Polymer Composites From Nano to Macro-Scale
Klaus Friedrich
Stoyko Fakirov
Zhong Zhang
Contents
Preface
Editors Biographies
xv
xix
Part I Nanocomposites: Structure and Properties 1
Chapter 1 Carbon Nanotube-Reinforced Polymers: a State
of the Art Review 3
1 Introduction 3
2 General Problems in Nanocomposite Technology 4
3 Experimental 6
3.1 Manufacturingof Multiple-Wall Carbon Nanotubes 6
3.2 Treatment of Carbon Nanotubes 7
3.3 Matrix Polymers 7
3.4 Electron Microscopy 7
3.5 Dynamic-Mechanical Thermal Analysis 8
4 Results 8
4.1 Comparison of the Multiple-Wall Carbon Nanotubes
Studied 8
4.2 Purification 10
4.3 CNWEpoxy Composites: Dispersion,
Matrix Bonding,and Functionalization 11
4.3.1 Dispersion 11
4.3.2 Nanotube-Matrix Interaction 13
4.3.3 Functionalization 13
4.4 Microscopy 15
4.4.1 Matrix Bonding to the Nanotubes 15
4.4.2 Crack Bridgingand Telescopic Pull-Outs 16
4.5 Thermal and Mechanical Properties 17
4.6 Electrical Properties 18
5 Conclusions 21
6 Acknowledgements 2 1
7 References 22vi Contents
Chapter 2 Application of Non-Layered Nanoparticles
in Polymer Modification
1 Introduction
2 Surface Treatment and Compounding
2.1 Raw Materials
2.2 Pregraftingof the Nanoparticlesby Irradiation
2.3 Characterizationof the Irradiation Products
2.4 Preparation of PP-Based Nanocomposites
and Their Characterization
2.5 Preparation of Epoxy-Based Nanocomposites
and Their Characterization
3 Thermoplastic Systems
3.1 Effect of Irradiation Grafting Polymerization
on the Nanoparticles
3.2 Tensile Properties
3.3 Fractography
4 Thermosetting Systems
4.1 Interfacial Interactions in the Composites
4.2 Curing Behavior
4.3 Friction and Wear Performance
5 Conclusions
6 Acknowledgements
7 References
Chapter3 Reinforcement of Thermosetting Polymers by
the Incorporationof Micro- and Nanoparticles
1 Introduction
2 Manufacturingof ThermosettingNanocomposites
3 Propertiesof Nanocomposites
3.1 Stress-Strain Behavior
3.2 Impact Behavior
3.3 Stiffness-ImpactEnergy Relationship
3.4 Dynamic Mechanical Properties
3.5 Wear Performance
4 Acknowledgements
5 References
Chapter 4 Polyimides Reinforced by a Sol-Gel Derived
OrganosiliconNanophase: Synthesis
and Structure-Property Relationships
1 Nanocomposites Based on Flexible-Chain Polymers
2 Nanocomposites Based on Semi-Rigid Chain
Polymers (Polyimides)Contents
2.1 In Situ Generation of an Organosilicon Nanophase
2.2 Structural Characterization
2.3 Water Uptake
2.4 ThermomechanicalPerformance
2.5 Dielectric Properties
3 Conclusions
4 Acknowledgements
5 References
Chapter 5 Layered SilicateIRubberNanocomposites
via Latex and Solution Intercalations
1 Concept of Nanoreinforcement
2 Production of RubberIClay Nanocomposites
2.1 Latex Intercalation
2.1.1 Nanocomposites from Rubber Latex
2.1.2 Nanocomposites from Latex Blends
2.1.3 Radiation-Vulcanized NR Latex
2.2 Solvent-Assisted Intercalation
3 Future Issues
4 Acknowledgements
5 References
Chapter 6 Property Improvements of an Epoxy Resin
by Nanosilica Particle Reinforcement
1 Introductionand State of the Art
2 Preparation and Characterization Techniques
2.1 Basic Material Components
2.2 Preparation of Nanosilica-Filled Epoxy Composites
2.3 Structuraland Mechanical Analysis
2.3.1 Microstructure
2.3.2 Viscosity Studiesof the Unfilled
and Filled Resin
2.3.3 Mechanical Properties
2.3.4 Tribological Properties
2.3.5 Failure Analysis
3 Microstructuraland Rheological Details
3.1 Particle Distribution
3.2 Viscosity
4 Mechanical Properties
4.1 Three-Point Bending
4.2 Microhardness
4.3 FractureToughness
4.4 Tribological Properties
vii
67
68
69
70
72
73
74
74
77
77
78
79
79
8 1
84
87
8 8
88
89
91
9 1
94
94
94
95
95
95
95
96
96
96
96
98
99
99
99
101
101
5 Conclusions 103viii
6 Acknowledgements
7 References
Contents
Part I1 Special CharacterizationMethods
and Modeling 107
Chapter 7 Micro-ScratchTesting and Finite Element
Simulation of Wear Mechanisms
of Polymer Composites 109
1 Introduction 109
2 Micro-Scratch Testing 110
3 The RepresentativeWear Mechanisms 113
4 Wear Considerationsby Finite Element
Contact Analysis 114
4.1 Finite Element Macromicro-Contact Models 115
4.2 Normal Fiber Orientation 116
4.3 Parallel Fiber Orientation 118
4.4 Anti-Parallel Fiber Orientation 120
5 Finite Element Simulationof the FiberMatrix Debonding 121
5.1 DebondingModel and Interface Elements 122
5.1.1 Interface Elements 122
5.1.2 Conditions of Debonding 123
5.1.3 Unloading Considerations 125
5.1.4 The Debonding Algorithm 125
5.2 Calculations for N-Oriented Carbon Fibers
in a PEEK Matrix 126
6 Conclusions 129
7 Acknowledgements 130
8 References 130
Chapter 8 Determinationof the Interface Strength
of Polymer-Polymer Joints by a Curved
Interface Tensile Test
1 Introduction
2 Curved Interface TensileTest
3 Stress Calculationby Finite-Element Analysis
3.1 Flat Interface
3.2 Curved Interface
4 Experimental Observations
4.1 Materials and Specimen Preparation
4.2 Tensile Tests and Strain Estimation
4.3 Determinationof the Adhesion Strength
5 Conclusionsand Outlook
6 ReferencesContents ix
Chapter 9 Manufacturing and Characterization
of Microfibrillar Reinforced Composites
from Polymer Blends
1 Introduction
2 Materials, Processing,and Characterization Techniques
3 Structure and Propertiesof MFCs
3.1 Structure and Propertiesof MFCs Based
on PETPP Blends
3.1.1 Morphology
3.1.2 Mechanical Properties of the Drawn Blends
After Processing
3.2 Structure and Propertiesof MFCs Based
on LCPIPPE Blends
3.2.1 Morphology
3.2.2 Mechanical Propertiesof Injection Molded
LCPPPE Blends with MFC Structure
4 Conclusions
5 Acknowledgements
6 References
Chapter 10 Tribological Characteristicsof Micro- and
Nanoparticle Filled Polymer Composites
1 Introduction
2 Influenceof Particle Size: from Micro- to Nanometer
3 Influence of the NanoparticleVolume Content
4 Particle-Filled Polytetrafluoroethylene
5 Integrationof Inorganic Particles
With Traditional Fillers
5.1 Inorganic Particles and Other Fillers
5.2 Combinative Effect of Nanoparticles
and Short Carbon Fibers
6 Conclusion
7 Acknowledgement
8 References
Part I11 Macrocomposites: Processing and Application
Chapter 11 Productionof ThermoplasticTowpregs
and Towpreg-Based Composites
1 Introduction
2 Raw Materials
3 Production of Towpregs
3.1 Process and Equipment DescriptionContents
3.2 RelationshipsBetween Final Properties
and Processing Conditions
3.2.1 ParametersAffecting the Polymer Powder
Deposition
3.2.2 Influence of the Processing Conditions
on the Final Composite Properties
4 Production of Towpreg-Based Composites
4.1 CompressionMolding
4.1.1 ProcessDescription
4.1.2 Molding Conditions
4.2 Process Modeling
4.2.1 IsothermalConsolidation
4.2.2 Non-Isothermal Consolidation
4.2.3 Validation of the Consolidation Model
4.3 Pultrusion
4.3.1 ProcessDescription
4.3.2 Processing Conditions
4.3.3 Process Modeling
4.4 Filament Winding
4.4.1 ProcessDescription
4.4.2 Processing Conditions
4.4.3 RelationshipsBetween Final Properties
and Processing Conditions
4.5 Long Fiber-Reinforced Composite Stamping
4.5.1 Process Description
4.5.2 Processing Conditions
5 Composite Properties
5.1 Mechanical Propertiesof Continuous
Fiber-Reinforced Composites
5.2 Mechanical Propertiesof Discontinuous
Fiber-Reinforced Composites
6 Conclusions
7 Acknowledgements
8 References
Chapter 12 Manufacturingof Tailored Reinforcement
for Liquid Composite Molding Processes
1 Introduction
2 Pre-selection of Sewing Thread
2.1 Selection Criteria
2.2 Polyester Thread in Global Preform Sewing
3 TailoredReinforcements
4 Stitching Parameters and Their Influence
on the Fiber-Reinforced Polymer CompositesContents xi
4.1 Machine Parameters
4.1.1 Thread Tension
4.1.2 Presser Foot Pressure
4.2 StitchingPattern
5 Quality Secured Preforming
5.1 Macro Preform Quality
5.2 Micro Preform Quality
5.3 Fiber Disturbance at Seams
6 Liquid CompositeMolding Process
for Net-Shape Preforms
6.1 Preform LCM Process Chain
6.2 Thermal Behavior of Seam in FRPC
7 Quality Management
8 Conclusions
9 Acknowledgements
10 References
Chapter 13 Deconsolidationand Reconsolidationof
ThermoplasticComposites During Processing 233
1 Introduction
2 Experimental Observations
2.1 Void Growth
2.2 Migration of Voids
2.3 SqueezedFlow of Resin During Reconsolidation
3 MechanisticModel of the Void Growth
3.1 Discussion of the Mechanism
3.2 Void-Growth Model
3.3 Theoretical Predictions
4 Thermalh4echanistic Models of Migration of Voids
4.1 Discussion of Mechanisms
4.2 Thermal Analysis
4.3 Void Closure
4.4 Squeezed Creep Flow of Resin
5 Conclusions
6 Acknowledgement
7 References
Chapter 14 Long Fiber-Reinforced Thermoplastic
Composites in Automotive Applications
1 Introduction
2 Long Glass Fiber-Reinforced Polypropylene
with Mineral Fillers
3 Long Fiber-Reinforced Polyamide 66 with Minimized
Water Absorption 259xii Contents
4 Long Fiber-Reinforced Thermoplastic Styrene
Resins for Car Interior Applications
5 Conclusions
6 References
Part IV Mechanical Performance of Macrocomposites
Chapter 15 Deformation Mechanisms
in Knitted Fabric Composites
1 Introduction
2 Knitted Fabrics
3 Material Characterization and Deformation Behavior
3.1 Raw Materials
3.2 Material Characterization
3.2.1 TensileTesting
3.2.2 V-Bending
3.2.3 Dome Forming
3.2.4 Cup Forming
4 Experimental Results and Grid Strain Analysis
4.1 TensileTesting
4.2 V-bending
4.3 Dome Forming
4.4 Cup Forming
5 Textile CompositeDeformation Mechanisms
5.1 Prepreg Flow Mechanisms
5.2 Macro-Level Fabric Deformation Modes
5.3 Micro-Level Fabric Deformation Modes
5.4 Textile Fabric Force-Displacement Curve
5.5 Experimental Force-Displacement Curves
6 Modeling the Manufactureof the Reinforcement
Architecture
6.1 Model Set-Up
6.2 Model Input: Knitting Machine Parameters
6.3 Model Input: Material Property Parameters
6.4 Model Input: Non-Physical Parameters
6.5 Simulatingthe Mechanics of the Knitting Process
7 ConcludingRemarks
8 Acknowledgements
9 References
Chapter 16 Impact Damage in Composite Laminates
1 Introduction
2 Deformation and Energy Release Rate of Axisymmetric
Plates with Multiple Delaminations 29 1Contents xiii
2.1 Axisymmetric Plate with Multiple Delaminations
of the Same Size 29 1
2.2 A Delamination is Larger or Smallerthan the Rest 293
2.3 Effect of geometrical nonlinearity
2.4 Finite Element Analysis
2.5 Some Derived Relationships
Effect of the Stacking Sequence
Simulationof Delamination Growth in Composite
Laminates
Conclusion
References
Chapter 17 Discontinuous Basalt Fiber-Reinforced
Hybrid Composites
1 Introduction
2 Basalt Fibers
2.1 Characteristics, Applications
2.2 Production and Propertiesof Melt-Blown
Basalt Fibers
3 Hybrid Composites
3.1 Concept and Realization
3.2 Property Prediction
3.3 Applications
4 ThermoplasticHybrid Composites
4.1 Polypropylenewith Hybrid Reinforcement
Containing Basalt Fibers
4.2 Basalt Fiber-Reinforced Polymer Blends
5 Thermoset Hybrid Composites
5.1 Basalt Fiber Mat-Reinforced Hybrid Thermosets
5.2 Hybrid Fiber Mat-Reinforced Hybrid Thermosets
6 Conclusionsand Outlook
7 Acknowledgement
8 References
Chapter 18 Accelerated Testing Methodology
for Polymer Composite Durability
1 Introduction
2 Prediction Procedureof Fatigue Strength
3 Some Experimental Details and RelationshipsObtained 330
3.1 Experimental Procedure 330
3.2 Failure Mechanism 331
3.3 Master Curve for the CSR Strength 333
3.4 Master Curve for Creep Strength 334xiv Contents
3.5 Master Curve for the Fatigue Strength
at Zero Stress Ratio
3.6 Prediction of Fatigue Strength
for Arbitrary Stress Ratios
4 Applicabilityof the Prediction Method
5 Conclusion
6 References
ContributingAuthors
List of Acknowledgements
Author Index
Subject Index
Subject Index
Absoption
energy 256,265,317
water (moisture uptake)69,259,260,
316
Adhesion47,57,161,170,173,175,191
filler (fiber)-matrix 26, 38, 77, 101,
207,210,260,309-312,316
interfacial 17, 18,26,32
strength 133,136-138,140,144-146
Aging (Weathering)84,94
Analysis
acoustic emission 140
debonding 121, 122
dynamic-mechanical thermal
(DMTA) 8,20,56,94,260,261
finite element 125,126,137,296-298,
305
grid strain (GSA) 266,269-272
seam 226
stress 133, 136, 137
thermogravimetric (TGA) 28,70
Aspect ratio 3-5, 11,54,63-66,77, 80,
81.86, 156, 157, 160
Biodegradability 91,310
Bond
chemical 173
covalent 14-17,36
hydrogen 36,259
ionic 14
Carbon nanotube (CNT)
arc-grown 4,8-11
catalyticallygrown 4,8-11,21
dispersion of 7
functionalization of 7, 13, 14, 17
multiple-wall 4,6, 8,9, 13, 16
purification of 7, 10
single-wall 5-7, 16
Catalyst 7,9, 11,94,99-103
Clay 77-79, 88,91,92
organo- 87
smectite93
Coalescence 156, 157
of voids 240,241
Coefficient
diffusion 69
friction 38-41,57,96,102,103, 115,
122,124,126,130,172,174,175,
179-181,284
heat transfer 247
surfacetension 243,250
thermal expansion 64,92,93, 161
viscosity 252
Compatibility (Compatibilizer)15 1- 158,
161,162,319
Compliance 136,142,209
Compounding
latex 79,80, 81, 88
melt 87,88
Conductivity
electrical, 3,21
thermal, 21364 Polymer Composites:from Nano- to Macroscale
Consolidationof towpregs 203
isothermal 195
non-isothermal 195
pressure 199
Continuous (long) fibers 189, 194,206,
207,211,255,260,266,268
aramid 256
carbon 190,218,219,226,256
glass 190,218,219,256-260
natural 256
polyester 219,220,228
Delamination 289-292,297,299,332
growth of, simulation 304
multiple289,291,293-295,297,300
Depth wear rate 176, 177
Dielectricpermittivity, 67,72-74
Differential scanning calorimetry (DSC)
29,94,228
Dispersion
extent of 88
in polymer melt 79
in rubber 87
in solvent 79
in water 79
nanometer-scale 77
uniform 96
End-groups, 67
Energy
activation 333,334
Charpy impact 315
elastic 239,240
Gibbs’ free, of mixing 78
impact 152,293
release rateof 294,296-299,301-306
strain 124
Entanglement 26,32
Entropy 78
Equation
Arrhenius 333,334
Carman-Kozeni 196
Darcy 196
energy 197
Kelvin-Voigt 242
Kissinger 38
rule of mixture type 109, 117
Exfoliation (Delamination) 63, 66, 77,
78,82, 83, 85,88,92
Fibrillization 150,313
Filler (Reinforcement) 172,257
“active” 78
aramid fibers 310,315,317
bentonite 80,85,86
carbon black 78,87
ceramic 171,3lO-314,319,324
glass sphere 171
graphite 103, 176, 177, 181
fluorohectorite80-83,85
“inactive”, inert 78,80
inorganic, mineral 170-175,257,258,
261
network 85, 170
shortbasalt fibers 309,311,319-324
short carbon fibers 103, 174-182,
215,309,311
short glass fibers 175,215,255,256,
309,311,313-317,324
silica particle 171
Fullerene 3,6
Gas-barrier properties 63,67,87,91,92Subject Index
Hybrid composite 257,309,314-317
thermoplastic 317,318,320
thermoset 321-324
Hybrid fiber mat 323
Hydrophilicity 78
Hydrophobicity 78
Impregnation 192
Intercalation 25,63,78-80,83,92
degree of 82
latex 78,79,88
melt 79, 87,88
solution 78,79, 87.88
Isotropization 150, 157
Knitted fabric reinforcement 265, 266,
284
warp knit 267,270
weft knit 267,269,270,279
Latex 85
blend 81-83
coagulation of 82
polyurethane 82
rubber 79,80
Loss
chain flexibility57
dielectric72
height 177
material 42
matrix 238,252
toughness 56
wear 41
weight 70
Mechanical loss factor (tan 6), 17, 18,
57,70,71
Mechanical rolling effect 179, 182
Mechanism
abrasivewear 58, 172
cavitational craze-like55
crack propagation 53
deformation 274,276,279,284
energy-consuming 54
failure (damage) 53, 111, 114, 118,
121,130,331
fatiguewear 58, 172
wear 109-114, 119, 129, 172, 178
Melting index 27
Method
fatigue prediction 330,339
film-casting 82
Rayleigh-Ritz approximation 295,
305
sol-gel25,78,93,94, 103
Microhardness 95,99, 100, 103
Microscopy
atomic force ( A m ) 52, 87, 95, 98,
127, 177-179
light (LM) 11, 12, 151,235
scanning electron (SEM) 7,9,28,29,
35,42,52,96,102,109-112,151,
153-156,159-162,175,178,180,
181,191,192,313,314,319,321,
323
transmission electron (TEM)4,8-13,
15-17,52,81-87,95-97, 151
Miscibility
filler-matrix, 26
polymer, 32
Model (Modeling)278,279,301
debonding 121,124
elastic-plastic,Von Mises type 125
FE macro/micro 109, 115, 116, 121,
122, 129366 Polymer Composites:from Nano- to Macroscale
isothermal,of consolidation 195-200
kinematic 266
material 122,266
mechanistic,of void growth 234,241
non-isothermal,of consolidation 195-
200
squeezedcreepflow234,238,251,252
Tandon-Weng 209
void-closure 234
Modulus42,55,59,80,92,93,170,207
acidity 310
bending 95,99, 100, 103
complex 17, 18,56,70,71,80
flexural 50, 51, 55, 152, 157-159,
163,207-211,315,318,320
loss 17, 19
shear 110
tensile 32, 84, 103, 141, 155, 190,
208,209,255,258,269,270,282,
320
Young’s (elasticity)28,31-34,46,64,
66, 71, 110, 125, 135, 137, 234,
244,292,296,3 10,312-314
Molding
reinforced reactive injection 324
resin transfer (RTM) 217, 218, 223,
321,322
Multi-textileperforming 215
Nucleation
crack 41
multiple delamination 306
Optical transparency 91,97
Organophilization 78,87, 88
Polymer
blend 150-163, 175,319
liquid crystalline (LCP) 149-153,
160-162
thermoplastic powder 190-194,206,
211
Polymerization 25,26
grafting 27,42,92, 173
in situ 78.93
intercalation 93
irradiation 29
solvent 92
Polymorphic transition 64
Prepreg (pre-consolidated tape) 190-
192,194,203,235,274
Processing window 204,205
Reaggregation 84.88
Resistance
abrasion 91,93
corrosion 309,311, 324
crack propagation 54
heat 67
high-temperature 170,310
UV 92
wear39,41,47,56,58,59, 103,118,
120,169-171,174,182,315
Rule of hybrid mixtures 316-318
Scattering
small-angle X-ray (SAXS)64,68
wide-angle X-ray (WAXS) 64, 68,
87, 151, 153-155, 160, 161Subject Index
Seam 221,224,230
assembly 216,219,230
fixing and positioning 216,219,224
structural216,219,224,230
Simulation 202,266,267,282,283
consolidation 195
debonding 122,126
molecular 14
non-isothermal consolidation 198
Sinergism 175
Spectroscopy
infrared (IR) 36
Fourier transform infrared (FTIR)
28-30,39
Steric hindrance 12,38
Stiffness45,51,55,56,63,81,92, 182,
219,257,259,266,271,289,319,322
Strain-induced crystallization 85
Strength 42, 45, 46, 59, 92, 207, 259,
266,289,313,319,322
adhesion 5 1
bending 95,99, 100, 103,311
debonding 144, 145
flexural 50, 51, 152, 157-159, 163,
207-211,234,315,318,320
impact 28,33,34,45,95
shear 133,311,312
tear 84
tensile31-34,84,103,133,155,190,
208,209,255,257.3 l3,314.316,
320
yield 110, 125
Structure 160
interpenetratingnetwork (IPN) 321,
322
silica-siloxane93
skeleton 81,83, 84
three-dimensional interphase 170
Theory
Kelly-Qson 209
Tandon-Weng 209
Toughness93,94,313
fracture 3, 16, 21, 93, 95, 96, 101,
103,170,265,266,320
impact 255,257,258,265
Transfer film 170, 171, 174, 175
Tribological properties 27, 39, 42, 46,
57,94,96, 100, 101, 169, 173, 175
Viscosity 94, 95,98,99, 103, 196-198,
202,240,246,247,321
Void 236
content 236,244,245
closure 238,246,249-25 1
growth 234,235,238-240,244,246,
249
Vulcanization (Curing) 85, 87,94,321
kinetics of 38
radiation 84,88
sulfur 80,82,87,88
sulfurless88
Waste 227,228
X-ray diffraction(XRD) 82.83.88
Surfactant78
Yarn 217,218,275,276,278,280,282
كلمة سر فك الضغط : books-world.net
The Unzip Password : books-world.net
تحميل
يجب عليك التسجيل في الموقع لكي تتمكن من التحميل
تسجيل | تسجيل الدخول