Petroleum Refining Design and Applications Handbook – Volume 1

Petroleum Refining Design and Applications Handbook – Volume 1
اسم المؤلف
A. Kayode Coker
التاريخ
2 أبريل 2022
المشاهدات
28
التقييم
(لا توجد تقييمات)
Loading...

Petroleum Refining Design and Applications Handbook
Volume 1
A. Kayode Coker
Contents
Preface xix
Acknowledgments xxi
About the Author xxiii
1 Introduction 1
References 6
2 Composition of Crude Oils and Petroleum Products 7
2.1 Hydrocarbons 8
2.1.1 Alkynes Series 12
2.2 Aromatic Hydrocarbons 14
2.3 Heteroatomic Organic Compounds 15
2.3.1 Non-Hydrocarbons 15
2.3.2 Sulfur Compounds 18
2.4 Thiols 18
2.5 Oxygen Compounds 20
2.6 Nitrogen Compounds 22
2.7 Resins and Asphaltenes 23
2.8 Salts 24
2.9 Carbon Dioxide 24
2.10 Metallic Compounds 24
2.11 Products Composition 25
2.11.1 Liquefied Petroleum Gas (LPG) (C3 and C4) 26
2.11.2 Gasoline (C5 to C11) 26
2.11.3 Condensate (C4, C5 and C6 >) 27
2.11.4 Gas Fuel Oils (C12 to C19) 27
2.11.5 Kerosene 27
2.11.6 Diesel Fuel 28
2.11.7 Fuel Oils # 4, 5, and 6 28
2.11.8 Residual Fuel Oil 28
2.11.9 Natural Gas 29
References 30
3 Characterization of Petroleum and Petroleum Fractions 31
3.1 Introduction 31
3.1.1 Crude Oil Properties 32
3.1.2 Gravity, API 32
3.1.3 Boiling Point Range 33
3.1.4 Characterization Factor 33
3.1.5 The Universal Oil Product Characterization factor, K
UOP 34
3.1.6 Carbon Residue, wt% 34
3.1.7 Nitrogen Content, wt% 36
3.1.8 Sulfur Content, wt% 36
ixx Contents
3.1.9 Total Acid Number (TAN) 36
3.1.10 Salt Content, pounds/1000 barrels 36
3.1.11 Metals, parts/million (ppm) by weight 36
3.1.12 Pour Point (oF or °C) 36
3.2 Crude Oil Assay Data 37
3.2.1 Whole crude oil average properties 37
3.2.2 Fractional properties 37
3.3 Crude Cutting Analysis 37
3.4 Crude Oil Blending 37
3.5 Laboratory Testing of Crude Oils 46
3.5.1 True Boiling Point (TBP) Curve 46
3.5.2 ASTM D86 Distillation 46
3.5.3 Boiling Points 47
3.5.4 Conversion Between ASTM and TBP Distillation 49
3.5.5 Petroleum Pseudo-Components 54
3.5.6 Pseudo-Component Normal Boiling Points 55
3.5.7 ASTM D1160 Distillation 55
3.5.8 Determination of ASTM IBP, 10%, 20–90% Points of Blend 55
3.5.9 ASTM 10–90% Points 56
3.5.10 Initial Boiling Point Determination 56
3.5.11 ASTM End Point of Blend 56
3.5.12 Flash Point 56
3.5.13 Flash Point, °F, as a Function of Average Boiling Point 57
3.5.14 Smoke Point of Kerosenes 57
3.5.15 Luminometer Number 57
3.5.16 Reid Vapor Pressure (RVP) 57
3.5.17 Vapor Pressure of Narrow Hydrocarbon Cuts 58
3.6 Octanes 58
3.7 Cetanes 58
3.7.1 Cetane Index 59
3.8 Diesel Index 59
3.9 Determination of the Lower Heating Value of Petroleum Fractions 59
3.10 Aniline Point Blending 60
3.11 Correlation Index (CI) 60
3.12 Chromatographically Simulated Distillations 61
References 62
4 Thermodynamic Properties of Petroleum and Petroleum Fractions 63
4.1 K-Factor Hydrocarbon Equilibrium Charts 64
4.2 Non-Ideal Systems 72
4.3 Vapor Pressure 74
4.3.1 Vapor Pressure Determination using the Clausius-Clapeyron and the Antoine Equations 75
4.4 Viscosity 80
4.4.1 Conversion to Saybolt Universal Viscosity 80
4.4.2 Conversion to Saybolt Furol Viscosity 82
4.4.3 Equivalents of Kinematic (cSt), Saybolt Universal (SUS), and Dynamic viscosity 82
4.4.4 Viscosity of Liquid Hydrocarbons 83
4.4.5 Gas Viscosity 84
4.5 Refractive Index 87
4.6 Liquid Density 89
4.6.1 Gas Density 89Contents xi
4.7 Molecular Weight 90
4.8 Molecular Type Composition 90
4.9 Critical Temperature, Tc 96
4.10 Critical Pressure, P
c
97
4.11 Pseudo-Critical Constants and Acentric Factors 98
4.12 Enthalpy of Petroleum Fractions 99
4.13 Compressibility Z Factor of Natural Gases 100
4.14 Simulation Thermodynamic Software Programs 105
References 110
5 Process Descriptions of Refinery Processes 111
5.1 Introduction 111
5.2 Refinery and Distillation Processes 115
5.3 Process Description of the Crude Distillation Unit 120
5.3.1 Crude Oil Desalting 121
5.3.2 Types of Salts in Crude Oil 122
5.3.3 Desalting Process 122
5.3.4 Pumparound Heat Removal 127
5.3.5 Tower Pressure Drop and Flooding 130
5.3.6 Carbon Steel Trays 130
5.3.7 Rectifying Section of the Main Column 130
5.3.8 Side Stripping Columns 130
5.3.9 Crude Column Overhead 130
5.3.10 General Properties of Petroleum Fractions 130
5.4 Process Variables in the Design of Crude Distillation Column 132
5.4.1 Process Design of a Crude Distillation Column 133
5.5 Process Simulation 134
5.5.1 Overall Check of Simulation 135
5.5.2 Other Aspects of Design 136
5.5.3 Relationship between Actual Trays and Theoretical Trays 137
5.6 Process Description of Light Arabian Crude Using UniSim® Simulation Software [12] 138
5.6.1 Column Conventions 141
5.6.2 Performance Specifications Definition 142
5.6.3 Cut Points 142
5.6.4 Degree of Separation 142
5.6.5 Overflash 142
5.6.6 Column Pressure 143
5.6.7 Overhead Temperature 143
5.6.8 Bottom Stripping 144
5.6.9 Side Stream Stripper 144
5.6.10 Reflux 144
5.7 Troubleshooting Actual Columns 144
5.8 Health, Safety and Environment Considerations 145
References 148
6 Thermal Cracking Processes 149
6.1 Process Description 152
6.2 Steam Jet Ejector 152
6.3 Pressure Survey in a Vacuum Column 154
6.4 Simulation of Vacuum Distillation Unit 156xii Contents
6.5 Coking 157
6.5.1 Delayed Coking 157
6.5.2 Delayed Coker Yield Prediction 161
6.5.3 Coke Formation 162
6.5.4 Thermodynamics of Coking of Light Hydrocarbons 162
6.5.5 Gas Composition 163
6.6 Fluid Coking 164
6.6.1 Flexi-Coking 165
6.6.2 Contact Coking 167
6.6.3 Coke Drums 168
6.6.4 Heavy Coker Gas Oil (HCGO) Production 170
6.6.5 Light Coker Gas Oil (LCGO) Production 170
6.7 Fractionator Overhead System 170
6.8 Coke Drum Operations 172
6.9 Hydraulic Jet Decoking 173
6.10 Uses of Petroleum Coke 174
6.11 Use of Gasification 174
6.12 Sponge Coke 175
6.13 Safety and Environmental Considerations 175
6.14 Simulation/Calculations 176
6.15 Visbreaking 177
6.15.1 Visbreaking Reactions 180
6.15.2 Visbreaking Severity 180
6.15.3 Operation and Control 180
6.15.4 Typical Visbreaker Unit 181
6.15.5 Typical Visbreaker Unit with Vacuum Flasher 182
6.15.6 Typical Combination Visbreaker and Thermal Cracker 183
6.15.7 Product Yield 183
6.16 Process Simulation 184
6.17 Health, Safety and Environment Considerations 185
References 186
7 Hydroprocessing 187
7.1 Catalytic Conversion Processes 187
7.1.1 Hydrocracking Chemistry 188
7.1.2 Hydrocracking Reactions 190
7.1.3 Typical Hydrocracking Reactions 191
7.2 Feed Specifications 194
7.2.1 Space Velocity 195
7.2.2 Reactor Temperature 195
7.2.3 Reactor Pressure 195
7.2.4 Hydrogen Recycle Rate 195
7.2.5 Oil Recycle Ratio 195
7.2.6 Heavy Polynuclear Aromatics 196
7.3 Feed Boiling Range 196
7.4 Catalyst 196
7.4.1 Catalyst Performance 197
7.4.2 Loss of Catalyst Performance 197
7.4.3 Poisoning by Impurities in Feeds or Catalysts 198
7.4.4 The Apparent Catalyst Activity 200Contents xiii
7.5 Poor Gas Distribution 200
7.6 Poor Mixing of Reactants 200
7.7 The Mechanism of Hydrocracking 200
7.8 Thermodynamics and Kinetics of Hydrocracking 201
7.9 Process Design, Rating and Performance 204
7.9.1 Operating Temperature and Pressure 205
7.9.2 Optimum Catalyst Size and Shape 205
7.9.3 Pressure Drop (ΔP) in Tubular/Fixed-Bed Reactors 205
7.9.4 Catalyst Particle Size 207
7.9.5 Vessel Dimensions 208
7.10 Increased ΔP 210
7.11 Factors Affecting Reaction Rate 214
7.12 Measurement of Performance 215
7.13 Catalyst-Bed Temperature Profiles 216
7.14 Factors Affecting Hydrocracking Process Operation 217
7.15 Hydrocracking Correlations 217
7.15.1 Maximum Aviation Turbine Kerosene (ATK) Correlations 219
7.15.2 Process Description 220
7.15.3 Fresh Feed and Recycle Liquid System 224
7.15.4 Liquid and Vapor Separators 225
7.15.5 Recycle Gas Compression and Distribution 226
7.15.6 Hydrogen Distribution 226
7.15.7 Control of the Hydrogen System 226
7.15.8 Reactor Design 227
7.16 Hydrocracker Fractionating Unit 228
7.16.1 Mild Vacuum Column 230
7.16.2 Steam Generation 230
7.17 Operating Variables 231
7.18 Hydrotreating Process 234
7.18.1 Process Description 237
7.18.2 Process Variables 237
7.18.3 Hydrotreating Catalysts 240
7.19 Thermodynamics of Hydrotreating 240
7.20 Reaction Kinetics 243
7.21 Naphtha Hydrotreating 245
7.21.1 Hydrotreating Correlations 245
7.21.2 Middle Distillates Hydrotreating 248
7.21.3 Middle Distillate Hydrotreating Correlations 248
7.22 Atmospheric Residue Desulfurization 250
7.22.1 High-Pressure Separator 252
7.22.2 Low-Pressure Separator 252
7.22.3 Hydrogen Sulfide Removal 252
7.22.4 Recycled Gas Compressor 252
7.22.5 Process Water 252
7.22.6 Fractionation Column 253
7.22.7 Operating Conditions of Hydrotreating Processes 253
7.23 Health, Safety and Environment Considerations 258
References 258xiv Contents
8 Catalytic Cracking 259
8.1 Introduction 259
8.2 Fluidized Bed Catalytic Cracking 262
8.2.1 Process Description 262
8.3 Modes of Fluidization 269
8.4 Cracking Reactions 270
8.4.1 Secondary Reactions 272
8.5 Thermodynamics of FCC 273
8.5.1 Transport Phenomena, Reaction Patterns and Kinetic models 273
8.5.2 Three- and Four-Lump kinetic models 276
8.6 Process Design Variables 278
8.6.1 Process Variables 279
8.6.2 Process Operational Variables 280
8.7 Material and Energy Balances 281
8.7.1 Material Balance 281
8.7.2 Energy Balance 282
8.8 Heat Recovery 283
8.9 FCC Yield Correlations 284
8.10 Estimating Potential Yields of FCC Feed 286
8.11 Pollution Control 290
8.12 New Technology 292
8.12.1 Deep Catalytic Cracking 293
8.12.2 Shell’s Fluid Catalytic Cracking 294
8.12.3 Fluid Catalytic Cracking High Severity 295
8.12.4 Fluid Catalytic Cracking for Maximum Olefins 295
8.13 Refining/Petrochemical Integration 296
8.14 Metallurgy 296
8.15 Troubleshooting for Fluidized Catalyst Cracking Units 297
8.16 Health, Safety and Environment Considerations 298
8.17 Licensors’ Correlations 299
8.18 Simulation and Modeling Strategy 300
References 304
9 Catalytic Reforming and Isomerization 305
9.1 Introduction 305
9.2 Catalytic Reforming 306
9.3 Feed Characterization 306
9.4 Catalytic Reforming Processes 308
9.4.1 Role of Reformer in the Refinery 309
9.4.2 UOP Continuous Catalytic Regeneration (CCR) Reforming Process 310
9.5 Operations of the Reformer Process 312
9.5.1 Effect of Major Variables in Catalytic Reforming 314
9.6 Catalytic Reformer Reactors 316
9.7 Material Balance in Reforming 317
9.8 Reactions 320
9.8.1 Naphthene Dehydrogenation to Cyclohexanes 320
9.8.2 Dehydrocyclization of Paraffins to Aromatics 321
9.8.3 Dehydroisomerization of Alkylcyclopentanes to Aromatics 321
9.8.4 Isomerization of n-Paraffins 321
9.9 Hydrocracking Reactions 322Contents xv
9.10 Reforming Catalyst 322
9.11 Coke Deposition 324
9.12 Thermodynamics 326
9.13 Kinetic Models 326
9.14 The Reactor Model 326
9.15 Modeling of Naphtha Catalytic Reforming Process 329
9.16 Isomerization 329
9.16.1 Thermodynamics 330
9.16.2 Isomerization Reactions 331
9.17 Sulfolane Extraction Process 331
9.17.1 Sulfolane Extraction Unit (SEU) Corrosion Problems 332
9.17.2 Other Solvents for the Extraction Unit 333
9.18 Aromatic Complex 333
9.18.1 Aromatic Separation 335
9.19 Hydrodealkylation Process 336
9.19.1 Separation of the Reactor Effluents 337
References 337
10 Alkylation and Polymerization Processes 339
10.1 Introduction 339
10.2 Chemistry of Alkylation 340
10.3 Catalysts 342
10.4 Process Variables 343
10.5 Alkylation Feedstocks 345
10.6 Alkylation Products 346
10.7 Sulfuric Acid Alkylation Process 346
10.8 HF Alkylation 347
10.9 Kinetics and Thermodynamics of Alkylation 351
10.10 Polymerization 354
10.11 HF and H
2SO4 Mitigating Releases 354
10.12 Corrosion Problems 356
10.13 A New Technology of Alkylation Process Using Ionic Liquid 356
10.14 Chevron – Honeywell UOP Ionic liquid Alkylation 357
10.15 Chemical Release and Flash Fire: A Case Study of the Alkylation Unit at the
Delaware City Refining Company (DCRC) Involving Equipment Maintenance Incident 358
References 362
11 Hydrogen Production and Purification 365
11.1 Hydrogen Requirements in a Refinery 365
11.2 Process Chemistry 366
11.3 High-Temperature Shift Conversion 368
11.4 Low-Temperature Shift Conversion 368
11.5 Gas Purification 368
11.6 Purification of Hydrogen Product 369
11.7 Hydrogen Distribution System 370
11.8 Off-Gas Hydrogen Recovery 371
11.9 Pressure Swing Adsorption (PSA) Unit 371
11.10 Refinery Hydrogen Management 375
11.11 Hydrogen Pinch Studies 377
References 379xvi Contents
12 Gas Processing and Acid Gas Removal 381
12.1 Introduction 381
12.2 Diesel Hydrodesulfurization (DHDS) 383
12.3 Hydrotreating Reactions 383
12.4 Gas Processing 388
12.4.1 Natural Gas 388
12.4.2 Gas Processing Methods 389
12.4.3 Reaction Gas Processes 390
12.4.4 Sweetening Process 390
12.4.5 MEROX Process 390
12.5 Sulfur Management 391
12.5.1 Sulfur Recovery Processes 393
12.5.2 Tail Gas Clean Up 401
12.6 Physical Solvent Gas Processes 401
12.6.1 Physical and Chemical Processes 402
12.6.2 Advantages and Disadvantages of the Sulfinol Process 402
12.7 Carbonate Process 402
12.8 Solution Batch Process 403
12.9 Process Description of Gas Processing using UniSim Simulation 405
12.10 Gas Dryer (Dehydration) Design 410
12.10.1 The Equations 412
12.10.2 Pressure Drop (ΔP) 413
12.10.3 Fouled Bed 413
12.11 Kremser-Brown-Sherwood Method-No Heat of Absorption 415
12.11.1 Absorption: Determine Component Absorption in Fixed Tray Tower
(Adapted in part from Ref. 12) 415
12.11.2 Absorption: Determine the Number of Trays for Specified Product Absorption 417
12.11.3 Stripping: Determine the Number of Theoretical Trays and
Stripping Steam or Gas Rate for a Component Recovery 418
12.11.4 Stripping: Determine Stripping-Medium Rate for a Fixed Recovery 420
12.12 Absorption: Edmister Method 421
12.12.1 Absorption and Stripping Efficiency 427
12.13 Gas Treating Troubleshooting 432
12.13.1 High Exit Gas Dew Point 432
12.13.2 High Glycol Losses 432
12.13.3 Glycol Contamination 432
12.13.4 Poor Glycol Reconcentration 433
12.13.5 Low Glycol Circulation – Glycol Pump 433
12.13.6 High Pressure Drop Across Contactor 433
12.13.7 High Stripping Still Temperature 433
12.13.8 High Reboiler Pressure 433
12.13.9 Firetube Fouling/Hot Spots/Burn Out 433
12.13.10 High Gas Dew Points 433
12.13.11 Cause – Inadequate Glycol Circulation Rate 433
12.13.12 Low Reboiler Temperature 433
12.13.13 Flash Separator Failure 434
12.13.14 Cause – Insufficient Reconcentration of Glycol 434
12.13.15 Cause – Operating Conditions Different from Design 434
12.13.16 Cause – Low Gas Flow Rates 434
12.13.17 High Glycol Loss 434
12.14 Cause – Loss of Glycol Out of Still Column 434Contents xvii
12.15 The ADIP Process 435
12.16 Sour Water Stripping Process 435
References 438
Glossary of Petroleum and Technical Terminology 441
Appendix A Equilibrium K values 533
Appendix B Analytical Techniques 547
Appendix C Physical and Chemical Characteristics of Major Hydrocarbons 557
Appendix D A List of Engineering Process Flow Diagrams and Process Data Sheets 573
Index 62
Acid gas treatment, 439
Acid strength, 344, 348, 354
Acidity, 36, 41, 45, 194, 222, 251, 263, 316, 356–357, 442
Additives, 3, 18, 27, 132, 279, 291–292, 334, 363, 443,
447–448, 467, 476, 481, 489
Adsorption, 6, 26, 199, 215, 274, 328, 335, 367, 371–376,
378–379, 401, 410, 412
Air pollution, 172, 176, 385, 403, 495, 509
Alkyclean, 343, 349, 351
Alkylate, 116–117, 339–354, 356–358, 442–443, 447,
476, 489
Alkylate gasoline, 342, 356–357
Alkylation processes, 339, 347–348, 353, 356, 482, 492
Aniline point, 39, 43, 59–60, 250, 387, 443, 445
API gravity, 22, 32–34, 36, 38, 42, 51, 53, 57, 59, 89, 99, 134,
154, 166, 172
ARDS, 253–257, 260, 299, 522
Aromatization, 218, 237, 314, 321–322
ASTM distillation, 48–49, 56–57, 59, 134–135, 250, 445,
458–459, 463, 469
ATK, 217, 219–220, 248, 250
Atmospheric distillation, 114, 120, 133, 138, 150, 152, 445,
447, 479, 486–487
Aviation, 27, 57, 59, 116, 121, 131–132, 217, 219, 250, 339,
348, 351
Aviation turbine kerosene, 217, 219, 250
Barrels per calendar day, 4, 447
Benzene, 5–6, 14–17, 23, 27, 39, 43, 60, 79, 94, 97–98, 114,
117–118, 121, 131, 133, 162, 177, 193, 201–202, 215,
247–248, 284, 302, 306, 308–310, 314, 318–324,
328–329, 331–339
Blending, 3, 37, 57, 60, 112, 114, 116–121, 170, 174,
179, 196
Blending octane number, 351, 448–449
Boiling range, 12–13, 25–26, 53, 61–62, 65, 106, 114–115,
126, 131–133, 137, 150, 152, 183, 192, 196, 240, 255,
272, 396, 449, 453, 464, 476, 479, 485–486, 489–490,
511, 521, 529
Boiling temperature, 59, 96, 152, 449, 481, 527
Branched paraffins, 339, 348
Index
Bright stock, 112, 114, 450
Bunker fuel, 451, 529
Butane, 9–10, 12, 24, 26–27, 29, 38, 42, 58, 71, 94, 97, 114,
116
Butylenes, 116, 266, 295, 344, 346–349, 351, 358, 442, 453,
487, 499, 519
Carbon residue, 22, 34, 37, 161, 163, 169, 173, 234–235,
287, 300, 445, 452, 456
Carbonate, 7, 368, 370, 389–390, 402–403, 442, 622
Catalyst/oil ratio, 452
Catalytic cracked gasoline, 296
Catalytic cracking, 4, 22, 28, 34, 112–115, 117, 120, 122,
148, 165, 187–188, 191, 195, 199, 221, 227, 259–269
Catalytic hydrocracking, 452
Catalytic hydrotreating, 18, 191, 239, 261, 462
Catalytic reforming, 3, 7–338, 365, 448, 523
Cetane, 10, 13, 27–28, 35, 37, 39, 43, 58–59, 65, 132, 237,
382, 384–385, 453–454, 462, 481
Chemical release and Flash fire, 358
Chemical solvent, 393
Chemistry of Alkylation, 340
Classifications, 187
Claus process, 396, 399–400, 493
Clean Fuels, 1, 306, 379
Coke removal, 158, 276
Coker gas oil, 117, 158–161, 168–170, 172, 218, 244,
285–286, 454, 478, 486
Coker naphthas, 307
Conradson carbon, 161, 163, 166, 169, 260, 287, 300, 382,
384–385, 445, 452, 456
Crude assay, 37, 133–134, 445, 458–459, 484
Crude distillation, 12, 36, 63, 116–117, 120–123, 127,
129–133, 137, 139–142, 150, 152, 181, 238, 308–309,
346, 395, 447, 518, 523
Cycle stock, 279, 287–288, 452, 459
Cyclization, 196, 272–275, 305–306, 313–314, 322–323, 459
Cyclohexane, 13–15, 19, 21, 94, 190, 247–248, 274, 284,
302, 318–321, 323, 385, 523, 560
Cycloparaffins, 13–15, 274
Cyclopentanes, 13, 321, 328
DAO, 189, 238, 385, 460
DEA, 389–391, 407–409, 562
Deasphalting, 24, 132, 238, 460
Decalin, 13–14, 242
Decoking, 158–159, 169, 172–173, 176, 299, 461
Dehydrocyclization, 314–315, 319–321, 323, 326
Dehydrogenation, 6, 8, 180, 196, 266, 273–275, 284, 305,
308, 346, 451, 461
Delayed coker, 158–159, 161, 163–164, 172–173, 177, 180,
186, 461
Delayed coking, 117, 149, 157–161, 163–164, 169, 177, 180,
186, 270, 284, 455, 461
Desalting, 3, 120–125, 461
Desulfurization, 196–197, 200, 222–223, 226, 234–237, 250,
252–256, 261, 366–367, 453, 462, 502, 573–574
Dewatering, 120, 176
Dewaxing, 3, 112–113, 188, 194, 196, 462, 493, 516
DGA, 389–391, 407–408
Diesel fuels, 28, 37, 112, 132, 292, 385, 451, 453, 463
Diethanolamine, 389–390, 404, 435, 562
Diglycolamine, 404
Diolefins, 234, 242, 273, 383–384, 450, 454, 506
Direct oxidation, 389, 392, 399
Distillation curves, 50–52, 56, 134, 300, 464, 501
Dry gas, 29, 116, 221, 262–263, 277, 281, 405, 411, 464, 475
Emission, 118–119, 290–292, 304, 375, 381–382, 443, 453,
469, 481
Emissions standards, 2, 306
ETBE, 340, 467, 495
Ethane, 6, 9–10, 12, 19, 26, 29, 38, 42, 69, 71, 74, 94, 97, 114,
118, 130, 133–134, 214, 266, 311, 330, 336–337, 366,
535, 562, 600
Ethanol, 1, 79, 340, 442, 465, 467, 469, 489, 495, 563
Ethers, 20, 261, 340, 447, 476, 489, 495
Ethyl tertiary butyl ether, 467, 495
Ethylbenzene, 6, 17, 94, 190–191, 242, 335–337, 342
Explosive limit, 487, 525, 558–560, 563, 565, 567–569
FCC, 2, 4–6, 21, 60, 139, 157–158, 188, 237–238, 259–263,
265–271, 273–274, 391, 395, 461–462, 474, 478–479,
516, 520, 522
Flash drum, 514
Flash point, 27, 37, 56–58, 131, 133, 144, 181, 231, 250–251,
300–301, 387, 470–471, 490, 592
Flexicoking, 167, 471, 523
Flue gas, 169, 262–265, 278, 280, 283–284, 290–292,
295–298, 300–301, 303, 367, 397, 474
Fluid coking, 149–150, 157, 164–165, 169, 186, 455,
474, 523
Fluidized bed, 150, 206, 259, 262–264, 279, 293, 296,
470, 474
Fluidized bed catalytic cracking, 262
Freezing point, 90, 251, 390, 451
Furnace cracking, 181
Gas oil fraction, 260
Gas oils, 27–28, 46, 61, 114, 132, 134, 141, 152, 190, 221,
223, 235, 240, 262, 284, 479, 486, 525
Gas purification, 368, 399, 410
Gasification, 5, 165, 174–175, 371
Gasoline, 5–6, 9, 12, 14, 18, 24–27, 29, 32–33, 37, 46, 57–59,
110–121, 131–133, 150, 158–159, 161
Hazards, 146, 175, 186, 258, 342–343, 354, 361–362, 446,
456–457, 469, 531, 610
Hempel distillation, 479
Hydroconversion, 187–188, 384, 438
Hydrocracking, 5, 116–117, 120, 187–188, 190–191,
193–203, 214–215, 217–229, 231–234, 236, 284–285,
306, 365, 384, 452, 462, 476, 479–480, 521
Hydrodealkylation, 117–118, 188, 193, 197, 201, 226,
336–337, 371
Hydrofluoric acid, 339–340, 342, 344, 347, 349, 354–355,
358, 443, 479
Hydrogen production, 3, 120, 226–227, 309, 323, 337, 365,
367, 369, 371, 373, 375–377, 379
Hydrogen recovery, 255, 371–372, 375–376, 379
Hydrogen sulfide, 9, 18–19, 36, 38, 42, 65, 112, 118, 134,
145, 186, 190, 192, 194, 322, 403, 480, 493, 508, 517,
520, 567
Hydrogenation, 6, 22, 26, 187, 190–191, 193–194, 196–197,
199, 201–202, 214–215, 295, 315–316, 358, 367,
383–384, 469, 480
Hydrotreating, 5, 18–19, 117, 165, 187–188, 191, 196–198,
203, 220, 253–255, 453, 462, 480, 493, 508, 523
Isoamylene, 272, 522
Isobutane, 10–12, 26, 71, 94, 97, 117, 158, 214, 260,
339–354, 356–358, 361, 363, 442, 461, 508, 511, 600
Isobutylene, 26, 261, 272, 341, 355, 467, 487–488, 522
Isomerate, 117, 482
Isomerization, 3, 5–6, 10, 117, 120, 187, 261, 271–275,
305–307, 309–311, 329–331, 333, 482–484, 490,
492–493
Isooctane, 11, 262, 339–341, 352–353, 355, 443, 449, 479,
484, 489, 491–492, 495
Isoparaffins, 11, 201, 221, 272, 320–321, 329, 341–342, 349
Isopentane, 11–12, 71, 94, 97, 116, 321, 341–342, 349, 443,
482, 484, 490–491, 511, 567, 600
Jet fuels, 121, 131, 390, 475, 516
K-factor, 64–66, 72
Kerosene, 5–6, 9, 25–28, 35, 57, 112, 127, 130–135, 138,
141–142, 144, 146, 148, 153, 158, 179, 187–190, 196,
198, 202, 217, 228–232, 237–238, 240, 309, 508, 516,
520, 525, 530, 568
Ketones, 20–22, 494
Kinematic viscosity, 80, 82–85, 91, 250–251, 441, 453,
485, 522Index 625
Light cycle oil, 116, 244, 260, 263, 266, 281, 286, 486
Light gases, 106, 116, 138, 150, 196, 220, 259, 305, 308, 315,
355, 476, 521, 523
Light hydrocarbons, 57–58, 66, 75–76, 121, 125, 144, 172,
183, 230, 245, 260, 329, 354, 366, 373, 490
Light straight run gasoline, 25
Liquefied petroleum gas, 26, 29, 116, 119, 121, 130–131,
171, 262, 388, 393, 395, 487
Liquid hour space velocity, 486
Lubricating oil, 26, 34, 113–115, 133, 150, 190, 214,
442, 520
M-xylene, 6, 17, 94, 335, 600
Material and energy balance, 231, 234
MDEA, 119, 389–391, 393, 435, 442
MEA, 389–391, 402, 404, 407–408, 444, 562
Membrane, 367, 372, 378, 410, 489, 528, 565
Mercaptans, 18–19, 119, 192, 235, 240, 332, 370, 374,
381–383, 391–393, 395, 476, 488, 517, 520
MEROX, 119, 266, 382, 390–392, 394–396, 438
Metals content, 384
Methanation, 198, 200, 366, 368, 371, 375
Methanol, 6, 79, 121, 174, 199, 261, 372, 402, 410, 442, 498,
522, 568, 600
Methyl diethanolamine, 435
Methyl tertiary butyl ether, 261, 340, 488–489, 495, 573,
575 Modified Claus process, 399
Molecular sieves, 366, 373, 410, 476
MON, 36, 39, 43, 120, 262, 266, 276, 281, 300–301, 341,
357, 368, 491–492
Motor octane number, 11, 262, 443, 489, 491–492, 511, 513
MTBE, 6, 261, 272, 293, 305, 340, 348, 354, 488–489, 495,
507, 600
N-butane, 10, 12, 38, 42, 71, 94, 97, 116–117, 130, 134, 260,
276, 302, 322, 343, 346, 350, 358, 424–425, 511, 538
N-octane, 11, 71, 94, 484, 492, 569
N-pentane, 12, 25, 38, 42, 66, 68, 71, 78, 80, 94, 97, 134,
242, 321, 425, 461, 492, 511
Naphtha, 5–6, 25–26, 33, 35, 53–54, 57, 59–60, 111–112,
114, 116–123, 127, 157–161, 188–191, 194–196, 240,
245–248, 322–324, 367, 372, 448, 489–490, 493, 496,
506, 508
Naphthenes, 8–9, 13–15, 33, 35, 38–40, 42–44, 55, 60,
90–91, 93, 96, 188, 190, 192, 201, 262, 492, 499, 511,
529
Naphthenic, 8, 15, 17, 21, 23, 34–35, 60–61, 91, 158, 183,
218, 242, 263, 284–285, 307, 458, 490, 529, 531
Natural gas, 1, 6–7, 26, 29, 101, 108, 112, 118, 121, 133, 224,
367–368, 370, 381, 388–390, 393, 396, 402, 405–406,
410, 413, 415, 438–439, 441–443, 445, 449, 451, 488,
490–491, 494, 530, 574, 607
New Technology of Alkylation, 356
Nitrogen, 8–9, 16, 18, 22–24, 29, 32, 36–37, 39, 43, 65,
72, 74, 105, 145, 152, 154, 161, 187–188, 190, 228,
234–237, 240, 287, 370, 373–374, 382–385, 387–388,
419, 534, 600
Nitrogen content, 22–23, 36, 194, 196, 243, 445, 451
Normal paraffins, 10–11, 61, 202, 272, 321,
Octane, 4, 10–12, 14, 27, 31, 33, 58, 71, 94, 111–112, 114,
120, 183, 194, 221, 245, 295, 305–309, 311, 313–315,
318–319, 321, 323, 476, 479–480, 499, 508, 510–511,
531, 542, 569
Octane number, 11, 27, 58, 183, 194, 261–263, 266,
305–306, 313–315, 319, 329, 332, 344, 348, 351, 443,
458, 479–480, 484, 510–511, 513–514, 519
Oil fraction, 34, 145, 260, 445, 479, 524
Olefin, 6, 11–12, 96, 163, 190, 196, 202, 237, 241–242, 266,
270–276, 296, 363, 383, 442, 451, 503
Oxidation, 6, 19, 23, 119, 166, 174, 199, 368, 371, 382, 389,
391–393, 395, 486, 489, 494, 520
P-xylene, 79, 94
Paraffinic, 8, 10, 13, 23, 33–36, 60–61, 91, 108, 143, 284,
286, 313–314, 334, 453–454, 458
Paraffinic hydrocarbons, 60, 339
Paraffins, 6, 8–14, 28–29, 32, 35–36, 38–45, 55, 60–61,
90–91, 93, 96–98, 180, 192, 194, 201–202, 262,
272–274, 319–324, 443, 492, 495, 499, 530
Petroleum coke, 29, 114, 117, 152, 159–160, 165, 174–175,
461, 496, 508, 529
Phenol, 6, 20–21, 146, 186, 192, 235, 299, 392, 569
Phosphoric acid, 352, 355
Physical solvent, 389, 401–402, 496
Polymerization, 3, 26, 112, 116, 120, 170, 180, 193, 238,
272–273, 275, 339, 341–349, 361, 363, 384, 442, 448,
453, 499
Pour point, 27, 36–37, 39, 41, 43, 45, 55, 132, 179–180, 183,
230, 250, 387, 445, 458, 499
Process description, 120, 138, 152, 220, 237, 262, 348–349,
355, 372, 384–385, 392–393, 395, 398–400, 404–405
Pump around reflux, 126–127
Refineries, 2, 4, 25, 36–37, 120, 126, 131, 145, 150, 174, 179,
181, 264, 284, 329, 379, 381, 383, 499, 503, 508, 519,
521, 525
Refinery distillation, 464, 475, 495
Reforming, 3, 5–6, 18, 29, 37, 57, 112–113, 115, 117,
120–121, 131, 133, 158, 199–200, 245, 296, 305–323,
382, 388, 448, 452–453, 456, 480, 489, 508–509, 519,
521, 523, 531
Reforming processes, 305, 308, 311, 316–317, 328
Refractive index, 35, 87–91, 98, 284, 287
Regenerators, 266, 283, 311, 323, 436
Reid vapor pressure, 37, 57–58, 445, 476, 509–510, 528
Research Octane number, 313, 319, 329, 332, 443, 491,
510, 514
Residuum, 132, 154, 180–181, 188, 214, 234, 260, 384, 444,
447, 511, 525, 527626 Index
RON, 39, 43, 262, 266, 281, 300–301, 307, 317–319, 321,
329–330, 443–444, 491–492, 510
Safety, 2, 5–6, 131, 145, 175–176, 185, 258, 292,
298–299, 340, 343, 354, 356, 361, 363, 478,
481–482, 488, 494, 498–499, 530–531, 585, 606, 608,
612, 615
Salt content, 36–37, 41, 45, 122, 125, 445, 513
Saturated paraffins, 11, 248
Saturates, 9, 22, 215, 285, 300, 385, 491
SCOT, 117, 119, 382, 398
Selective hydrocracking, 194, 462
Selectivity, 136, 188, 196–199, 276, 279, 286, 294–295, 299,
304, 311, 322, 403–404, 453, 513, 517
Semiregenerative, 311–312, 316, 338
Shift conversion, 368, 370
Sinopec, 4
Sludge, 403, 434, 443
Smoke point, 35, 39, 43, 57, 201, 250–251, 382, 451, 516
Solvent dewaxing, 493
Solvent extraction, 3, 189, 462, 506, 517
Sour crude, 18, 36, 299, 365, 488, 517, 520
Sour water, 106, 109, 125, 131, 151, 160, 171, 173, 226,
229–230, 252, 258, 381–382, 393, 435–438
Sour water stripping, 258, 381–382, 435–438
Sponge coke, 174–175
Sponge coke, 174–175
Sponge oil, 170, 172, 268–269, 517
Steam cracking, 120, 150, 294, 518–519
Steam reforming, 199–200, 245, 366–367, 371, 375,
493, 519
Sulfinol, 366, 368–370, 389, 402, 404
Sulfolane process, 331–332
Sulfur dioxide, 18–19, 332, 358, 410
Sulfur recovery, 3, 118–120, 290, 381–382, 388, 390, 393,
396–403, 405, 436
Sulfuric acid, 121, 339–340, 342, 344–348, 350, 353–356,
392, 442, 477, 520
Sweet crude, 36, 450, 520
Sweetening, 3, 5, 18, 112, 119, 381–382, 405, 410, 438,
476, 520
Sweetening processes, 389, 392–393
Tail gas treatment, 3
TAME, 272, 305, 340, 495, 522
TAN, 36, 119, 442, 521, 548
TBP distillation, 46, 49, 52, 55–56, 246, 479, 505
Tertiary amyl methyl ether, 522
Thermal process, 177, 518
Toluene, 5–6, 14, 16–17, 40, 44, 79, 94, 111, 117–118, 121,
193, 201, 309, 372, 374, 444, 450, 453, 476, 489, 492,
523, 570, 600
Topped crude, 112, 121, 127, 146, 150, 152–154, 523
Treating process, 220, 393, 403, 480
True boiling point, 33–34, 46, 48–49, 60, 106, 133–135,
140, 154, 214, 235, 445, 449, 458–459, 475, 477,
516, 524
True boiling point distillation, 49, 60, 140, 477,
516, 524
Turbine fuels, 46, 132
U.S. Bureau of Mines, 60, 284, 457, 479, 524
Unsaturates, 273, 368, 419 UOP, 5–6, 8, 34–35, 159, 186,
258, 266–267, 299, 305–306, 310–311, 318, 323,
328–332, 340, 349, 351–352, 354–357, 363, 384–385,
411, 438, 454
Upgrading, 5, 24, 167, 179, 354, 384, 386, 445, 508, 519
Vacuum distillation, 3, 5, 112–115, 120–121, 132, 138,
150–156, 194, 231, 260–261, 479, 487, 493, 527
Vacuum reduced crude, 529
Vapor pressure, 37, 57–58, 65, 72, 74–80, 110,
143, 150, 231, 346, 356–357, 402, 442, 509–510,
608–609
Visbreaking process, 183–184, 186
Viscosity index, 221, 529
Volumetric space velocity, 195
Watson chracterization factor, 445, 458
Weight hour space velocity, 530 WHSV, 203, 279, 315–316,
318, 328, 330, 517, 530
Xylenes, 14, 335–336, 374, 444, 447, 476, 489
Zeolite catalysts, 260

كلمة سر فك الضغط : books-world.net
The Unzip Password : books-world.net

تحميل

يجب عليك التسجيل في الموقع لكي تتمكن من التحميل
تسجيل | تسجيل الدخول

التعليقات

اترك تعليقاً