Precision Manufacturing

Precision Manufacturing
اسم المؤلف
David Dornfeld, Dae-Eun Lee
التاريخ
18 أبريل 2019
المشاهدات
التقييم
Loading...

Precision Manufacturing
David Dornfeld
University of California at Berkeley
6195 Etcheverry Hall
Berkeley, California 94720
Dae-Eun Lee
Lawrence Berkeley National Laboratory
Mechanical Engineering
1 Cyclotron Road
Berkeley, California 94720
TABLE OF CONTENTS
1.1 Precision engineering 1
1.2 Precision manufacturing 2
1.3 Competitive drivers of precision manufacturing 7
1.4 Historical developments in manufacturing 9
1.4.1 Background 9
1.4.2 Key drivers 13
1.4.3 Historical examples 16
1.5 Organization of this book 33
37
2.1 Background on machine design for manufacturing 37
2.2 Philosophy of precision machine design 39
41
49
3.1 Definition of terms – accuracy, repeatibility,
and resolution 49
3.1.1 Accuracy 49
3.1.2 Repeatability (or precision) 53
3.1.3 Resolution 54
3.1.4 Probabilistic measure of accuracy 55
3.2 Metrology and measurement 57
Preface & Acknowledgements
2.3 Sources of error – overview
II. Machine design for precision manufacturing
Introduction to precision manufacturing
III. Principles of measurement
xvii3.3 Abbé’s principle 64
67
3.4.1 Measurement of dimension and angle 67
3.4.2 Measurement of form 73
3.4.2.1 Straightness 73
3.4.2.2 Flatness 84
3.4.2.3 Roundness 88
3.4.2.4 Other form errors 99
3.4.3 Measurement of surface roughness 99
3.4.4 Kinematic precision 110
3.5 Subsurface damage 112
121
4.1 Introduction 121
4.2 Errors due to machine elements (excluding bearings) 123
4.3 Kinematic design 128
4.3.1 Connectivity 128
4.3.2 Kinematic elements 129
4.3.3 Contact and complex support 133
4.3.4 Summary of kinematic design 142
4.4 Structural compliance 143
4.4.1 Microscale compliance 143
4.4.2 Macroscale compliance 145
4.5 Bearings and spindles 153
4.5.1 Bearings 153
4.5.2 Aerostatic bearings and spindles 163
167
167
5.2 Thermal effects in precision engineering 171
5.3 Determining the effect of temperature other than 20°C 180
5.3.1 Free and constrained bodies 181
5.3.2 Effect of spatial temperature gradients 184
5.3.3 Effect of temperature transients: soak-out
time and sinusoidal response 187
viii PRECISION MANUFACTURING
5.1 Background on the thermal error problem
V. Thermal errors
IV. Mechanical errors
3.4 Metrology techniques5.4 Conductive, convective, and radiative heat
transfer parameters 193
5.5 Specific heat sources and examples
of thermal problems 196
5.6 Environmental control of precision machinery 202
5.6.1 Machine enclosures 203
5.6.2 Factory and room enclosures 204
206
5.7 Thermal effects and metrology 208
5.8 Observations 215
VI. Error mapping and error budgets 217
6.1 Introduction 217
6.2 Error mapping 218
6.3 Error budget 232
6.3.1 Definition of error budget 232
6.3.2 Error budget flow chart 233
6.3.3 Combinational rules for errors 234
239
7.1 Introduction 239
7.2 Excitations in machine tools 243
7.3 Weight deformation 246
7.4 Cutting force deformation 249
variation of the cutting force 250
7.4.1.1 Introduction and background 250
7.4.1.2 Examples for single edge cutting 254
7.4.1.3 Machine stiffness and directional
orientation 256
7.4.2 Type B deformation: Deformation due to the
variation of the stiffness along the tool path 263
7.4.3 Comparison of the errors from deformation
types A and B 267
272
7.6 Self-excited vibrations (chatter) 273
7.6.1 Introduction 273
7.6.2 Basic stability; effect of structural dynamics 278
TABLE OF CONTENTS ix
7.4.1 Type A deformation: Deformation due to the
7.5 Forced vibrations
VII. Error due to compliance and vibration
5.6.3 Machine treatment without enclosures7.6.3 Variation of spindle speed and stability
lobes 288
7.7 Advanced analysis 292
VIII. Sensors for precision manufacturing 295
295
8.1.1 The relevance of precision manufacturing
and the need for in-process monitoring
and control 295
precision manufacturing 297
8.2 Overview of sensors in manufacturing 300
8.2.1 Introduction 300
303
8.3 New developments in signal and information
processing for tool condition monitoring 308
8.3.1 Introduction 308
8.3.2 Intelligent sensors 311
8.3.3 Implementation strategies 314
8.3.4 Multisensor approaches 316
8.3.5 Sensors for high speed machining 317
8.4 Acoustic emission in manufacturing 320
8.4.1 Background 320
8.4.2 Acoustic emission sources-diagnostics 322
8.4.3 Acoustic emission sources-process
monitoring 323
8.4.4 Acoustic emission in machining 325
8.5 Signal processing, feature extraction and
sensor fusion 334
8.5.1 Introduction 334
8.5.2 Intelligent sensor defined 337
8.5.3 Sensor fusion defined 338
8.5.4 Fusion methodologies 339
8.5.5 Neural networks 341
8.6 Applications of signal processing
and sensor fusion 349
8.6.1 Introduction 349
8.6.2 Tool wear detection using time series
analysis of acoustic emission 350
8.1 Introduction
8.2.2 Sensor systems for process monitoring
x PRECISION MANUFACTURING
8.1.2 Requirements for sensor technology for8.6.2.1 Time series analysis 351
8.6.2.2 Experimental evaluation 355
8.7 Sensor integration using neural networks for
intelligent tool condition monitoring 358
8.7.1 Use of multiple sensors 360
8.7.2 Experimental evaluation 363
8.8. The need for engineering models to design and
predict the performance of in-process sensors 369
8.9 Basic sensor classification and new
sensing technologies 372
8.9.1 Introduction 372
8.9.2 Basic sensor types
8.9.2.1 Mechanical sensors
8.9.2.2 Thermal sensors 380
8.9.2.3 Electrical sensors 382
8.9.2.4 Magnetic sensors 382
8.9.2.5 Radiant sensors 383
8.9.2.6 Chemical sensors 383
8.10 Applications of sensors in precision manufacturing 384
8.10.1 AE-based monitoring of grinding
384
wheel condition monitoring 385
8.10.1.2 Grinding wheel topographical
mapping 387
8.10.1.3 Wheel wear mechanism 389
8.10.1.4 AE-based monitoring of face
milling 390
8.10.2 AE-based monitoring of chemical
mechanical planarization 393
8.10.2.1 Monitoring of abrasive process
parameters 395
8.10.2.2 Precision scribing of
CMP-treated wafers 398
8.10.2.3 AE-based endpoint detection
for CMP 401
8.10.2.4 AE monitoring of surface
chemical reactions for copper CMP 403
TABLE OF CONTENTS xi
377
377
wheel dressing
8.10.1.1 Fast AE RMS analysis for8.10.2.5 AE characteristics of oxidation
and dissolution in copper CMP 411
416
Turning of Single crystal copper 418
8.10.2.8 Monitoring of ultraprecision
turning of polycrystalline copper 421
8.11 Summary 422
IX. Process planning for precision manufacturing 425
9.1 Manufacturing system characteristics 425
9.2 Process planning basics 435
9.3 Process capability 438
9.3.1 Background 438
9.3.2 Process capability defined 440
9.4 C
p as a planning metric 444
9.5 Legacy-system integration for precision
manufacturing 451
9.6 Future integration for precision manufacturing
process planning 452
X. Precision machining processes 455
10.1 Introduction 455
10.2 Influence of machining parameters, work material,
and tool geometry 462
10.2.1 Influence of uncut chip thickness 462
10.2.2 Machining brittle materials 465
472
10.3 Process operating conditions 478
10.4 Precision mfg. processes-diamond turning/milling 482
10.4.1 Introduction 482
10.4.2 Machine tool design 484
10.4.3 Tool design and alignment 491
10.4.4 Chip formation and process mechanics 496
10.5 Abrasive processes – fixed and loose 505
10.5.1 Fixed abrasive processes 505
8.10.2.6 Monitoring of precision scribing
8.10.2.7 Monitoring of ultraprecision
xii PRECISION MANUFACTURING
directionality
10.2.3 Effects of work material crystallography/10.5.1.1 Material removal mechanisms 505
10.5.1.2 Grinding forces, power and
specific energy 512
and process time constant 517
10.5.1.4 Nanogrinding 520
10.5.2 Loose abrasive processes 521
10.5.2.1 Polishing and lapping 522
10.5.2.2 Chemical mechanical
532
10.5.2.3 Process modeling in CMP 540
10.6 Non-traditional processes 551
555
11.1 Introduction 555
559
11.2.1 Introduction 559
11.2.2 So, what are they anyway and how are
they made? 561
11.2.2.1 Microfabrication: background
and overview 561
11.2.2.2 Lithography 564
570
11.4 Nanotechnology 572
11.4.1 Background and definitions 572
11.4.2 Nanostructured materials 576
11.4.3 Nanofabrication techniques 578
11.4.3.1 E-beam and nano-imprint
Fabrication
11.4.3.2.1 Quantum structure
11.4.3.2.2 Quantum structure
nanofabrication using strain-induced
TABLE OF CONTENTS xiii
11.2 Basic semiconductor device manufacturing
nanofabrication using epitaxy on
patterned substrates
self-assembly
XI. Precision manufacturing applications and challe nges
10.5.1.3 Grinding stiffness, contact stiffness
planarization (CMP)
11.3 Applications of semiconductor manufacturing – MEMS
11.4.3.2 Epitaxy and strain engineering
11.6 Micro-machining and small scale defects 604
11.6.3 Modeling 611
11.6.3.1 Finite element modeling 613
11.6.3.2 Molecular dynamics 615
11.6.3.3 Multiscale modeling 619
11.6.3.4 Mechanistic modeling 620
11.6.4 Workpiece and design issues 622
622
11.6.4.2 Creation of micropattern
and microstructure 625
11.6.4.3 Creation of 3-dimensional
630
11.6.4.4 Ultrasonic vibration assisted
micromachining 631
11.6.5 Micro-tools 633
11.6.6 Cutting fluid 638
11.6.7 Metrology in micromachining 640
11.6.8 Conclusion and outlook 644
in precision components 646
647
11.7.2 Process-based solutions 651
11.7.2.1 Milling 652
11.7.2.2 Drilling 654
11.7.3 Examples of application of burr
minimization strategies 657
11.7.3.1 Tool path planning in milling 657
11.7.3.2 Burr control chart 660
11.7.3.3 Integrated process planning
and burr minimization 661
11.7.4 Summary and conclusions 662
xiv PRECISION MANUFACTURING
11.4.3.3 Scanned probe techniques
11.4.4 Self-assembly
11.5 MEMS and nanotechnology applications
shapes
11.6.4.1 Micromolding
11.6.1 Introduction
11.5.1 Nanotechnology applications
11.6.2 Surface and edge finish
11.7 Burrs – preventing and minimizing burr formation
11.7.1 Introduction and backgroundXII. Future of precision manufacturing 665
12.1 Introduction 665
666
12.3 Sustainable design/environmentally conscious
design and manufacturing 669
12.3.1 Technologies for sustainable
manufacturing 670
671
12.3.3 Sustainable manufacturing or
“does green = sustainable?” 676
12.3.4 Manufacturing technology wedges 678
12.3.5 Examples of wedge technology application
areas for manufacturing 680
12.3.5.1 Consumable use in
machining 681
12.3.5.2 Energy use in nanoscale
manufacturing 685
12.4 Environmentally conscious design of precision
12.4.1 Sustainability budgets 694
12.4.2 Constructing the sustainability budget 696
12.5 Summary comments/conclusion 701
Index 765
TABLE OF CONTENTS xv
12.2 The manufacturing pipeline
12.3.2 Green manufacturing pipeline
machines
References
كلمة سر فك الضغط : books-world.net

The Unzip Password : books-world.net

تحميل

يجب عليك التسجيل في الموقع لكي تتمكن من التحميل
تسجيل | تسجيل الدخول

التعليقات

اترك تعليقاً