Reliability Centered Maintenance For Longitudinal Seaming Station
اسم المؤلف
Students
التاريخ
المشاهدات
339
التقييم
(لا توجد تقييمات)
Loading...
التحميل

مشروع تخرج بعنوان
Reliability Centered Maintenance For Longitudinal Seaming Station Graduation Project
(Practical Case Study)

Supervised By:
Dr / Islam H. Afefy
Submitted By:
AJhmaedl Mohamed Basanien
Ahmed Mohamed A. El-Rahman
Elham Mohammed Alhm
Abeer Hassan Moawad
Fayoum University
Faculty of Engineering
Industrial Engineering Dep.
TABLE OF CONTENTS
Chapter 1: Maintenance Over view
1.1 Introduction 2
1.2 Maintenance polices and reliability centered maintenance (rcm) 3
1.3 Maintenance types 5
1.3.1 Reactive maintenance (run-to-failure) 5
1.3.2 Preventive maintenance 7
1.3.2.1 Value of preventive maintenance 7
1.3.2.2 When does Preventive maintenance make sense 8
1.3.2.3 The fallacy of “constant failure rate” and “preventive
replacement” 9
1.3.2.4 Determining preventive replacement time 9
1.3.3 Predictive maintenance 11
1.3.3.1 Chemical analysis 12
1.3.3.2 Vibration analysis 15
1.3.3.3 Temperature measurement 19
1.3.4 Proactive maintenance 20
1.3.4.1 Specifications for new/rebuilt equipment 21
1.3.4.2 Failed-part analysis 23
1.3.4.3 Root-cause failure analysis (rcfa) 23
1.3.4.4 Reliability engineering and reliability calculations 24
1.3.4.5 Rebuild certification/verification 27
1.3.4.6 Age exploration 28
1.3.5 Risk based maintenance 29
1.3.5.1 Principles and benefits of “risk based inspection” 29
1.3.5.2 key success factors in implementing risk based
maintenance 31
1.3.5.3 Conclusions 36
1.3.6 Reliability centered maintenance 36
1.3.6.1 Reliability centered maintenance features 37
1.3.6.2 Reliability–centered maintenance methodology 38
Chapter 2: Reliability Centered Maintenance(RCM)
2.1 Introduction 41
2.2 Reliability centered maintenance history 42
2.3 Reliability centered maintenance principles 44
2.4 Reliability centered maintenance analysis 48
2.5 Basic steps of applying reliability centered maintenance (rcm) 50
2.5.1 Identify functional failures 51
2.5.2 Identify and evaluate (categorize) the effects of failure 52
2.5.3 Identify the causes of failure (failure modes) 53
2.5.4 Failure modes and effects analysis (fmea) 56
2.5.4.1 When to use the FMEA 57
2.5.4.2 Failure Mode Effect Analysis procedure 57
2.6 Reliability centered maintenance program benefit 60
Chapter 3: Practical Case Study
3.1 Company overview 64
3.1.1 Vision, mission and culture of the company 65
3.1.1.1 Vision 65
3.1.1.2 Mission 65
3.1.2 The heritage of the company 66
3.1.3 History of the company 66
3.1.4 Awards of the company 67
3.1.5 Care for the environment 67
3.1.5.1 Noise reduction 68
3.1.5.2 Low pollutant emissions 69
3.1.6 The exhaust system from about el yazeed 69
3.2 System selection and information collection 70
3.2.1 Company departments description 71
3.2.1.1 Press shop 71
3.2.1.2 Tube forming shop 71
3.2.1.3 Wire forming shop 71
3.2.1.4 Muffler assembly shop 72
3.2.1.5 Exhaust system shop 72
3.2.2 Company production line 72
3.2.3 System selection 74
3.2.4 Information collection 74
3.3 Functional block diagram 75
3.3.1 Block diagram for hydraulic cycle 76
3.3.2 Blocks diagram for longitudinal seaming and flanging m/c 77
3.4 system Boundary 78
3.4.1 Boundary overview 78
3.4.2 Boundary details 80
3.5 System description 83
3.5.1 Programmable logic controller unit (plc) 84
3.5.2 Hydraulic stations 85
3.5.2.1 Electric motor 86
3.5.2.2 Coupling 87
3.5.2.3 Oil pump (gear type) 88
3.5.2.4 Valves 88
3.5.2.5 Oil tank 92
3.5.2.6 Water cooling cycl 93
3.5.2.7 Oil indicator 93
3.5.2.8 Oil filter 94
3.5.3 Longitudinal seaming machine 94
3.5.3.1 Manual loader 95
3.5.3.2 Table 95
3.5.3.3 Mandrel 97
3.5.3.4 Side lock 97
3.5.3.5 Vice 98
3.5.3.6 Accumulator 98
3.5.3.7 Carriage with seaming rolls 99
3.5.3.8 Translator 101
3.5.3.9 flanging Machine 102
3.6 Equipment history 104
3.7 Root cause analysis 105
3.7.1 Effective use of the analysis 106
3.8 Failure mode and effect analysis (fmea 111
3.9 Criticality analysis: 117
3.10 Task selection 123
3.11 Current maintenance plan 129
3.11.1 Labor program 130
3.11.2 Spare parts program 130
3.11.3 Tool program 130
3.11.4 Current preventive maintenance plan 131
3.12 Proposed preventive maintenance plan 133
Chapter 4: Safety Program
4.1 Introduction 145
4.2 Hazards, risks and safety precautions 146
4.2.1 Hazard and near miss definitions 146
4.2.2 Hazard types 146
4.2.2.1 Physical hazards 146
4.2.2.2 Engineering hazards 152

4.2.2.2.1 Electrical hazard 152
4.2.2.2.2 Mechanical hazard 157
4.2.2.3 Chemical hazard 159
4.3 system hazard 167
4.4 system near miss 168
4.5 risk matrix analysis 174
4.5.1 Risk 175
4.5.2 Risk analysis 175
4.5.3 Risk control 175
4.5.4 Risk assessment 175
4.5.5 Risk level 175
4.6 Recommendation 176
4.6.1 OSHA 1910.119 process safety management. 176
List of Tables
Table (1-2): Seven Basic Types of Chemical Analysis 12
Table (1-1): Maintenance Policies 4
Table (1-3): Particle Techniques 15
Table (1-4): ISO 2372-Vibration Severity Range Limits (Velocity) 18
Table (1-5): Example of a System Component Fails 26
Table (2-1): Reliability Centered Maintenance History 42
Table (1-6): Risk Matrix 36
Table (2-1): Reliability Centered Maintenance History 42
Table (2-3): Example of Failure Mode Identification 54
Table (2-4): Failure Mode and Effect Analysis 60
Table (3-1): Boundary Overview 79
Table (3-3): Equipment History. 104
Table (3-4) Root Cause Analysis (RCA). 107
Table (3-5): Failure Mode and Effect Analysis (FMEA). 112
Table (3-6) Criticality Analysis Form. 119
Table (3-7): Criticality Group. 119
Table (3-8): Criticality Analysis 120
Table (3-9): Task Selection Process 123
Table (3-10): Task selection 124
Table (3-11): Labor Program 130
Table (3-12): Spare Parts Program 130
Table (3-13): Tool Program 130
Table (3-14): Current Preventive Maintenance Plan 131
Table (3-15): Proposed Preventive Maintenance Plan 133
Table (3-16): Condition Based Maintenance Tasks (CBM) 135
Table (3-17): Preventive Maintenance Schedule and Tasks 136
Table (3-18): Weekly maintenance tasks 138
Table (3-19): The Size of Maintenance Labor Force 139
Table (3-20): Proposed Labor Program 139
Table (3-21): Proposed Spare Parts Program 140
Table (3-22): Proposed Tool Program 142
Table (3-23): Weekly Maintenance Follow up Form 143
Table (4-1): Risk Matrix Analysis Sample 176

List of Figures
Fig. (1-1): Classification of Maintenance Polices. 3
Fig. (1-2): Cost Versus Time for Maintenance Total Cost 10
Fig. (2-1): Components of RCM Program. 47
Fig. (2-2): Reliability Centered Maintenance Logic Tree 49
Fig. (3 -1): Abou El Yazeed Company. 64
Fig. (3-2): Muffler Components. 68
Fig. (3-3): Product of Abou El Yazeed Company. 70
Fig. (3-4): Company Department 71
Fig. (3-5): Company Production Line 73
Fig. (3-6): System Block Diagram. 75
Fig (3-7): Subsystem Block Diagram (Hydraulic Cycle 76
Fig. (3-8): Subsystem Block Diagram (Longitudinal Seaming Machine). 77
Fig. (3-9): Subsystem Block Diagram (Flanging Machine). 78
Fig. (3-10): The Longitudinal Seaming Station 83
Fig. (3-11): Longitudinal Seaming Station Subsystems 83
Fig. (3-12): Programmable Logic Controller Unit. 85
Fig. (3-13): The Hydraulic Station. 86
Fig. (3-14): The Electric Motor. 86
Fig. (3-15): Rigid Shaft Coupling. 87
Fig. (3-16): The Oil Pump (Gear Type). 88
Fig. (3-17): Rated Fatigue Pressure Valve. 89
Fig. (3-18): The Fourth Rated Fatigue Pressure Valve. 90
Fig. (3-19): Schematic Diagram for the Solenoid Valve. 91
Fig. (3-20): Solenoid Valve (England). 91
Fig. (3-21): Solenoid Valve (Germany). 91
Fig. (3-22): Relief Valve. 92
Fig. (3-23): Water Cooling Cycle. 93
Fig. (3-24): Oil Indicator 93
Fig. (3-25): Oil Filter for the Hydraulic Cycle. 94
Fig. (3-26): The Longitudinal Seaming Machine. 95
Fig. (3-27): Manual Loader 95
Fig. (3-28): Table of the Longitudinal Seaming Machine. 96
Fig. (3-29): Table’s Belts. 96
Fig. (3-30): Ruler of Belt Table 97
Fig. (3-31): Mandrel 97
Fig. (3-32): Side Lock of the Mandrel 98
Fig. (3-33): Vice of Mandrel 98
Fig. (3-34): Accumulator Diagram. 99
Fig. (3-35): Carriage with Seaming Rolls 99
Fig. (3-36): First Station (1, 2, 3,4,5,6, and 7 Rolls) 100
Fig. (3-37): Fourth Station. 101
Fig. (3-38): Translator Diagram 101
Fig. (3-39): Flanging Machine 102
Fig. (3-40): Flanging Die. 102
Fig. (3-41): Upper Jaw. 103
Fig. (3-42): Ejector. 103
Fig. (4-1): Mechanical Hazard and Unsafe Act 168
Fig. (4-2): Mechanically, Physically, And Unsafe Act 168
Fig. (4-3): Mechanical Hazard and Unsafe Act 169
Fig. (4-4): Mechanical Hazard, Unsafe Act and Unsafe Condition. 169
Fig. (4-5): Electrically and Unsafe Act 170
Fig. (4-6): Electrical and Physical Hazard 170
Fig. (4-7): Electrically and Unsafe Act 171
Fig. (4-8): Electrically and Unsafe Act 171
Fig. (4-9): Electrical and Mechanical Hazard 172
Fig. (4-10): Physical Hazard 172
Fig. (4-11): Mechanical, Physical and Electrical Hazard 173
Fig. (4-12): Mechanical and Unsafe Condition 173
Fig. (4-13): Unsafe Act and Physical Hazard 174
Fig. (4-14): Unsafe Act and Ergonomic Hazard 174
كلمة سر فك الضغط : books-world.net
The Unzip Password : books-world.net

تحميل

يجب عليك التسجيل في الموقع لكي تتمكن من التحميل

تسجيل | تسجيل الدخول