Semiconductor Physics and Devices – Basic Principles Fourth Edition

Semiconductor Physics and Devices – Basic Principles Fourth Edition
اسم المؤلف
Donald A. Neamen
التاريخ
8 أبريل 2018
المشاهدات
506
التقييم
Loading...

Semiconductor Physics and Devices – Basic Principles Fourth Edition
Donald A. Neamen
University of New Mexico
CONTENTS
Preface x
Prologue – Semiconductors and the Integrated
Circuit xvii
P A R T I – Semiconductor Material Properties
C H A P T E R 1
The Crystal Structure of Solids 1
1.0 Preview 1
1.1 Semiconductor Materials 1
1.2 Types of Solids 2
1.3 Space Lattices 3
1.3.1 Primitive and Unit Cell 3
1.3.2 Basic Crystal Structures 4
1.3.3 Crystal Planes and Miller Indices 6
1.3.4 Directions in Crystals 9
1.4 The Diamond Structure 10
1.5 Atomic Bonding 12
*1.6 Imperfections and Impurities in Solids 14
1.6.1 Imperfections in Solids 14
1.6.2 Impurities in Solids 16
*1.7 Growth of Semiconductor Materials 17
1.7.1 Growth from a Melt 17
1.7.2 Epitaxial Growth 19
1.8 Summary 20
Problems 21
C H A P T E R 2
Introduction to Quantum Mechanics 25
2.0 Preview 25
2.1 Principles of Quantum Mechanics 26
2.1.1 Energy Quanta 26
2.1.2 Wave–Particle Duality 27
2.1.3 The Uncertainty Principle 30
2.2 Schrodinger’s Wave Equation 31
2.2.1 The Wave Equation 31
2.2.2 Physical Meaning of the Wave Function 32
2.2.3 Boundary Conditions 33
2.3 Applications of Schrodinger’s Wave
Equation 34
2.3.1 Electron in Free Space 35
2.3.2 The Infi nite Potential Well 36
2.3.3 The Step Potential Function 39
2.3.4 The Potential Barrier and Tunneling 44
2.4 Extensions of the Wave Theory
to Atoms 46
2.4.1 The One-Electron Atom 46
2.4.2 The Periodic Table 50
2.5 Summary 51
Problems 52
C H A P T E R 3
Introduction to the Quantum Theory
of Solids 58
3.0 Preview 58
3.1 Allowed and Forbidden Energy Bands 59
3.1.1 Formation of Energy Bands 59
*3.1.2 The Kronig–Penney Model 63
3.1.3 The k-Space Diagram 67
3.2 Electrical Conduction in Solids 72
3.2.1 The Energy Band and the Bond Model 72
3.2.2 Drift Current 74
3.2.3 Electron Effective Mass 75
3.2.4 Concept of the Hole 78
3.2.5 Metals, Insulators, and Semiconductors 80
3.3 Extension to Three Dimensions 83
3.3.1 The k-Space Diagrams of Si and GaAs 83
3.3.2 Additional Effective Mass Concepts 85Contents v
4.7 Summary 147
Problems 149
C H A P T E R 5
Carrier Transport Phenomena 156
5.0 Preview 156
5.1 Carrier Drift 157
5.1.1 Drift Current Density 157
5.1.2 Mobility Effects 159
5.1.3 Conductivity 164
5.1.4 Velocity Saturation 169
5.2 Carrier Diffusion 172
5.2.1 Diffusion Current Density 172
5.2.2 Total Current Density 175
5.3 Graded Impurity Distribution 176
5.3.1 Induced Electric Field 176
5.3.2 The Einstein Relation 178
*5.4 The Hall Effect 180
5.5 Summary 183
Problems 184
C H A P T E R 6
Nonequilibrium Excess Carriers
in Semiconductors 192
6.0 Preview 192
6.1 Carrier Generation and Recombination 193
6.1.1 The Semiconductor in Equilibrium 193
6.1.2 Excess Carrier Generation and
Recombination 194
6.2 Characteristics of Excess Carriers 198
6.2.1 Continuity Equations 198
6.2.2 Time-Dependent Diffusion Equations 199
6.3 Ambipolar Transport 201
6.3.1 Derivation of the Ambipolar Transport
Equation 201
6.3.2 Limits of Extrinsic Doping and Low
Injection 203
6.3.3 Applications of the Ambipolar Transport
Equation 206
6.3.4 Dielectric Relaxation Time Constant 214
*6.3.5 Haynes–Shockley Experiment 216
3.4 Density of States Function 85
3.4.1 Mathematical Derivation 85
3.4.2 Extension to Semiconductors 88
3.5 Statistical Mechanics 91
3.5.1 Statistical Laws 91
3.5.2 The Fermi–Dirac Probability Function 91
3.5.3 The Distribution Function and the Fermi
Energy 93
3.6 Summary 98
Problems 100
C H A P T E R 4
The Semiconductor in Equilibrium 106
4.0 Preview 106
4.1 Charge Carriers in Semiconductors 107
4.1.1 Equilibrium Distribution of Electrons
and Holes 107
4.1.2 The n0 and p0 Equations 109
4.1.3 The Intrinsic Carrier Concentration 113
4.1.4 The Intrinsic Fermi-Level Position 116
4.2 Dopant Atoms and Energy Levels 118
4.2.1 Qualitative Description 118
4.2.2 Ionization Energy 120
4.2.3 Group III–V Semiconductors 122
4.3 The Extrinsic Semiconductor 123
4.3.1 Equilibrium Distribution of Electrons
and Holes 123
4.3.2 The n0 p0 Product 127
*4.3.3 The Fermi–Dirac Integral 128
4.3.4 Degenerate and Nondegenerate
Semiconductors 130
4.4 Statistics of Donors and Acceptors 131
4.4.1 Probability Function 131
4.4.2 Complete Ionization and Freeze-Out 132
4.5 Charge Neutrality 135
4.5.1 Compensated Semiconductors 135
4.5.2 Equilibrium Electron and Hole
Concentrations 136
4.6 Position of Fermi Energy Level 141
4.6.1 Mathematical Derivation 142
4.6.2 Variation of EF with Doping Concentration
and Temperature 144
4.6.3 Relevance of the Fermi Energy 145vi Contents
8.1.4 Minority Carrier Distribution 283
8.1.5 Ideal pn Junction Current 286
8.1.6 Summary of Physics 290
8.1.7 Temperature Effects 292
8.1.8 The “Short” Diode 293
8.2 Generation–Recombination Currents and
High-Injection Levels 295
8.2.1 Generation–Recombination Currents 296
8.2.2 High-Level Injection 302
8.3 Small-Signal Model of the pn Junction 304
8.3.1 Diffusion Resistance 305
8.3.2 Small-Signal Admittance 306
8.3.3 Equivalent Circuit 313
*8.4 Charge Storage and Diode Transients 314
8.4.1 The Turn-off Transient 315
8.4.2 The Turn-on Transient 317
*8.5 The Tunnel Diode 318
8.6 Summary 321
Problems 323
C H A P T E R 9
Metal–Semiconductor and Semiconductor
Heterojunctions 331
9.0 Preview 331
9.1 The Schottky Barrier Diode 332
9.1.1 Qualitative Characteristics 332
9.1.2 Ideal Junction Properties 334
9.1.3 Nonideal Effects on the Barrier Height 338
9.1.4 Current–Voltage Relationship 342
9.1.5 Comparison of the Schottky Barrier Diode
and the pn Junction Diode 345
9.2 Metal–Semiconductor Ohmic Contacts 349
9.2.1 Ideal Nonrectifying Barrier 349
9.2.2 Tunneling Barrier 351
9.2.3 Specifi c Contact Resistance 352
9.3 Heterojunctions 354
9.3.1 Heterojunction Materials 354
9.3.2 Energy-Band Diagrams 354
9.3.3 Two-Dimensional Electron Gas 356
*9.3.4 Equilibrium Electrostatics 358
*9.3.5 Current–Voltage Characteristics 363
6.4 Quasi-Fermi Energy Levels 219
*6.5 Excess Carrier Lifetime 221
6.5.1 Shockley–Read–Hall Theory of
Recombination 221
6.5.2 Limits of Extrinsic Doping and Low
Injection 225
*6.6 Surface Effects 227
6.6.1 Surface States 227
6.6.2 Surface Recombination Velocity 229
6.7 Summary 231
Problems 233
P A R T II – Fundamental Semiconductor Devices
C H A P T E R 7
The pn Junction 241
7.0 Preview 241
7.1 Basic Structure of the pn Junction 242
7.2 Zero Applied Bias 243
7.2.1 Built-in Potential Barrier 243
7.2.2 Electric Field 246
7.2.3 Space Charge Width 249
7.3 Reverse Applied Bias 251
7.3.1 Space Charge Width and Electric Field 251
7.3.2 Junction Capacitance 254
7.3.3 One-Sided Junctions 256
7.4 Junction Breakdown 258
*7.5 Nonuniformly Doped Junctions 262
7.5.1 Linearly Graded Junctions 263
7.5.2 Hyperabrupt Junctions 265
7.6 Summary 267
Problems 269
C H A P T E R 8
The pn Junction Diode 276
8.0 Preview 276
8.1 pn Junction Current 277
8.1.1 Qualitative Description of Charge Flow
in a pn Junction 277
8.1.2 Ideal Current–Voltage Relationship 278
8.1.3 Boundary Conditions 279Contents vii
11.1.2 Channel Length Modulation 446
11.1.3 Mobility Variation 450
11.1.4 Velocity Saturation 452
11.1.5 Ballistic Transport 453
11.2 MOSFET Scaling 455
11.2.1 Constant-Field Scaling 455
11.2.2 Threshold Voltage – First
Approximation 456
11.2.3 Generalized Scaling 457
11.3 Threshold Voltage Modifications 457
11.3.1 Short-Channel Effects 457
11.3.2 Narrow-Channel Effects 461
11.4 Additional Electrical Characteristics 464
11.4.1 Breakdown Voltage 464
*11.4.2 The Lightly Doped Drain Transistor 470
11.4.3 Threshold Adjustment by Ion
Implantation 472
*11.5 Radiation and Hot-Electron Effects 475
11.5.1 Radiation-Induced Oxide Charge 475
11.5.2 Radiation-Induced Interface States 478
11.5.3 Hot-Electron Charging Effects 480
11.6 Summary 481
Problems 483
C H A P T E R 12
The Bipolar Transistor 491
12.0 Preview 491
12.1 The Bipolar Transistor Action 492
12.1.1 The Basic Principle of Operation 493
12.1.2 Simplifi ed Transistor Current Relation –
Qualitative Discussion 495
12.1.3 The Modes of Operation 498
12.1.4 Amplification with Bipolar Transistors 500
12.2 Minority Carrier Distribution 501
12.2.1 Forward-Active Mode 502
12.2.2 Other Modes of Operation 508
12.3 Transistor Currents and Low-Frequency
Common-Base Current Gain 509
12.3.1 Current Gain – Contributing Factors 509
12.3.2 Derivation of Transistor Current
Components and Current Gain
Factors 512
9.4 Summary 363
Problems 365
C H A P T E R 10
Fundamentals of the Metal–Oxide–
Semiconductor Field-Effect Transistor 371
10.0 Preview 371
10.1 The Two-Terminal MOS Structure 372
10.1.1 Energy-Band Diagrams 372
10.1.2 Depletion Layer Thickness 376
10.1.3 Surface Charge Density 380
10.1.4 Work Function Differences 382
10.1.5 Flat-Band Voltage 385
10.1.6 Threshold Voltage 388
10.2 Capacitance–Voltage Characteristics 394
10.2.1 Ideal C–V Characteristics 394
10.2.2 Frequency Effects 399
10.2.3 Fixed Oxide and Interface Charge
Effects 400
10.3 The Basic MOSFET Operation 403
10.3.1 MOSFET Structures 403
10.3.2 Current–Voltage
Relationship – Concepts 404
*10.3.3 Current–Voltage Relationship –
Mathematical Derivation 410
10.3.4 Transconductance 418
10.3.5 Substrate Bias Effects 419
10.4 Frequency Limitations 422
10.4.1 Small-Signal Equivalent Circuit 422
10.4.2 Frequency Limitation Factors and
Cutoff Frequency 425
*10.5 The CMOS Technology 427
10.6 Summary 430
Problems 433
C H A P T E R 11
Metal–Oxide–Semiconductor Field-Effect
Transistor: Additional Concepts 443
11.0 Preview 443
11.1 Nonideal Effects 444
11.1.1 Subthreshold Conduction 444viii Contents
*13.3 Nonideal Effects 593
13.3.1 Channel Length Modulation 594
13.3.2 Velocity Saturation Effects 596
13.3.3 Subthreshold and Gate Current
Effects 596
*13.4 Equivalent Circuit and Frequency
Limitations 598
13.4.1 Small-Signal Equivalent Circuit 598
13.4.2 Frequency Limitation Factors and Cutoff
Frequency 600
*13.5 High Electron Mobility Transistor 602
13.5.1 Quantum Well Structures 603
13.5.2 Transistor Performance 604
13.6 Summary 609
Problems 611
P A R T III – Specialized Semiconductor Devices
C H A P T E R 14
Optical Devices 618
14.0 Preview 618
14.1 Optical Absorption 619
14.1.1 Photon Absorption Coeffi cient 619
14.1.2 Electron–Hole Pair Generation Rate 622
14.2 Solar Cells 624
14.2.1 The pn Junction Solar Cell 624
14.2.2 Conversion Effi ciency and Solar
Concentration 627
14.2.3 Nonuniform Absorption Effects 628
14.2.4 The Heterojunction Solar Cell 629
14.2.5 Amorphous Silicon Solar Cells 630
14.3 Photodetectors 633
14.3.1 Photoconductor 633
14.3.2 Photodiode 635
14.3.3 PIN Photodiode 640
14.3.4 Avalanche Photodiode 641
14.3.5 Phototransistor 642
14.4 Photoluminescence and
Electroluminescence 643
14.4.1 Basic Transitions 644
14.4.2 Luminescent Efficiency 645
14.4.3 Materials 646
12.3.3 Summary 517
12.3.4 Example Calculations of the Gain
Factors 517
12.4 Nonideal Effects 522
12.4.1 Base Width Modulation 522
12.4.2 High Injection 524
12.4.3 Emitter Bandgap Narrowing 526
12.4.4 Current Crowding 528
*12.4.5 Nonuniform Base Doping 530
12.4.6 Breakdown Voltage 531
12.5 Equivalent Circuit Models 536
*12.5.1 Ebers–Moll Model 537
12.5.2 Gummel–Poon Model 540
12.5.3 Hybrid-Pi Model 541
12.6 Frequency Limitations 545
12.6.1 Time-Delay Factors 545
12.6.2 Transistor Cutoff Frequency 546
12.7 Large-Signal Switching 549
12.7.1 Switching Characteristics 549
12.7.2 The Schottky-Clamped Transistor 551
*12.8 Other Bipolar Transistor Structures 552
12.8.1 Polysilicon Emitter BJT 552
12.8.2 Silicon–Germanium Base Transistor 554
12.8.3 Heterojunction Bipolar Transistors 556
12.9 Summary 558
Problems 560
C H A P T E R 13
The Junction Field-Effect Transistor 571
13.0 Preview 571
13.1 JFET Concepts 572
13.1.1 Basic pn JFET Operation 572
13.1.2 Basic MESFET Operation 576
13.2 The Device Characteristics 578
13.2.1 Internal Pinchoff Voltage, Pinchoff
Voltage, and Drain-to-Source Saturation
Voltage 578
13.2.2 Ideal DC Current–Voltage Relationship –
Depletion Mode JFET 582
13.2.3 Transconductance 587
13.2.4 The MESFET 588Contents ix
15.6.3 SCR Turn-Off 697
15.6.4 Device Structures 697
15.7 Summary 701
Problems 703
A P P E N D I X A
Selected List of Symbols 707
A P P E N D I X B
System of Units, Conversion Factors, and
General Constants 715
A P P E N D I X C
The Periodic Table 719
A P P E N D I X D
Unit of Energy – The Electron Volt 720
A P P E N D I X E
“Derivation” of Schrodinger’s Wave
Equation 722
A P P E N D I X F
Effective Mass Concepts 724
A P P E N D I X G
The Error Function 729
A P P E N D I X H
Answers to Selected Problems 730
Index 738
14.5 Light Emitting Diodes 648
14.5.1 Generation of Light 648
14.5.2 Internal Quantum Efficiency 649
14.5.3 External Quantum Efficiency 650
14.5.4 LED Devices 652
14.6 Laser Diodes 654
14.6.1 Stimulated Emission and Population
Inversion 655
14.6.2 Optical Cavity 657
14.6.3 Threshold Current 658
14.6.4 Device Structures and
Characteristics 660
14.7 Summary 661
Problems 664
C H A P T E R 15
Semiconductor Microwave and Power
Devices 670
15.0 Preview 670
15.1 Tunnel Diode 671
15.2 Gunn Diode 672
15.3 Impatt Diode 675
15.4 Power Bipolar Transistors 677
15.4.1 Vertical Power Transistor
Structure 677
15.4.2 Power Transistor Characteristics 678
15.4.3 Darlington Pair Configuration 682
15.5 Power MOSFETs 684
15.5.1 Power Transistor Structures 684
15.5.2 Power MOSFET Characteristics 685
15.5.3 Parasitic BJT 689
15.6 The Thyristor 691
15.6.1 The Basic Characteristics 691
15.6.2 Triggering the SCR 694
كلمة سر فك الضغط : books-world.net
The Unzip Password : books-world.net

تحميل

يجب عليك التسجيل في الموقع لكي تتمكن من التحميل
تسجيل | تسجيل الدخول

التعليقات

اترك تعليقاً