melts, – **

**Hot rolling, – , **

**Hot-working processes, – **

**Hrennikoff, A., **

**Hydraulic clutches, **

**Hydrodynamic lubrication, **

** – **

**Hydrostatic lubrication, **

**Hypoid gears, **

**I**

**Idle arc, **

**Impact, shock and, – **

**Impact load, **

**Impact properties, – **

**Impact value, **

**Inch-pound-second system (ips), **

**Indirect mounting, **

**Infinite-life design, **

**Influence coefficients, **

**Information sources, – **

**Injection molding, **

**Interference**

**diametral, **

**gear teeth and, – **

**nature of, **

**Interference fits, – **

**Interference of strength, **

**Interference of stress, **

**Internal-friction theory, **

**Internal gear, **

**Internal-shoe brake, – **

**International Committee of Weights**

**and Measures (CIPM), **

**International System of Units**

**(SI), **

**International tolerance grade**

**numbers (IT), **

**Internet information sources, **

**Interpolation equation, **

**Investment casting, **

**Involute helicoid, **

**Involute profile, **

**Involute properties, of gears,**

** – **

**Irons**

**alloy cast, **

**ductile and nodular cast, **

**gray cast, – Index **

**heat treatment of steel and, – **

**hot-working processes and, – **

**impact properties and, – **

**investment casting and, **

**nonferrous metals and, – **

**numbering systems and, – **

**plastic deformation and cold work**

**and, – **

**plastics and, **

**powder-metallurgy process and, **

**sand casting and, **

**selection of, – **

**for shafts, – **

**shell molding and, **

**statistical significance of properties**

**of, – **

**strength and stiffness, – **

**temperature effects and, – **

**Materials selection charts, – **

**Matrix, **

**Maximum load, – , – , **

**Maximum material condition (MMC),**

** , **

**Maximum-normal-stress theory for**

**brittle materials, – , **

**Maximum shear stress, ,**

** , **

**Maximum-shear-stress theory (MSS),**

**ductile materials and, – ,**

** , **

**Maximum shear theory, **

**Maxwell’s reciprocity theorem, **

**McHenry, D., **

**McKee, S. A., **

**McKee, T. R., **

**McKee abscissa, **

**McKelvey, S. A., **

**Mean coil diameter, **

**Mean stress, **

**fatigue failure and, – , **

**fluctuating stresses and, – **

**loading mode and, **

**nonzero, **

**Mechanical springs. See Springs**

**Mesh, **

**Mesh density, **

**Mesh design**

**for straight-bevel gears, – **

**for worm gears, – **

**Mesh generation**

**fully automatic, **

**manual, **

**semiautomatic, **

**Mesh refinement, **

**Metal-mold castings, **

**Metals, nonferrous, – **

**Lubrication and journal bearings**

**bearing types and, **

**boundary-lubricated bearings**

**and, – **

**clearance and, – **

**design variables for, – **

**dynamically loaded journal bearings**

**and, – **

**hydrodynamic theory and, **

** – **

**loads and materials and, – **

**lubrication types and, – **

**Petroff’s equation and, – **

**pressure-fed bearings and, – **

**relationship between variables**

**and, – **

**stable lubrication and, – **

**steady-state conditions in selfcontained bearings and, – **

**thick-film lubrication and, – **

**viscosity and, – **

**Lüder lines, – **

**M**

**Mabie, H. H., **

**Macaulay functions. See Singularity**

**functions**

**Magnesium, **

**Magnetic clutches, **

**Major diameter, of screw threads, **

**Malleable cast iron, – **

**Manganese, **

**Manson, S. S., **

**Manson-Coffin equation, **

**Map frame, **

**Margin of safety, **

**Marin, Joseph, **

**Marin’s equation, **

**Martensite, **

**Martensitic stainless steel, **

**Martin, H. C., **

**Master fatigue diagram, **

**Material condition modifiers**

**(MMC), – , **

**Material efficiency coefficient, **

**Material index, – **

**Materials. See also specific materials**

**alloy steel and, – **

**casting, – **

**cold-working processes and, – **

**composite, **

**corrosion-resistant steel and, **

**cyclic stress-strain properties and,**

** – **

**energy absorption properties of, – **

**hardness and, **

**Loading factor (endurance**

**limit), **

**Loading modes, – , **

**Load intensity, **

**Load-life-reliability relationship, **

**Load-sharing ratio, **

**Loads/loading**

**critical unit, **

**dynamic, **

**element, **

**fatigue, – **

**impact, **

**nodal, **

**reversed, **

**static, , – , **

**(See also Static loading, failures**

**resulting from; Static loads/**

**loading)**

**surface, – **

**variable, – (See also**

**Fatigue failure from variable**

**loading)**

**Load-stress factor, **

**Load zone, **

**Location controls**

**concentricity, **

**position, – **

**symmetry, – **

**Loose-side tension, **

**Loss-of-function parameter, **

**Low brass, **

**Low-contact-ratio (LCR) helical**

**gears, **

**Low-cycle fatigue, – **

**Low-leaded brass, **

**Lubricant flow, **

**Lubricant temperature rise, – ,**

** , **

**Lubrication**

**boundary, – **

**elastohydrodynamic, **

**function of, **

**hydrodynamic, – **

**hydrostatic, **

**mathematical theory of, **

**mixed-film, **

**roller chain, **

**rolling bearing, , **

** – **

**solid-film, **

**splash, **

**stable, – **

**temperature rise and, – ,**

** , **

**thick-film, – **

**unstable, Mechanical Engineering Design**

**Overload factor, **

**Overrunning clutch or coupling, **

**P**

**Palmgren linear damage rule, **

**Palmgren-Miner cycle-ratio summation**

**rule (Miner’s rule), , **

**Parabolic formula, – **

**Parallel-axis theorem, **

**Parallel helical gears, – **

**Parallelism control, – **

**Paris equation, **

**Partial journal bearing, **

**Partitioning approach, **

**Pedestal bearings, **

**Performance factors, **

**Permanent joint design**

**adhesive bonding and, – **

**butt and fillet welds and, – **

**resistance welding and, – **

**welded joints and, – , – **

**welding symbols and, – **

**Permanent-mold casting, **

**Permissible contact stress number**

**(strength) equation, **

**Peterson, R. E., **

**Petroff’s equation, – **

**Phosphor bronze, , **

**Pilkey, W. D., **

**Pillow-block bearings, **

**Pinion, , **

**Pinion bending, **

**Pinion cutter, **

**Pinion tooth bending, ,**

** , **

**Pinion tooth wear, **

**Pins (shafts), – **

**Pitch**

**of bevel gears, **

**of screw threads, , **

**timing belt, – **

**Pitch circle, , ,**

** , **

**Pitch diameter**

**of screw threads, **

**of spur-gear teeth, **

**Pitch length, **

**Pitch-line velocity, , **

**Pitch point, **

**Pitch radius, **

**Pitting, **

**Pitting resistance, ,**

** – , **

**Pitting-resistance geometry factor,**

** , **

**Plane slider bearing, **

**Multiple-threaded product, **

**Multipoint constraint**

**equations, **

**Muntz metal, **

**Music wire, **

**N**

**Naval brass, **

**Necking, **

**Needle bearings, **

**Neuber, H., **

**Neuber constant, **

**Neutral plane, **

**Newmark, N. M., **

**Newtonian fluids, **

**Newton (N), **

**Newton’s cooling model, – **

**Newton’s third law, **

**Nickel, **

**Nodal loads, **

**Nodes, , **

**Nodular cast iron, **

**Noll, C. J., **

**Nominal size, **

**Nominal stress, **

**Nonferrous metals, – **

**Nonlinear softening spring, **

**Nonlinear stiffening spring, **

**Nonplanar datum features, **

**Nonprecision bearings, **

**Normal circular pitch, **

**Normal diametrical pitch, **

**Normalizing process, **

**Normal strain, **

**Normal stress, **

**Norris, C. H., **

**Notched-bar tests, **

**Notch sensitivity, stress concentration**

**and, – **

**Numbering systems, – **

**Nuts**

**grade of, **

**hexagon, **

**O**

**Octahedral shear stress, – **

**Octahedral-shear-stress theory,**

** , **

**Offset method, **

**Oil outlet temperature, **

**Oil-tempered wire, **

**Opening crack propagation mode,**

** , **

**Orientation control, – **

**Osgood, C. C., **

**Overconstrained systems, **

**Metals Handbook (ASM), **

**Metal spraying, **

**Metric threads, – **

**Milling, gear teeth, **

**Miner’s rule, , **

**Minimum film thickness, **

**Minimum life, **

**Minor diameter, of screw threads, **

**Mischke, Charles R., **

**Mitchiner, R. G., **

**Mixed-film lubrication, **

**MMC. See Material condition**

**modifiers (MMC)**

**Mobility map, **

**Mobility method, – **

**Mobility vector, **

**Modal analysis, **

**Mode I, plane strain fracture**

**toughness, **

**Modeling techniques, – **

**Moderate applications, **

**Modern Steels and Their Properties**

**Handbook (Bethlehem Steet), **

**Modified-Goodman diagram, **

**Modified-Goodman line, – **

**Modified Mohr (MM) theory,**

** – **

**Modified Mohr (plane stress), **

**Module m, **

**Modulus of elasticity, **

**Modulus of elasticity of rope, **

**Modulus of resilience, – **

**Modulus of rigidity, **

**Modulus of rupture, **

**Modulus of toughness, **

**Mohr’s circle diagram, , **

**Mohr’s circle for plane stress, **

** – , **

**Mohr’s circle shear convention,**

** – **

**Mohr theory for brittle materials,**

** – **

**Mohr theory of failure, – , .**

**See also Coulomb-Mohr theory**

**Molded-asbestos linings, **

**Molded-asbestos pads, **

**Molding, **

**Molybdenum, **

**Moment connection, **

**Moment load, **

**Monte Carlo computer simulations, **

**Morrow fatigue-failure criterion, **

** , **

**Morrow line, **

**MSC/NASTRAN, **

**Multiple of rating life, Index **

**Resistance welding, – **

**Retaining rings, – , – **

**Reynolds, Osborne, ,**

** , **

**Reynolds equation, , **

**Right-hand rule, , **

**Rim clutches**

**external contracting, – **

**internal expanding, – **

**Rim-thickness factor, – **

**Ring gear, **

**Riveted joints, loaded in**

**shear, – **

**Roark’s formulas, **

**Roark’s Formulas for Stress and**

**Strain (Young, Budynas &**

**Sadegh), **

**Rockwell hardness, **

**Roller chains, – **

**Rolling bearings**

**description of, **

**lubrication and, ,**

** , – **

**types of, – **

**Rolling-contact bearings**

**ball and cylindrical roller bearing**

**selection and, – ,**

** – **

**bearing load life at rated reliability**

**and, – **

**combined radial and thrust loading**

**of, – **

**description of, **

**design assessment for, – **

**fit and, **

**life of, – **

**lubrication of, – **

**mounting and enclosure of, – **

**relating load, life and reliability and,**

** – **

**reliability of, – **

**reliability vs. life of, – **

**tapered roller bearings selection and,**

** – **

**types of, – **

**variable loading and, – **

**Roll threading, **

**Ropes, **

**Rotary fatigue, **

**Rotating-beam specimen, **

**Rotating-beam test, **

**Rotating rings, stresses in, – **

**Rotscher’s pressure-cone method, **

**Round-belt drives. See Flat-belt and**

**round-belt drives**

**Round belts, **

**Primary shear, **

**Principal stresses, **

**Probability density function**

**(PDF), **

**Probability of failure, – **

**Product liability, **

**Professional societies, **

**Profile control, – **

**Profile of a line, **

**Profile of a surface, **

**Proof load, bolt, **

**Proof strength, bolt, **

**Propagation of dispersion, **

**Propagation of error, **

**Propagation of uncertainty, **

**Proportional limit, **

**Puck pad caliper brake, – **

**Pulleys**

**flat-belt and round-belt, – **

**forces and torque on, **

**Pure shear, **

**Q**

**Quality numbers (AGMA), **

**Quasi-static fracture, – **

**Quenching, – **

**R**

**R. R. Moore high-speed rotating-beam**

**machine, – **

**Radial clearance ratio, **

**Radial loading/thrust loading**

**combined, – **

**Radial stress, – , **

**Radius of gyration, **

**Raimondi, Albert A., **

**Raimondi-Boyd analysis, – **

**Rain-flow counting technique, **

**Ramberg-Osgood relationship, **

**Ramp function, **

**Rating life, – **

**Rayleigh’s equation, **

**Redundant supports, **

**Reemsnyder, Harold S., **

**Regular-lay rope, **

**Related actual mating envelope,**

** – **

**Relative velocity, **

**Reliability factor, – , **

** – , – **

**Reliability method of design,**

** , – **

**Repeated stress, **

**Residual stress, **

**Resilience, – **

**Plane strain, **

**Plane stress, **

**Mohr’s circle for, – ,**

** – **

**Plane-stress transformation**

**equations, **

**Planetary gear trains, **

**Planet carrier (arm), **

**Planet gears, **

**Plastic deformation, , – **

**Plastics, **

**Plastic strain, **

**Plastic-strain Manson-Coffin**

**equation, **

**Pneumatic clutches, **

**Poisson’s ratio, , **

**Position control, – **

**Positive-contact clutch, **

**Potential energy. See Strain energy**

**Pound-force (lbf), **

**Powder-metallurgy process, **

**Power curve equation, **

**Power screws, – **

**Power transmission (case study)**

**background of, **

**bearing selection, – **

**design sequence for, – **

**final analysis, **

**force analysis, **

**gear specification, – **

**key and retaining ring**

**selection, – **

**power and torque**

**requirements, **

**shaft design for deflection,**

** – **

**shaft design for stress, **

**shaft layout, – **

**shaft material selection, **

**Precipitation-hardenable**

**stainless steels, **

**Preload**

**bolt, **

**considerations for, **

**statically loaded tension joint**

**with, – **

**Presetting, **

**Press fits, – , – **

**Pressure angle, , **

**Pressure-fed bearings, – **

**Pressure line, **

**Pressure-sensitive adhesives, **

**Pressure-strength ratio, **

**Pressurized cylinders, stresses**

**in, – **

**Pretension, – Mechanical Engineering Design**

**Singularity functions**

**application of, – , **

**beam deflections by, – **

**description of, – **

**Sintered-metal pads, **

**Size factor, – , **

**Sleeve bearings, **

**Slenderness ratio, **

**Sliding fit, **

**Sliding mode, **

**Slip, **

**Slip lines, – **

**Slip planes, **

**Slug, **

**Smith, G. M., **

**Smith-Dolan locus, – **

**Smith-Watson-(SWT) criterion,**

** , **

**Smith-Watson-Topper (SWT) fatiguefailure criterion, ,**

** , **

**S-N diagram. See Stress-life (S-N)**

**diagram**

**Snug-tight condition, **

**torque and, **

**Society of Automotive Engineers**

**(SAE), **

**bolt strength standards, **

**Society of Manufacturing Engineers**

**(SME), **

**Socket setscrews, – **

**Soderberg line, – **

**Software**

**CAD, – , **

**engineering-based, **

**engineering-specific, **

**Solid elements, **

**Solid-film lubricant, **

**Sommerfeld, A., **

**Sommerfeld number, ,**

** , **

**Special-purpose elements, **

**Specific modulus (specific**

**stiffness), **

**Speed ratio, **

**Spherical contact stresses,**

** – **

**Spherical-roller thrust bearing, **

**Spinning, **

**Spiral bevel gears, **

**Spiroid gearing, **

**Splash lubrication, **

**Splines, **

**Spot welding, **

**Spring brass, **

**Spring constant, **

**assembly and disassembly**

**and, – **

**axial, **

**supporting axial loads, **

**torque transmission provisions**

**and, – **

**Shaft material**

**fatigue failure and, **

**selection of, **

**Shafts, **

**bearings in, **

**bending moments on, **

**couplings, – **

**critical speeds for, – **

**defined, **

**deflection analysis and, – **

**flexible, **

**fundamental deviation for, **

**layout of, – **

**limits and fits for, – **

**materials for, – **

**misalignment in, **

**Shallow drawing, **

**Shear-energy theory, **

**Shear force**

**bending moments in beams**

**and, – **

**welded joints in torsion and,**

** , **

**Shearing edge, – **

**Shear-lag model, **

**Shear loading, bolted and riveted joints**

**and, – **

**Shear modulus, **

**Shear stress**

**for beams in bending, – **

**maximum, **

**tangential, , **

**torsion in shaft and, – **

**transverse, – **

**Shear stress-correction factor, **

**Shear yield strength, **

**Sheaves, – , – **

**Shell molding, **

**Shock, **

**Short compression members, struts**

**as, – **

**Shrink fits, – , – **

**Significant figures, – **

**Silicon, **

**Silicon bronze, **

**Simple loading**

**completely reversing, – **

**fluctuating, – **

**Sines failure criterion, **

**Single-row bearings, **

**Runge-Kutta method, **

**Runout controls, – **

**Russell, Burdsall & Ward Inc.**

**(RB&W), – **

**Ryan, D. G., **

**S**

**Safe-life design, **

**Safety, – , . See also**

**Factor of safety**

**Salakian, A. G., **

**Samónov, C., **

**Sand casting, **

**Saybolt Universal viscosity**

**(SUV), **

**Screws**

**cap, – **

**elongation of, **

**power, – **

**self-locking, **

**stiffness and, **

**Screw threads**

**efficiency of, **

**square, **

**terminology of and standards**

**for, – **

**Sealants. See Adhesive bonds**

**Sealings, – **

**Seam welding, **

**Secant column formula, **

**Secondary shear, **

**Self-acting (self-locking)**

**phenomenon, **

**Self-aligning bearings, **

**Self-contained bearings, – **

**Self-deenergizing brake shoe, **

**Self-energizing brake shoe, **

**Self-locking screw, **

**Series system, **

**Set removal, **

**Setscrews, – **

**Shaft basis, **

**Shaft components**

**keys and pins as, – **

**retaining rings as, – **

**setscrews as, – **

**Shaft coupling, – **

**Shaft design, for deflection, – **

**Shaft design for stress**

**critical locations and, **

**estimating stress concentrations and,**

** – **

**first iteration estimates for, **

**shaft stresses and, – , **

**Shaft layout**

**about, – , – Index **

**Static strength**

**in helical coil torsion springs,**

** – **

**static loading and, – **

**Statistical tolerance system, **

**Steels**

**alloy, – , **

**cast, **

**cold-drawn, **

**corrosion-resistant, **

**hardness, **

**heat treatment of, – **

**modulus of elasticity, **

**numbering system for, – **

**quantitative estimation of properties**

**of heat-treated, **

**for springs, , **

**stress-life (S-N) diagram for, – **

**temperature and, – **

**Stereolithography (STL), **

**Stiffness. See also Deflection and**

**stiffness**

**bolt, **

**fastener, – **

**joint, – **

**procedure to find fastener,**

** , **

**Stiffness constant of the joint, **

**Stochastic methods, **

**Stock sizes, **

**Straight-bevel gears. See also Bevel**

**and worm gears; Bevel gears**

**analysis of, – **

**description of, – , **

**mesh design for, – **

**standard tooth proportions for, **

**Straightness control, **

**Straight roller bearings, **

**Straight-tooth bevel gears, **

**Strain**

**elastic, – **

**shear, **

**true, – **

**Strain energy, – **

**Strain hardening, **

**Strain-life method, – **

**Strain-life relation, **

**Strain-strengthening equation, **

**Strain-strengthening exponent, **

**Strength**

**nature of, – **

**static loading and, (See also**

**Static loading, failures resulting**

**from)**

**Strength equations (AGMA),**

** – **

**overload factor and, **

**reliability factor and, – **

**rim-thickness factor and, – **

**safety factors and, **

**size factor and, **

**spur gears analysis and, – **

**stress-cycle factors and, – **

**surface condition factor and, **

**surface durability of, – **

**temperature factor and, **

**Square-jaw clutch, **

**Square threads, **

**Squeeze-film action, **

**Stable cyclic hysteresis loop, **

**Stable lubrication, – **

**Stainless steels, **

**Stamping, **

**Standard Handbook of Machine**

**Design (Shigley et al.), **

**Standards and codes, – **

**defined, **

**organizations with specific, – **

**Standard sizes, **

**Statically indeterminate**

**problems, – **

**Statically indeterminate systems, **

**Static equilibrium, **

**Static loading, failures resulting from**

**Brittle-Coulomb-Mohr (BCM) and**

**modified Mohr (MM)**

**theories, – **

**brittle materials failure and, – **

**Coulomb-Mohr theory for ductile**

**materials and, – **

**design equations and, – **

**distortion-energy theory for ductile**

**materials, – **

**ductile materials and, – **

**failure theories and, **

**fracture mechanics and, – **

**maximum-normal-stress theory for**

**brittle materials and, – , **

**maximum-shear-stress theory for**

**ductile materials and, – **

**selection of failure criteria and, **

**static strength and, – **

**stress concentration and, – **

**Static loads/loading**

**background of, **

**basic rating, **

**defined, **

**helical coil compression spring**

**design flowchart for, – **

**stress-concentration factors**

**and, **

**welding and, – **

**Spring index, , **

**Spring rate, , , **

** – **

**Springs. See also specific types of**

**springs**

**Belleville, – **

**classification of, **

**compression, – **

**conical, **

**constant-force, **

**critical frequency of helical,**

** – **

**curvature effect in, **

**deflection in helical, **

**extension, – **

**fatigue loading of helical**

**compression, – **

**function of, **

**helical coil torsion, – **

**helical compression spring**

**design for fatigue loading,**

** – **

**helical compression spring design**

**for static service, – **

**linear, **

**materials used for, – **

**nonlinear softening in, **

**nonlinear stiffening in, **

**scale of, **

**stability of, – **

**stresses in helical, – **

**volute, **

**Spring surge, **

**Sprockets, **

**Spur and helical gears. See also Gears;**

**Helical gears**

**AGMA nomenclature, – **

**AGMA strength equations**

**and, – **

**AGMA stress equations**

**and, – **

**analysis of, – **

**description of, **

**dynamic factor and, – ,**

** , **

**elastic coefficient and, **

** – **

**force analysis and, – **

**gear mesh analysis and, – **

**gear mesh design and, – **

**geometry factors and, – **

**hardness-ratio factor and, – **

**Lewis bending equation and,**

** , – **

**load-distribution factor and,**

** – Mechanical Engineering Design**

**Taper pins, **

**Tearing mode, **

**Temperature effects**

**on impact values, **

**load and stress analysis and,**

** – **

**on materials, – **

**Temperature factor, – , **

** , **

**Temperature rise**

**boundary-lubricated bearings**

**and, **

**brakes and, – **

**clutches and, – **

**lubricant, – , **

**Tempered martensite, **

**Tempering, **

**Tensile strength, , **

**Tensile stress, , **

**Tensile tests**

**application of, – **

**stress-strain relationships from,**

** – **

**of threaded rods, **

**Tension, **

**loose-side, **

**tight-side, **

**Tension joints**

**external load and, – **

**fatigue loading of, – **

**statically loaded, – **

**Tension-loaded bolted joint, **

**Tension-test specimen, – **

**Theoretical stress-concentration**

**factor, **

**Thermal loading, **

**Thermal stresses, – **

**Thermoplastics, **

**Thermoset, **

**Thin-film lubrication, – **

**Threaded fasteners, – **

**Threads, screw, – . See also**

**Screws**

**Three-dimensional printing, **

**Three-dimensional stress, – **

** -D truss element, **

**Three-parameter Weibull**

**distribution, **

**Thrust load, **

**Thrust loading/radial loading**

**combined, – **

**Tight-side tension, **

**Timing belts, – ,**

** – **

**Timken Company, , – **

**Tin bronze, **

**Stress intensity factor, – **

**Stress intensity modification**

**factor, **

**Stress-life method, – ,**

** – **

**Stress-life (S-N) diagram**

**description of, – **

**high-cycle, – **

**mean stress and, **

**for steels, – **

**Stress numbers, **

**Stress raisers, **

**Stress ratio, **

**Stress relieving, **

**Stress-strain diagram, – , **

**of ductile materials, – **

**for hot-rolled and cold-drawn**

**steel, **

**stable cycle, – **

**strain rate in, – **

**Stress yield envelope, **

**Strict liability concept, **

**Structural adhesives, **

**Structural instabilities**

**(buckling), – **

**Struts, – **

**Studs, – **

**Sun gear, **

**Superposition, beam deflections by,**

** – , **

**Surface compression stress, **

**Surface condition factor, **

**Surface elements, **

**Surface endurance shear, **

**Surface endurance strength, **

**Surface factor (endurance**

**limit), – **

**Surface fatigue strength, – **

**Surface loads, – **

**Surface-strength geometry**

**factor, – **

**Symmetry control, – **

**T**

**Tandem mounting (DT), **

**Tangential stress, – ,**

** , **

**Tapered fits, **

**Tapered roller bearings**

**advantages of, **

**components of, – **

**nomenclature for, – **

**radial load on, **

**selection of, – **

**single-row straight bore,**

** – **

**Stress-concentration factor (SCF)**

**application of elastic, **

**estimation of, – **

**fatigue, – , **

** , **

**gear teeth and, **

**geometric, **

**static loading and, – ,**

** , **

**theoretical, **

**Stress concentrations**

**estimation of, – **

**load and stress analysis and,**

** – **

**mesh and, – **

**notch sensitivity and, – **

**shafts and, **

**static loading and, – **

**Stress-correction factor, **

**Stress-cycle factor, – , **

**Stress distributions, adhesives and,**

** – **

**Stress equations (AGMA), – **

**Stresses/stress analysis**

**bearing, **

**bending, – , – , –**

** , – , **

**Cartesian stress components**

**and, – **

**compressive, **

**contact, – **

**elastic strain and, – **

**fluctuating, – , **

**in helical springs, – **

**hoop, **

**in interference fits, – **

**Mohr’s circle for plane, **

** – **

**nature of, , – **

**nominal, **

**normal, – **

**press and shrink fits and,**

** – **

**in pressurized cylinders, – **

**principal, **

**radial, – **

**residual, **

**in rotating rings, – **

**shaft design for, – , **

**shear, , – , **

**temperature effects on, – **

**tensile, **

**three-dimensional, – **

**torsion and, – , – **

**true, – **

**uniformly distributed, – Index **

**Welded joints**

**fatigue loading of, – **

**strength of, – **

**stresses in bending, – **

**stresses in torsion, – **

**Welds/welding**

**butt and fillet, – **

**resistance, – **

**symbols for, – **

**Wheel, **

**White cast iron, **

**Whole depth h, **

**Width of space, **

**Wileman, J., **

**Wire diameter, **

**Wire rope**

**selection of, – **

**types of, – **

**Wire springs, . See also Springs**

**Wirsching, P. H., **

**Wöhler, Albert, , **

**Wöhler curve, **

**Wolford, J. C., **

**Woodruff key, **

**Work hardening, . See also**

**Cold working**

**Worm gears. See also Bevel and worm**

**gears; Gears**

**AGMA equation factors for, – **

**analysis of, – **

**description of, **

**force analysis and, – **

**mesh design for, – **

**nomenclature of, **

**pitch diameter of, – **

**pressure angle and tooth depth**

**for, **

**Worms, **

**Worm wheel, **

**Woven-asbestos lining, **

**Woven-cotton lining, **

**Wrought alloys, **

**Y**

**Yellow brass, **

**Yield design equation, **

**Yield point, **

**Yield strength, **

**Young’s modulus, , , **

** , **

**Z**

**Zerol bevel gear, **

**Zimmerli, F. P., , **

** , **

**Zinc, brass with, – **

**Tungsten, **

**Turner, M. J., **

**Turn-of-the-nut method, **

**Two-bearing mountings, **

**Two-plane bending, – **

**U**

**Ultimate strength, **

**Ultimate tensile strength, **

**Uncertainty, – **

**Undercutting, **

**Unified Numbering System for Metals**

**and Alloys (UNS), – , **

**Unified thread series, **

**Uniform transverse line loads, **

**Unilateral tolerance, **

**Unit step function, **

**UNS. See Unified Numbering System**

**for Metals and Alloys (UNS)**

**Unstable equilibrium, **

**Unstable lubrication, **

**V**

**Vanadium, **

**Variable loading, – . See also**

**Fatigue failure from variable**

**loading**

**V belts, , – **

**Velocity**

**journal translational, – **

**pitch-line, , **

**relative, **

**Velocity factor, – , **

**Vibration analysis, – **

**Virtual number of teeth, **

**Viscosity, – , **

**Viscosity-temperature trends, **

**Volkersen, O., **

**Volute springs, **

**von Mises, R., **

**von Mises stresses, – , ,**

** , , , **

**W**

**Wahl, A. M., **

**Wahl factor, **

**Walker fatigue-failure criterion, **

** , **

**Washers, **

**Wave equation, **

**Wear, **

**Wear factor, **

**Weibull distribution, , **

**Weibull probability density**

**function, **

**Weld bonding, **

**Titanium, – **

**Tolerances/tolerancing. See also**

**Geometric Dimensioning and**

**Tolerancing (GD&T)**

**bilateral, **

**choice of, **

**cost considerations, – **

**defined, **

**modifiers and symbols, **

**position letters, **

**shaft, **

**tolerance stack-up, – **

**unilateral, **

**Tolerance zones, – , **

**Toothed wheels, **

**Tooth systems, – **

**Tooth thickness, **

**Top land, **

**Topp, L. J., **

**Torque, – , **

**Torque capacity, – **

**Torque transmission, – **

**Torque-twist diagram, **

**Torque vector, – **

**Torque wrench, **

**Torsion**

**closed thin-walled tubes in, – **

**function of, – **

**open thin-walled sections in,**

** – **

**stresses in welded joints in, – **

**Torsional loading, **

**Torsional strengths, **

**Torsional yield strength, **

**Torsion springs, helical coil, – **

**Torsion tests, stress-strain relationships**

**from, **

**Total runout, – **

**Toughness, **

**Tower, Beauchamp, – **

**Train value, – **

**Transmission accuracy umber, **

**Transmission error, **

**Transmitted load, **

**Transverse circular pitch, **

**Transverse shear stress, – **

**Tredgold’s approximation, **

**Tresca theory. See Maximum-shearstress theory (MSS)**

**True fracture strain, **

**True fracture strength, **

**True strain, – **

**True stress, – **

**True stress-strain diagram, **

**Trumpler, P. R., – **

**Truss element,**

**Tungsten,**

**Welded joints**

**Index**

**Turner, M. J., **

**Turn-of-the-nut method, **

**Two-bearing mountings, **

**Two-plane bending, – **

**U**

**Ultimate strength, Ultimate tensile strength, Uncertainty, – **

**Undercutting, **

**Unified Numbering System for Metals and Alloys (UNS), – , **

**Unified thread series, Uniform transverse line loads, Unilateral tolerance, **

**Unit step function, **

**UNS. See Unified Numbering System for Metals and Alloys (UNS)**

**Unstable equilibrium, **

**Unstable lubrication, **

**V**

**Vanadium, **

**Variable loading, – . See also Fatigue failure from variable loading**

**V belts, , – **

**Velocity**

**journal translational, – **

**pitch-line, , **

**relative, **

**Velocity factor, – , **

**Vibration analysis, – **

**Virtual number of teeth, **

**Viscosity, – , **

**Viscosity-temperature trends, **

**Volkersen, O., **

**Volute springs, von Mises, R., **

**von Mises stresses, – , ,**

** , , , **

**W**

**Wahl, A. M., **

**Wahl factor, **

**Walker fatigue-failure criterion, , **

**Washers, **

**Wave equation, **

**Wear, **

**Wear factor, **

**Weibull distribution, , Weibull probability density**

**function, **

**Weld bonding,**

**fatigue loading of, – strength of, – **

**stresses in bending, – stresses in torsion, – **

**Welds/welding**

**butt and fillet, – resistance, – **

**symbols for, – **

**Wheel, **

**White cast iron, Whole depth h, Width of space, Wileman, J., **

**Wire diameter, Wire rope**

**selection of, – **

**types of, – **

**Wire springs, . See also Springs Wirsching, P. H., **

**Wöhler, Albert, , **

**Wöhler curve, Wolford, J. C., Woodruff key, **

**Work hardening, . See also**

**Cold working**

**Worm gears. See also Bevel and worm gears; Gears**

**AGMA equation factors for, – analysis of, – **

**description of, force analysis and, – mesh design for, – nomenclature of, **

**pitch diameter of, – pressure angle and tooth depth**

**for, **

**Worms, **

**Worm wheel, **

**Woven-asbestos lining, **

**Woven-cotton lining, **

**Wrought alloys, **

**Y**

**Yellow brass, **

**Yield design equation, Yield point, **

**Yield strength, **

**Young’s modulus, , , **

** , **

**Z**

**Zerol bevel gear, Zimmerli, F. P., , **

** , **

**Zinc, brass with, –
كلمة سر فك الضغط : books-world.net
The Unzip Password : books-world.net
**

### تحميل

يجب عليك التسجيل في الموقع لكي تتمكن من التحميل

تسجيل | تسجيل الدخول