Polylactic Acid – PLA Biopolymer Technology and Applications
Polylactic Acid – PLA Biopolymer Technology and Applications
Lee Tin Sin, Abdul Razak Rahmat, Wan Azian Wan Abdul Rahman
Contents
1 Overview of Poly(lactic Acid) 1
1.1 Background to Biodegradable Polymers 1
1.2 Market Potential of Biodegradable Polymers
and PLA 13
1.3 General Properties and Applications of PLA 33
1.3.1 PLA for Domestic Applications 33
1.3.2 PLA and Copolymers for Biomedical
Applications 43
1.4 Environmental Profile of PLA 57
1.5 Ecoprofile of PLA in Mass Production 58
1.6 Environmental Impact of PLA at the
Post-Consumer Stage 63
1.7 Conclusion 67
References 67
2 Synthesis and Production of Poly(lactic Acid) 71
2.1 Introduction 71
2.2 Lactic Acid Production 72
2.2.1 Laboratory Scale Production of Lactic Acid 85
2.3 Lactide and Poly(lactic Acid) Production 86
2.3.1 Review of Lactide Production Technology 88
2.3.2 Polymerization and Copolymerization of
Lactide 94
2.3.3 Lactide Copolymer 97
2.3.4 Quality Control 99
2.3.5 Quantification of Residual Lactide in PLA 100
2.3.6 Quantification of D-Lactic Acid Content
in PLA 103
2.4 Conclusion 105
References 105
v3 Thermal Properties of Poly(lactic Acid) 109
3.1 Introduction 109
3.2 Thermal Transition and Crystallization of PLA 112
3.3 Thermal Decomposition 123
3.4 Heat Capacity, Thermal Conductivity and
PressureVolumeTemperature of PLA 131
3.5 Conclusion 138
References 139
4 Chemical Properties of Poly(lactic Acid) 143
4.1 Introduction 143
4.2 Stereochemistry of Poly(lactic Acid) 146
4.3 Analytical Technique of PLA 154
4.3.1 Nuclear Magnetic Resonance Spectroscopy 154
4.3.2 Infrared Spectroscopy 157
4.4 Solubility and Barrier Properties of PLA 162
4.4.1 Solubility of Polylactic Acid 163
4.4.2 Permeability of Polylactic Acid 164
4.5 Conclusion 172
References 172
5 Mechanical Properties of Poly(lactic Acid) 177
5.1 Introduction 177
5.2 Effect of Crystallinity and Molecular Weight
on Mechanical Properties of PLA 179
5.3 Effect of Modifier/Plasticizer on PLA 182
5.4 Polymer Blends of PLA 191
5.4.1 Poly(lactic Acid) and Polycaprolactone
Blend 192
5.4.2 Blends of Polylactide with Degradable or
Partially Degradable Polymers 198
5.4.3 Blends of Polylactide and
Polyhydroxyalkanoates 202
5.4.4 PLA Blends with Nondegradable Polymers 207
5.5 Conclusion 215
References 215
vi CONTENTS6 Rheological Properties of Poly(lactic Acid) 221
6.1 Introduction 221
6.2 Rheological Properties of Poly(lactic Acid) 222
6.3 Effects of Molecular Weight 226
6.4 Effects of Branching 230
6.5 Extensional Viscosity 232
6.6 Solution Viscosity of PLA 233
6.7 Rheological Properties of Polymer Blends 233
6.7.1 PLA/PBAT Blend 235
6.7.2 Blend with Layered Silicate
Nanocomposites 237
6.7.3 PLA/Polystyrene Blend 239
6.8 Conclusion 243
References 243
7 Degradation and Stability of Poly(lactic Acid) 247
7.1 Introduction 247
7.2 Factors Affecting PLA Degradation 248
7.3 Hydrolytic and Enzymatic Degradation of PLA 255
7.4 Environmental Degradation of PLA 265
7.5 Thermal Degradation of PLA 278
7.6 Flame Resistance of PLA 288
7.7 Conclusion 295
References 295
8 Applications of Poly(lactic Acid) 301
8.1 Introduction 301
8.2 Poly(lactic Acid) for Domestic Applications 302
8.3 Poly(lactic Acid) for Engineering and
Agricultural Applications 317
8.4 Poly(lactic Acid) for Biomedical Applications 317
8.5 Conclusion 317
References 326
Index 329
CONTENTS viiThis page intentionally left blank
Index
A
Acetyl (CH3C) groups, 11
Activation energies of PLA, 129t
Aliphatic polyesters, 3441
Amorphous-made PLA films,
characteristics of, 258t
Analytical technique of PLA
CH symmetric stretching,
159161
Fourier transform infrared
spectroscopy (FT-IR),
157159
1H and 13C NMR spectra,
154156, 155f, 156f, 157f
infrared (IR) spectroscopy,
157162
nuclear magnetic resonance
(NMR) spectroscopy,
154157
aOH stretching band,
157159
presence of aCQO carbonyl,
157159
Applications of PLA, 25t
biomedical, 4357, 52t,
143144, 317, 324t
domestic, 3342, 302317,
303t
engineering, 317, 318t
B
Bagley correlation, 221222
Bakelite, 2
Bio-based polyethylene, 1719
Biodegradability and
biodegradation of PLA
aerobic and anaerobic
biodegradation, 266267,
266t
chemical bonding and,
249251
copolymer compositions,
effect of, 251252
degradation time, 251t
environmental degradation,
265278
factors affecting, 248255
flame resistance, 288295
fungal strains involved in,
273275, 274t
high-molecular-weight
polyesters, 253
hydrolytic and enzymatic
degradation, 255265
microorganisms involved in,
273
molecular weight and
crystallization, effect of,
252253
test under controlled
composting conditions,
275278, 276t, 277f, 278f,
279f
thermal degradation,
278287
using cumulative
measurement respirometric
(CMR) system, 269272
329Biodegradability and
biodegradation of PLA
(Continued)
in vivo degradation
mechanisms, 254255
water uptake and acidity,
253254
Biodegradable polyesters, 10f, 12
Biodegradable polymers, 3,
1719
background, 113
biological applications, 610
common, 7t
definitions of common
biological terms, 250t
degradation modes, 256f
degradation time, 251t
evolution after 28 days, 268f
hydrolyzable polymers, 251t
market potential, 1333
petroleum-derived, 12, 16
physical properties of
synthetic, 50t
weight losses due to
hydrolysis, 257261, 258t,
259f, 260t, 263f
Bio-ethanol, 1719
Bio-Flexs, 41
BioFoams, 2431
BIOFRONTt, 2324, 3132
Biomaxs, 211
Biomedical applications, of
PLA, 4357, 52t,
143144, 317, 324t
Bionollet, 12
Bionolles, 199200
Bionollet PTT 1100, 13
Blendex 338, 210
Blends, polymer. see polymer
blends
Brabender extruder, 224226
Branching in PLA, 230232
Bulk production PLA, 2022
C
Capillary rheometers, 221222
e-caprolactone, 4651, 8083,
95
monomer, 98
Capronors, 610
Cargill Dow Polymer LLC, 5
Carothers, Wallace, 5
CarreauYasuda model
parameters, 231t
Cellulose acetate, 11
fabric, knitted, 11
Cellulose polymers, 1920
CH bending bands, 126128
Chemical properties of PLA
copolymerization effects,
148149
crystallinity and supercooling,
149152, 150f
crystallization half-time,
148152, 150t
α-form, β-form and γ-form,
152, 159161, 160f
infrared (IR) spectroscopy,
157162
lactide isomers, 147148
nuclear magnetic resonance
(NMR) spectroscopy,
154157
permeation properties,
164172, 168t, 169f
revised tetrad stereosequence,
154155
solubility, 163164, 165t, 166t
‘solution-diffusion’ model,
170171
330 INDEXstereochemistry, 146153
stereoregularity, 154
stereosequence distribution,
154155
stereospecific isomer,
171172
thermodynamic criterion of
solubility, 163164
water vapor transmission
rates, 170t
China, PLA in, 3233
Climate change, PLA and, 61f
Cloisite 25A, 201202
Columbus, Christopher, 1
Commercial-grade branched
material, 230
Condensation polymerization of
lactic acid, 8990, 90f
Copolymerization
of lactide and glycolide,
9799
of L and D stereochemistry,
3441
Copolymers, 2431
CrossWLF model coefficient,
225t
Cup system, 6364
b-cyclodextrin, 104
D
Decomposition temperature of
PLA, 123131
Depolymerization of PLLA, 126
Development of PLA, in early
days, 144145
Dextrose, biological
fermentation of, 1011
Directive 94/62/EC on
Packaging and Packaging
Waste, 1617
Directive 1999/21/EC on the
Landfill of Waste, 1617
Directive 2008/98/EC on waste
(Waste Framework
Directive), 1617
Distortion/deflection
temperature, impact on, 41
D-lactic acid, 74, 8083, 8889,
9596, 163, 247248,
251252, 254255
content in PLA, calculations,
104105
presence, evaluation of,
103105
D-lactide, 3441, 9293, 229
Domestic application, PLA for,
3342, 302317, 303t
Downstream processing, 2022
Drug carrier medium, PLA as,
51, 54t
Durect Lactels, 57t
E
Eastar Bios, 1213
Eastar Bios Ultra, 1213
Ecodeart, 3132
Eco-efficiency, of PLA postconsumer, 63
Ecoflexs, 1213
Eco-indication points, 6364,
65f
Ecological aspects of PLA
production, 6163
Eco-plastic products, 17
Ecoprofile of PLA in mass
production, 5863
Ecovios, 1213, 2022
Elastic poly(e-caprolactone/
L-lactide) (PCL/L-LA)
copolymer with PLLA, 193
INDEX 331Engineering applications, PLA
for, 317, 318t
Environmental degradation of
PLA, 265278
Environmental impact of PLA,
6366
Environmental profile of PLA,
5758
European standard EN 13432,
1617
European Union, PLA in, 31
Extensional viscosities of PLA,
232233
F
Fibers, PLA, 145146
First generation PLA, 6364
FKuR Kunststoff GmbH grade,
44t
Flame resistance of PLA,
288295
Food packaging polymer, PLA
as, 145146
Fossil energy requirement for
PLA, 5961, 60f
Fre´my, 7374
Futerros, 41
Futerro specification, 48t
G
Galacids, 8485, 85t
Glycolide, 95
Glycolide-content copolymer,
9799
Goodyear, Charles, 1
‘green’ credentials of PLA,
145146
Green plastic technologies,
2324
H
Heat capacity of PLA, 132, 133t
High-molecular-weight PLA,
2324, 145146
Hisun Biomaterial PLA
specification, 47t
Hydrolisis of PLA, 124f
Hydroxycyclic ester initiators,
230
I
Ingeot, 5, 2324, 3441,
5861, 6366, 66t
IngeosPLA, 8083
IR spectrum of PLA, 157162
L
Lactate ester, 86
Lactels, 5157
Lactic acid
with addition of bases,
production, 7780
during anaerobic exercise,
production, 73
bacteria, 7475, 75t, 7780,
146147
from bacteria fermentation,
7475
broth from the fermentor, 80
chemical synthesis approach,
83
commercial purified, 8485
condensation polymerization,
90f
evaporation and
prepolymerization stages,
9092
and feeling of soreness, 73
fermentation process, 7475,
7780, 84, 146147
332 INDEXindustrial, 8485
laboratory scale production,
8586
NatureWorks, 80
pharmaceutical grade, US, 85
physical properties, 73t
polylactide (PLA) from,
4346
production, 7285
Purac’s, 30f, 5758, 6163
purification technologies, 80,
81t
reaction of polymerization
and depolymerization
reaction, 9092, 91f
sugarcane-based production,
5758
synthesis in lactate form, 85b
water removal during
production, 8990
yield corresponding to type of
starchy and cellulosic
material and to
microorganism, 78t
Lactide, 5
coordination-insertion chain
growth reaction scheme,
96f
Lactide copolymer, 9799
Lactidedioxanone copolymer,
9899, 100f
Lactideglycolide copolymers,
9798
tensile strength, 99t
Lactide polymerization, 9596
Lactide production technology,
8893
anionic initiators used, 9495
cationic initiators used,
9495
mass-scale production, 88
polymerization and
copolymerization, 9497
process flow, 89f
US Patent 5 274 073, 8889
Lactobacillus species, 7477,
75t, 76t
Le Chatelier’s principle, 9092
Lignocellulosics, 23
Limiting oxygen index (LOI),
288290
Linear-branched PLA, 231
L-lactic acid, 4346, 79t,
8083, 8889, 251252,
254255
L-lactide, 74, 9293
Long-chain poly(p-dioxanone),
9899
Low-molecular-weight PLA,
8687
M
MarkHouwink equation, 233,
234t
Market potential of PLA, 1333
Mass production, ecoprofile of
PLA in, 5863
MaterBis sample, 266267
MBA900H, 2324
Mechanical properties of PLA
of annealed poly (D,L-lactide)
specimens, 181t
of blends of polylactide with
nondegradable polymers,
213t
crystallinity and molecular
weight, effect of, 179182
electron irradiation and,
286287
elongation at break, 190191
INDEX 333Mechanical properties of PLA
(Continued)
glucose monoester or partial
fatty acid ester, effect of,
188
nanocomposites, 212215
from NatureWorks LLC, 178t
of nonannealing poly (D,Llactide) specimens, 181t
oligomeric lactic acid, effect
of, 189190
PBOH, AGM and DBS, effect
of, 190191
PLA/organoclay
nanocomposites, 195
for PLA/PCL, 195, 196t, 198
PLAPCLPLA triblock
copolymer, 195
PLA/polystyrene blend,
239240
plasticizers and modifiers,
effect of, 182191, 183t
with polycaprolactone (PCL),
blending with, 192197
poly(ethyleneco-vinyl acetate)
(EVA), effect of, 189190
polyethylene glycol
monolaurate, effect of,
189190
poly(ethylene glycol) (PEG),
effect of, 189191
of polylactide/PHA blends,
208t
of poly(L-lactide) specimens,
180t
polymer blends, 191215
with poly(tetramethylene
adipate-co-terephthalate)
(PTAT), 198199
triacetin (TAC), effect of, 190
Meso-lactide, 3441, 8889,
156157
Methyl trifluoromethane
sulfonic acid, 9495
Microorganism-derived
biodegradable polymers, 3
Mineralization of PLA, 272,
272f
Mirelt, 1011
MMT nanoclays, 210
Moldflows software, 224226
Multicyclic esters, 230
Multifunctional polymerization
initiators, 230
N
NatureWorks, PLA by, 5861,
59f
NatureWorks grades, 35t, 37t,
39t
NMR spectrum of PLA,
154157
N,N,N0,N0-tetramethyl-1,4-
phenylenediamine (TMPD),
284286
Nodaxt, 206207
O
oligoNodax, 206207
oligoNodax-b-poly(L-lactide)
diblock copolymers,
206207
Organically modified
montmorillonite (OMMT),
294295, 294t
Oxo-biodegradable plastics,
34
Oxo-biodegradable polymers,
34
334 INDEXP
PaperMates, 1011
Patents published about PLA, 6f
PBS/PBSA, 12
p-dioxanone monomer, 9899
PE-coated cardboard cup, 6364
Pellethanet 2102-75A, 210
Permeation properties of PLA,
207215
Petrochemical polymers and
climate change, 61f
Petroleum-derived
biodegradable polymers, 3,
12, 16
Phenol-formaldehyde resin, 2
Picea sitchensis, 121122
PLA-copolymer-related drug
delivery system, 5157
PLAGA copolymer, 273275
Plastics
ban on non-degradable,
1617
certification of compostable,
18t
degradability of, 23
global producers, 1314
products, 1516
renewable biodegradable, 20f
reusable plastic bags, 17
world production, 1314
worldwide demand, 1415
Plastic surgery, PLA in, 51
Polybutylene adipate/
terephthalate (PBAT), 13
Polycaprolactone (PCL), 610
Polydioxanone (PDO), 610
Poly(D-lactide)/poly(D-lactic
acid) (PDLA), 4351,
109112, 143144
copolymers, 113
Poly(DL-lactide)/poly(DL-lactic
acid) (PDLLA), 109111,
114f, 143144
Polyethylene, 24
Poly (ethylene oxide) (PEO),
188189
Polyethylene terephthalate
(PET), 13, 164
permeability, 166169
Polyglycolic acid (PGA), 610
Poly(3-hydroxyalkanoate)
(PHA)/PLA blends,
205206
Polyhydroxyalkanoates (PHA),
1011
Poly(b-hydroxybutyrateco-hydroxyvalerate)
(PHBV), 169170
Poly-3-hydroxybutyratecovalerate (PHBV), 1011
Polyhydroxybutyrate (PHB),
1011
Poly(lactic acid)/polylactide
(PLA), 3, 5
applications, 25t
arrangement of molecules of
semicrystalline, 222223
average prices, 2223
biodegradability, 144.
see also biodegradability
and biodegradation of PLA
biomedical applications,
4357, 52t, 143144, 317,
324t
bulk production, 2022
CarreauYasuda model
parameters, 231t
characteristics of amorphousmade, 258t
in China, 3233
INDEX 335Poly(lactic acid)/polylactide
(PLA) (Continued)
and climate change, 61f
copolymers, 2431
crossWLF model
coefficient, 225t
cup system, 6364
development, early days,
144145
direct method of synthesizing,
144145
distortion/deflection
temperature, impact on,
41
domestic application, 3342,
302317, 303t
downstream processing,
2022
as a drug carrier medium, 51,
54t
eco-efficiency, postconsumer, 63
eco-indication points, 6364,
65f
engineering applications, 317,
318t
environmental profile of,
5758
in the European Union, 31
family, 144
fibers, 145146
first generation, 6364
FKuR Kunststoff GmbH
grade, 44t
as a food packaging polymer,
145146
fossil energy requirement,
5961, 60f
Futerro specification, 48t
‘green’ credentials, 145146
high-molecular-weight,
2324, 145146
Hisun Biomaterial
specification, 47t
impact on environment,
6366. see also
biodegradability and
biodegradation of PLA
from L-lactic acid, 4346
market potential, 1333
mass production and
ecoprofile, 5863
by NatureWorks, 5861, 59f
NatureWorks grades, 35t, 37t,
39t
patents published, 6f
PLA-coated cable vs PVCcoated cable, 323t
in plastic surgery, 51
powerlaw equation, 225t,
236
Purac’s product range,
2431, 5157
research publications
(19502009), 6f
routes for synthesis, 144f
second generation, 5961
Toyobo grade, 46t
UnitikaTerramacs grade,
42t, 43t
virgin PET (vPET) vs
recycled PET (rPET),
66t
Polylactic acid resin producers,
32t
Polylactide bottles,
biodegradability study of,
267269
in compost pile, 270f
evolution after 28 days, 268f
336 INDEXPoly(L-lactic acid)/poly(L-lactide)
(PLLA), 109111,
143144
activation energy, 128129
calcium-ion end-capped,
128129
carboxyl-type, 128129
depolymerization, 126
effects of pyrolysis, 128129
functional groups of endcapped, 128129
IR spectra, 161162
melting range, 112113
PBS/PBSL blends, 200
PLLA/HDPE blends,
211212
PLLA/LLDPE blends,
211212
PLLA/Nodaxt blends,
206207
PLLA/PBSA composites with
C25A and TFC, 200201
PLLA/PBS blends, 201
PLLAPEGPLLA triblock
copolymer, 205
PLLA/PEO, 207210
PLLA/PHB blends, 205
PLLA/PHBV blends,
202205
PLLA/PTAT blends,
198199
rate of hydrolysis, 264t
re-crystallization process, 261
stereochemical defects and
crystallization, 121122
thermal decomposition,
123125
thermal properties of
hydrolytically degraded,
261264, 262t
thermograms, 114f, 259f
unit cell parameters for
non-blended, 143144
Polymer blends, 191215
with dicumyl peroxide (DCP),
194
elastic poly(e-caprolactone/
L-lactide) (PCL/L-LA)
copolymer with PLLA, 193
with nondegradable polymers,
207215
PEO/PLLA blends, 207210
PLA/Cloisite 30B blends,
210
PLA/ePHA blends, 205206
PLA/PHA blends, 205206
PLA/poly(butylene adipateco-terephthalate) (PBAT),
199
PLA/polyisoprene/poly(vinyl
acetate) blends, 210
PLLA/Nodaxt blends,
206207
PLLA/PBS blends, 201
PLLA/PBSL blends, 200
PLLAPCL diblock
copolymer, 193194
PLLAPCLPLLA triblock
copolymer, 193
PLLA/PHB blends, 205
PLLA/PHBV, 202205
PLLA/PHBV blends, 202
with polycaprolactone (PCL),
192197
with poly(ethylene/butylene
succinate), 199200
with polyhydroxyalkanoates
(PHAs), 202207
of polylactide with
degradable or partially
INDEX 337degradable polymers,
198202, 203t
poly(TMC/CL), 194195
polyurethane/PLA networks,
194
with poly(vinyl acetate)
(PVAc), 207
solution and melt blending,
207
using triphenyl phosphite, 193
at XPLLA, 193194
Polymerize lactide, 9596
Polymers, 1
average prices, 22f
biodegradable, 3, 21f
global development, 2, 2f
oxo-biodegradable, 34
petroleum price and, 1516
synthetic, 2
worldwide consumption, 15t
Polypropylene, 24
Polystyrene (PS), 2, 194195
Polytetramethylene adiphate/
terephthalate (PTMAT), 13
Poly(vinyl acetate), 3
Poly(vinyl alcohol) (PVOH),
35, 249251
average prices, 2223
Poly(vinyl chloride) (PVC), 2
Potassium methoxide, 9495
Powerlaw equation, 225t, 236
Prepolymer reactor, 8992
PRO-BIP 2009, 1719
Production of poly(lactic acid)/
polylactide (PLA),
86105
application of coupling agents
in, 86105
calculation of residual lactide,
102103
catalyst used, 94t
coordination-insertion chain
growth reaction scheme of
lactide, 96f
direct polycondensation (DP)
route, 7172
evaluation of D-lactic acid
presence, 103105
evaporation and
prepolymerization stages,
9092
formation of free radicals,
8687
GC/FID method of residual
lactide quantification,
100102, 101t
from initial fermentation
process, 92f
from lactate ester, 86
low-molecular weight, 8687
low-molecular-weight
byproducts, 9293
quality control, 99100
quantification of residual
lactide in, 99103
reaction of polymerization
and depolymerization
reaction, 9092, 91f
ring-opening polymerization
(ROP) route, 7172,
8687
sample preparation for
testing, 104b
stereocomplex composition,
9293
testing procedures, 99100
transesterification mechanism,
9092
US Patent 6 569 989,
9293
338 INDEXProteinase K, 265t
Purac’s product range, 2431,
5157
PURALACTt, 24
Purasorbs, 5157, 55t, 56t
PVC-coated cable
PLA-coated cable vs, 323t
PVT relationship of PLA,
132138, 136t, 137t
Pyramid Bioplastics Guben
GmbH, 31
R
Recycled PET (rPET)
virgin PET (vPET) vs, 66t
Recycling of biowaste, 1617
Regular solution theory (RST),
164
Research publications about
PLA (19502009), 6f
Residual lactide, quantification
of, 99103
calculations, 102103
GC/FID method, 100102,
101t
REVOD201, 41
REVODE101, 41
Rheological properties of PLA,
222226
blends with layered silicate
nanocomposites, 237239
branching effects, 230232
extensional viscosities,
232233
flow activation energy for
PLA70 blend, 243t
molecular weight, effect of,
226229, 227t, 228f
non-Newtonian pseudoplastic
behavior of PLA, 224226
of PLACNs, 237239, 238f
PLA-melt viscosity, 223f,
224f
PLA/PBAT melts, 235237
PLA/polystyrene blend,
239243
of polymer blends, 233243
shear viscosities, 222224
solution viscosity, 233
true viscosity vs 1/T for
PLA70, 242, 242f
viscoelastic properties,
226227
zero-shear viscosity,
227229, 227t
Rheometric Dynamic Analyzer
(RDAII), 237
Rheometrics RDSII torsional
rheometer, 226227
Rhizopus oryzae, 7577
Ring-opening polymerization of
lactide, 8687
Rotational rheometers, 221222
Rubber, natural, 1
S
Scheele, Carl Wilhelm, 7374
Second generation PLA, 5961
Semicrystalline, arrangement of
molecules of, 222223
Solution viscosity of PLA, 233
Stannous (Sn) complexes,
9596
Starch-based plastics, 2223
Starches, 23
Starchpolymer blends, 1920
Stereochemistry of PLA,
146153
Stereoisomer D-lactic acid,
4346
INDEX 339Sulfur vulcanization, 1
Synthesis of PLA, routes for, 144f
Synthesizing PLA, direct
method of, 144145
Synthetic polymer, 2
T
Tellest, 1011
Teramacs, 3132
Terramacs, 41
Thermal conductivity of PLA,
131132, 135t
Thermal degradation of PLA,
278287, 281t, 282f, 283f
Thermal properties of PLA
activation energies, 129t
annealing point, 115116
crystallization, 111123
degradation under isothermal
conditions, 125126
determination, 109111
DSC thermograms, 117f
fiber incorporation and
thermal transition, 121122
food grade plasticizer, effects
of, 116121, 120t
FTIR spectra, 126128, 127f
glass transition behavior,
114115
glass transition temperature,
112115
heat capacity, 132, 133t
isomers, effects of, 111t
lactide and, 118
maleic anhydride (MA)-
compatibilized blends,
122123
melting temperature and
enthalpies, 114115, 119t,
149f
microstructure rearrangement
upon cooling, 111
molten polymer, 132138
monomer types, impact on
structural properties,
121122
PLAstarch blends,
122123, 122t, 123f
pure PLA, 121122
PVT relationship, 132138,
136t, 137t
shear viscosity, 112113
solubility parameters, 118t
stereocomplexed
PLLAPDLA blend,
112113
stereoform of lactides, 110f
thermal conductivity,
131132, 135t
thermal decomposition,
123131
thermogravimetry, 130f
transition temperature,
112123
WF accelerated thermal
decomposition, 129131
Tin octoate catalyst, 9697
Titration reaction scheme,
271, 271
Toyobo PLA specification, 46t
Transesterification of PLA,
124f
Triallyl isocyanurate (TAIC),
286287, 287f
Trifluoromethane sulfonic acid,
9495
Tris(nonylphenyl), 231
Tris (nonylphenyl) phosphate,
231
Tweens80, 7780
340 INDEXU
UL-94, 288290, 289t, 291t,
292t
UnitikaTerramacs PLA
grade, 42t, 43t
V
Vinegar syndrome, 11
Virgin PET (vPET) vs recycled
PET (rPET), 66t
Vuitton, Louis, 11
Vulcanization of rubber, 1
Vyloecols, 2431, 41
W
WeissenbergRabinowitsch
correlation, 221222
WilliamsLandelFerry
equation (WLF), 229
Z
Zoladexs, 5
كلمة سر فك الضغط : books-world.net
The Unzip Password : books-world.net
تعليقات