Practical Finite Element Analysis – First Edition
اسم المؤلف
Nitin S Gokhale, Sanjay S Deshpande, Sanjeev V Bedekar, Anand NThite
التاريخ
المشاهدات
364
التقييم
(لا توجد تقييمات)
Loading...
التحميل

Practical Finite Element Analysis – First Edition
Nitin S Gokhale
Sanjay S Deshpande
Sanjeev V Bedekar
Anand NThite
Contents

  1. Introduction to Finite Element Analysis
    1.1 Methods Solve any Engineering Problem 1.2 Procedure for Solving any Analytical or
    Numerical Problem 1.3 Brief Introduction to Different Numerical Methods 1.4 What is DOF
    1.5 Why do we Carry Out Meshing, What is FEM 1.6 Advantages of FEA 1.7 Design Cycles 1.8
    Absolute vs. Relative Design 1.9 Is FEA a Replacement for Costly and Time Consuming Testing
  2. Past, Present and Future of FEA
    2.1 History of Finite Element Method 2.2 Present 2.3 Theoretical Finite Element Analysis
    2.4 Software Based FEM 2.5 Practical Applications of FEA 2.6 Failure Analysis 2.7 Future of
    FEA
  3. Types of Analyses (Brief Introduction)
    3.1 Linear Static Analysis 3.2 Non Linear Analysis 3.3 Dynamic Analysis 3.4 Linear Buckling
    Analysis 3.5 Thermal Analysis 3.6 Fatigue analysis 3.7 Optimization 3.8 Computational Fluid
    Dynamics 3.9 Crash Analysis 3.10 Noise Vibration and Harshness, NVH
  4. Basics of Statics and Strength of Materials
    4.1 What is Stress 4.2 Types of Stress 4.3 Types of Forces 4.4 Types of Moments 4.5 Uniaxial
    Stress 4.6 Bi-axial Stress 4.7 Tri-axial Stress 4.8 What is “I” Area Moment of Inertia and “J” Polar
    Moment of Inertia
  5. Introduction to Meshing
    5.1 Why do We Carry Out Meshing 5.2 Types of Elements 5.3 How to Decide Element Type
    5.4 Can We Solve Same Problem Using 1-d, 2-d, 3-d Elements 5.5 How to Decide Element
    Length 5.6 How to Start Meshing 5.7 Meshing Techniques 5.8 Meshing in Critical Areas
    5.9 Mesh Display Options
  6. 1-D Meshing
    6.1 When to Use 1 -d Elements 6.2 Stiffness Matrix Derivation 6.3 Stiffness Matrix- Assembly of
    Two Rod Elements 6.4 Beam Element 6.5 Special Features of Beam Elements
  7. 2-D Meshing
    7.1 When to Use 2-d Elements 7.2 Family of 2-d Elements 7.3 Thin Shell Elements 7.4 Effect
    of Mesh Density in the Critical Region 7.5 Effect of Biasing in the Critical Region 7.6 Symmetric
    Boundary Conditions 7.7 Different Element Type Options for Shell Meshing 7.8 Geometry
    Associative Mesh 7.9 Quality Checks 7.10 Other Checks for 2-d Meshing 7.11 How Not to
    Mesh
    xiii8. 3-D Meshing
    8.1 When to Use 3-d Elements 8.2 DOFs for Solid Elements 8.3 Tetra Meshing Techniques
    8.4 Quality Checks for Tetra Meshing 8.5 Other Checks for Tetra Meshing 8.6 Brick Meshing
    8.7 Brick Mesh Quality Checks 8.8 Other Checks for Brick Meshing 8.9 How Not to Mesh
  8. Special Elements and Special Techniques
    9.1 Connection of Solid Elements with Beams and Shells 9.2 Linear to Parabolic and Brick to
    Tetra Connection 9.3 Hybrid Meshing (Hex-Pyram-Tetra) 9.4 GAP Element 9.5 Mass Element
    9.6 Spring and Damper Element 9.7 Rigid & Constraint Elements 9.8 Simple Linear Static
    Analysis Techniques to Simulate Contact
  9. Weld, Bolt, Bearing and Shrink Fit Simulation
    10.1 Welding Simulation 10.2 How to Model Spot Weld 10.3 How to Model Arc Weld 10.4
    Practical Considerations for Welded Joints 10.5 Bolted Joint 10.6 Bearing Simulation
    10.7 Shrink Fit Simulation
  10. Material Properties and Boundary Conditions
    11.1 E, G&u 11.2 Material Classification 11.3 Material Properties 11.4 Boundary Conditions
    11.5 Howto Apply Constraints 11.6 Symmetry
  11. Linear Static Analysis
    12.1 Definition 12.2 While Starting any Finite Element Analysis Project 12.3 How to Check
    Mesh Model Submitted by a Vendor or Colleague 12.4 Design Modifications Based on
    Linear Static Analysis: A Case Study 12.5 Linear Static Solvers 12.6 Solution Restart Method
    12.7 h-element vs. p-element 12.8 Sub-modeling 12.9 Linear Buckling Analysis
  12. Non Linear Analysis
    13.1 Introduction 13.2 Comparison of Linear and Nonlinear FEA 13.3 Types of Nonlinearity
    13.4 Stress-Strain Measures for Nonlinear Analysis 13.5 Solution Techniques for Nonlinear
    Analysis 13.6 Issues Related to the Convergence of Newton Raphson Method 13.7 Essential
    Steps to Start with Nonlinear FEA 13.8 A General Procedure for Nonlinear Static Analysis
    Project 13.9 Exercise Problem
  13. Dynamic Analysis
    14.1 Why Dynamic Analysis 14.2 Static Analysis vs. Dynamic Analysis 14.3 Definitions
    14.4 What is Difference Between Time Domain and Frequency Domain 14.5 Types of Loading
    14.6 Simple Harmonic Motion 14.7 Free Vibration 14.8 Free – Free Run 14.9 How to
    Avoid Resonance 14.10 Damping Consideration 14.11 Forced Vibration 14.12 Single DOF
    System, Frequency Response Analysis 14.13 Single DOF System, Transient Response Analysis
    14.14 Dynamic Analysis Solvers 14.15 Two DOF System, Frequency Response Analysis Base
    Excitation 14.16 Bracket, Transient Response Analysis (Short Duration Force) 14.17 What is
    PSD (Power Spectral Density)
  14. Thermal Analysis
    15.1 Introduction 15.2 Conduction HeatTransfer 15.3 Steady State Conduction 15.4 Unsteady
    State Conduction 15.5 Convection HeatTransfer 15.6 Forced Convection (Internal Flow)
    15.7 Forced Convection (External Flow) 15.8 Meshing for Thermal Analysis 15.9 Free/Natural
    Convection 15.10 Radiation HeatTransfer 15.11 Practical Application ofThermal Analysis
  15. Computational Fluid Dynamics
    16.1 What is CFD 16.2 Various Levels of Approximations in Fluid Dynamics 16.3 Equilibrium
    Equations fora Fluid 16.4The Physics of the Navier Stokes Equations 16.5 Conservation
    Form of Fluid Flow Equations 16.6 Integral Form of the Conservation Laws 16.7 Model
    Equations for Convection and Diffusion: Their Mathematical and Physical Aspects 16.8
    Numerical Schemes for a Model Convection Equation 16.9 Numerical Schemes for a Standard
    Diffusion Equation 16.10 Explicit and Implicit Numerical Schemes 16.11 Different Types of
    xivCodes Used for CFD Calculations 16.12DifferentTypesofGridsUsedforCFD 16.13 Difference
    Between Meshes Used in Computational Structural Mechanics and Computational Fluid
    Dynamics 16.14 Strengths and Weaknesses of CFD Against Experimental Fluid Dynamics
    or Wind Tunnel Testing 16.15 CFD Project Tracking Sheet 16.16 Typical Applications of
    Computational Fluid Dynamics in Various Industries
  16. Fatigue Analysis
    17.1 Why Fatigue Analysis 17.2 Static, Dynamic and Fatigue Analysis Comparison 17.3 What is
    Fatigue 17.4 History of Fatigue 17.5 Definitions 17.6 Various Approaches in Fatigue Analysis
    17.7 Stress Life Approach 17.8 Strain Life Approach 17.9 Fracture Mechanics Approach
    17.10 Cycle Counting 17.11 Multi-Axial Fatigue 17.12 Welding Analysis 17.13 CAE (Fatigue)
    and Test Data Correlation
  17. Crash Analysis
    18.1 Introduction 18.2 What do We solve in Structural Crash Worthiness 18.3 Transient
    Dynamics Solution Methodology 18.4 Increasing the speed of Explicit Methods for Quasi
    Static Simulation 18.5 Comparison of Explicit vs. Implicit Methods 18.6 Typical Issues
    in Contact Analysis 18.7 Some Aspects of Shell Element Technology 18.8 Contact Impact
    Algorithms 18.9 Full Dynamic / Impact vs. Quasi Static Simulations 18.10 Lagrangian and
    Eulerian Codes 18.11 Effect of Process and Residual Stress on Crash Analysis 18.12 Typical
    Application of Crash Worthiness Simulations in Various Industries
  18. NVH Analysis
    19.1 Introduction to NVH Concepts 19.2 Frequency Range of FE Dynamic Analysis 19.3 FEA
    for Structural Dynamics 19.4 FEA for Acoustics 19.5 Model Validation 19.6 Model Updating
    19.7 Design Modification 19.8 Vibration and Noise Control
  19. Post Processing Techniques
    20.1 How to Validate & Check Accuracy of the Result 20.2 How to View Results 20.3 Average
    and Unaverage Stresses 20.4 Special Tricks for Post Processing 20.5 Interpretation of Results
    and Design Modifications 20.6 CAE Reports
  20. Experimental Validation and Data Acquisition
    21.1 Strain Gauge 21.2 Photo-elasticity 21.3 Load Cells 21.4Torque SensorsTorqueTransducers
    21.5 How to Collect Force vs. Time Data (Dynamic Test) 21.6 How to Measure Acceleration
    21.7 How to Measure Fatigue Life 21.8 How to Measure Natural Frequency
  21. Common Mistakes and Errors
  22. Preparation for Interview 411
    Abbreviations
    Appendix
    Index
    Page No.
    1 D element 51, 63
    2 D element 51, 85
    3 D element 52,111
    A
    Absolute design 14
    Acceleration 167
    Acoustics 34, 366,367
    Accuracy 9,377
    ACM (Area Contact Method) 145
    Air borne noise 356
    Analysis
    Linearstatic 27, 175
    Non linear static 28, 187
    Linear buckling 30, 186
    Thermal 31,237
    Dynamic 29,207
    Fatigue 31,295
    Optimization 32
    CFD 32,269
    Crash 34,321
    NVH 34,351
    Analytical method 1
    Anisotropic 160
    Anti symmetry 173
    Approximation in fluid dynamics 270
    Arc welding 146,318
    Area moment ofinertia 46
    Aspect ratio 99, 121
    Audible range ofvibration 212,352
    Average stress 380
    Axial symmetry 173
    Axisymmetric solid 88
    B
    Beam element 63,74
    Special feature 81
    cross section orientation 81
    Taper 81
    Page No.
    Offset 83
    End release 83
    Bearing simulation 151
    Beam element 151
    Gap element 152
    Contact simulation 153
    Direct force application 153
    Force application via equation 153
    Comparison ofdifferent method 154
    Bending moment 38,48
    Bending stress 41
    Biasing 92
    Bmp format result files 383
    Boltedjoint 148
    Beam element 148
    Rigid element 149
    Preload 150
    Bolt torque 150
    Temperature method 150
    Boundary condition 161
    Boundary element method 4, 34, 367
    Bracket analysis 178
    Braking 168
    Brick meshing 118
    Tips 120
    Quality checks 121
    Other checks 122
    Brittle material 44
    Buckling load factor 186
    c
    CAD 13
    CAE 13
    CAM 13
    Centrifugal load 167
    CFD project tracking sheet 290
    Climatic condition 24
    Coulomb damping 215
    Compatible element 334
    Complex eigen value 363Page No. Page No.
    Compressible flow 238
    Compressive loading 186
    Computational fluid 32,269
    Dynamic 33,269
    Practical application 33
    Commonly used software 33
    Concentrated load 161
    Concurrent engineering 13
    Conduction 239
    Convergence 379
    Conservation 271,272
    Conservation law 273
    Constraints element 139
    Contact analysis 153, 155,334
    Contact impact algorithm 340
    Contact simulation 335
    Continuous approach 5
    Convection 31, 245
    Cornering 169
    Cost cutting 15,21
    Cost ofaccuracy 10
    Coupled problem 238
    Crack growth 297,311
    Crack initiation 297, 308
    Crack propagation 311
    Crash analysis 34,321
    Commonly used software 34
    Practical application 34
    Creep 29, 193
    Critical region/area 59, 93,379
    Critical Damping 226
    Cycle 298
    Cycle counting 312
    D
    Damper element 138
    Damping 226
    Overdamping 226
    Under damping 226
    Critical damping 226
    Damping consideration 218
    Degree offreedom 6
    Discretization 4
    Design abuse 24
    Design cycles 11
    Diffusion 275
    Diffusion equation 279
    Direct method 65
    Discrete approach 5
    Distortion 100
    Distributed load 162
    Drop test simulation 34, 349
    Ductile material 44
    Duplicate element 102
    Duplicate node 103
    Durability 297
    Dynamic analysis 29,207
    Practical application 30
    Commonly used software 30
    Free Vibration 207,216
    Forced Vibration 207,227
    Freq, response 207,228
    Transient response 207,230
    Random vibration 207
    Dynamic analysis solver 231
    Dynamic fatigue 299
    Elastic plastic correction 142,311
    Elementstiffness matrix 64,65
    Element techniques
    Stiffness matrix 64,65
    1-D 51,63
    2-D 51, 85
    3-D 52,111
    special 127
    Length 54
    Endurance limit 298
    Energy spectral density 365
    Enforced motion 232
    Engineering strain 194
    Engineering stress 194
    Equilibrium equation for fluid 271
    Errors
    Import 407
    Export 407
    Essential steps to start with nonlinearity 199
    Eulerian codes 343
    Meshes 344
    Experimental method 1,395
    Explicit method 328, 329
    Explicit scheme 326
    Explicit time integration 323
    Export errors 407
    Experimental techniques 395
    External flow 249Page No. Page No.
    G
    Failure analysis 15,21 Geometric non linearity 29, 189
    Failure mode effect analysis 3 Gap element 134
    Fastener modeling 205 General area 59
    Fatigue 295 Geometry associative mesh 97
    Fatigue analysis Geometry check 55
    Practical application 32 Goodman diagram 301
    Commonly used software 32 Governing equation 2
    History 296 Gravity loading 167
    Low cycle 298 Green-Lagrange strain 196
    High cycle 298
    Finite element analysis 3
    Finite element method H
    Advantages 10
    i idiviy 1 c Hammer excitation 405
    Theoretical
    1 3
    16
    Harmonic response 364
    Head restraints 347
    Present status 15
    Finite volume method 4 Heat exchanger 259
    H-element 184
    Fixed trias 115
    Hooke’s law 159
    Floating trias 114
    Flow classification 33 Hourglass control 338
    Fluid dynamics 33
    HR 410
    Flux difference splitting schemes 282 Hydrostatic pressure 163
    Flux vector splitting schemes 282
    Force application via equation 162 |
    Forced convection 249
    Forced vibration analysis 207 IC engine block thermal analysis 265
    Forces 37 Ideal shape
    Fourier coefficient 353 For quad element 98
    Fourier transform 353 For tria element 98
    Fracture mechanics approach 311 Impact Hammer 405
    Free free run 219 Impact simulation 34, 342
    Free edges 101 Implicit method 329
    Free vibration analysis 216 Implicit scheme 328
    Frequency domain 212 Import errors 407
    Frequency 209 Included angle 100, 121
    Frequency response 228 Incompressible flow 282
    Frequency response function 355 Infinite life 298
    Frictional damping 215 Internal flow 247
    Frequency content 353 Interpolation function 8
    Full dynamic simulation 342 Interview
    Full vehicle analysis 167 Preparation 411
    One wheel in ditch 168 Question 411
    Two wheel in ditch 168 Integral form 274
    Braking 168 Isotropic 160
    Cornering 169Page No. Page No.
    J Mass moments ofinertia
    Master bodies
    47
    331
    Jacobian 100 Material nonlinearity 192
    Joint modeling 127, 143 Material classification
    Jpeg format 383 Isotropic 160
    Orthotropic 160
    K
    Anisotropic 160
    Laminates 160
    Kinematic constraint method 340 Material properties 161
    MBD 402
    Measurement offatigue life 401
    Mechanism mode 221
    L Meshing 49, 63, 85,111
    Types 57
    Lagrangian meshes 344 Geometry based 57
    Lagrangian codes 343 Automatic 58
    Laminar flow 246,285
    Mapped 58
    Laminates 160
    Manual 58, 118
    Large rotations 190 Batch 58
    Large strain 190 In critical areas 91
    Lassi making machine 25 Transition 95
    Leakage 141
    Display option 60
    Solver 141
    Shell mesh 60,95
    Level crossing counting 312 Mixed mode 60
    Linear buckling analysis 186 Brick mesh 118
    Linear static analysis 27, 175 Solid 112
    Practical application 28 Meshing techniques 58
    Commonly used software 28 Measurement 403
    Definition 27, 175 Miner’s rule 303
    Linear static solver 28
    Mistake 407
    Linear superposition 382 Modal assurance criteria 372
    Linear tetra element 117
    Modal solver 231
    Load cells 397
    Mode shape 222
    Logarithmic strain 195 Model updating 372
    Low cycle fatigue 298 Model validation 371
    Lumped heat capacity 244 Modulus ofelasticity 159
    Modulus ofrigidity 159
    M Moment
    Moment ofinertia
    38
    Manager 22,409 Area 46
    Manufacturing 22 Polar 46
    Purchase 22 Multi axial force measurement 398
    Quality 22 Multi axial fatigue 316
    Marketing/Sales 22 Multipoint constraints 139
    Industrial engg. 22
    Maintenance 22
    N
    CAE 409
    Manufacturing techniques 24 Natural convection 253
    Mass element 136
    Natural frequency 216Page No. Page No.
    Natural frequency analysis 216 Pipe 63
    Navier stokes equations 272 Plane strain 87
    Newton Raphson method 198 Plane stress 87
    Nodal stresses 380 Plane symmetry 173
    Noise control 373, 375 Poisson’s ratio 159
    Noise vibration harshness 351 Polar moment ofinertia 46
    Sound radiation 368 Polyhedral meshing 17,26
    Uncoupled problem 34 Post processing 15, 18
    Coupled or vibrocoustic 34 Postprocessing techniques 377
    Practical application 34 Powerpointpresentation 393
    Commonly used software 34 Powerspectral density 235
    Nonlinear 28 Preprocessing 15, 18
    Nonlinear static analysis 187 Pressure 162
    Nonlinearity 189 Processing
    Neuber’s equation 142,311 Preprocessing 15, 18
    Numerical method 1,3 Post-processing 15, 18
    Nusselt number 247
    NVH analysis 351
    Q
    0 Quality checks 98, 115, 178
    Aspect 99
    Occupant crash protection 348 Skew 99
    Occupant safety 349 Jacobian 100
    Octave band representation 353 Distortion 100
    One dimensional element Stretch 100
    Rod 63,65 Included angle 100
    Bar 63 Taper 101
    Beam 63,74 Quasistatic simulation 342
    Axisymmetric shell 63
    Pipe 63
    Optimization R
    Geometry parameter 32
    R&D 22,23
    Shape Parameter 32
    Radiation heat transfer 255
    Practical application 32
    Radiator 259
    Commonly used software
    Orthotropic
    32
    160
    Rain flow counting 314
    Random vibrations 207,235
    Other mesh check 101, 116, 122
    Over damped 226
    Reduced integration 338
    Relative design 14
    Reliability 297
    P Residual stress 345,377, 393
    Resonance 222
    Peak counting 313 Reversal 309
    p-Element 184 Reynolds number 33, 249
    Penalty stiffness method 340 Ribs 223, 390
    Photo elasticity 396 Rigid element 139
    2-D 397 Road condition 24
    3-D 397 Rod 151
    Piola-Kirchoffstress 196 Rod element 63,65Stiffness matrix by Direct Method
    R-Tria(Right angle triangle)
    Page No.
    65
    96
    Scalar 39
    Scaling ofresult 383
    Seat belt anchorage system 348
    Seating system 347
    Shaker excitation 404
    Shear centre 84
    Shell normal 103
    Shrink fit simulation 154
    Contact analysis 155
    Gap elements 155
    Beam elements 156
    Temp method 156
    Constraint method 157
    Side impact 349
    Simple harmonic motion 215
    Simulate a contact 330
    Single degree offreedom 228
    Skew 99
    Slave bodies 331
    Slip condition 332
    Solution restart method 183
    Solver 182,231
    Sound intensity 355
    Soundpower 355
    Sound pressure 352
    Special elements 127
    Gap 134
    Mass 136
    Spring and damper 138
    Rigid and constraints 139
    Special techniques 127
    Spring element 138
    Spin softening 190
    Static 27, 175
    Static fatigue 299
    Static indeterminacy 45
    Steady state conduction 242
    Stick condition 332
    Stiffness 16
    Stiffness matrix 16,64
    Strain gauge 395
    Strain life approach 308
    Strain energy plot 388
    Stress 35
    Page No.
    Types ofstress 36
    Analysis ofstress 40
    Uni-axial stress 41
    Bi-axial stress 42
    Tri-axial stress 45
    Shear stress 42
    Principal stress 43
    vonMises stress 43
    Stress concentration 89, 143
    Stress life approach 300
    Stretch 100, 121
    Structural acoustics 367
    Structural born noise 356
    Structural crashworthiness 322
    Structural damping 216
    Structural grid 284
    Sub-modeling 184
    Surface finish 307
    Symmetry check 56
    Symmetry 173
    System administrator 410
    T-connections 116
    Taper 101
    Temperature loading 166
    Temperature method 156
    Tensile stress 41
    Tensor 39
    Tetra collapse 115
    Tetra meshing 113
    Techniques 113
    Quality checks 115
    Tetra collapse 115
    Stretch 121
    Distortion 121
    Jacobian 121
    Other 121
    T-connection 116
    Theoretical finite element analysis 16
    Thermal analysis 237
    Conduction 239
    Convection 245
    Radiation 255
    Practical application 258
    Commonly used soft wares 238
    IC Engine block 265
    Thin shell element 88Page No.
    Three-dimensional elements 111
    Tetra 113
    Penta or wedge 112
    Hex or brick 118
    Pyramid 112, 125
    Tiffformat 383
    Time domain 212
    Time estimation for meshing 55
    Top stress 104
    Torque 38, 164
    Torque sensors 398
    Torque transducer 398
    Torsional stress 76
    Torture track 401,402
    Traction 162
    Tractor fender 25
    Transducers 406
    Transient dynamics 322
    Transient response 230
    Transmission path 357
    Tri-axial 45
    Truck 23
    Steering knuckle failure analysis 23
    True stress 195
    True strain 195
    Turbulence modeling 285
    Turbulent 246
    Turbulent flow 246
    Two degree offreedom 231
    Two-dimensional elements 85
    Plane stress 87
    Plane strain 87
    Plate 87
    Membrane 88
    Thin shell 88
    Axisymmetric solid 88
    Types of Id element 63
    Types ofelement 50
    Types offorces 37
    Types ofmoments 38
    Types ofstress 36
    Unstructured meshing
    Page No.
    252
    V
    Vacuum 162
    Variable thickness 97
    Mould flow analysis 96, 97,293
    Variational method 16
    Vector 39
    Velocity 208
    Vibration approach 299
    Vibration control 373
    Vibration fatigue 299
    Vibration level 352
    Viscosity 247
    Viscous damping 216
    Visible range ofvibration 212
    w
    Wave length 255
    Wave speed 360
    Weighted residual method 16
    Weldedjoints 143
    Practical considerations 147
    Welding analysis 316
    Welding simulation 143
    Spot welding 144,317
    Arc welding 146,318
    Wheel in ditch 168
    Wind tunnel testing 286

كلمة سر فك الضغط : books-world.net
The Unzip Password : books-world.net

تحميل

يجب عليك التسجيل في الموقع لكي تتمكن من التحميل

تسجيل | تسجيل الدخول