Nondestructive Testing for Archaeology and Cultural Heritage
A Practical Guide and New Perspectives
Giovanni Leucci
Contents
1 Introduction . 1
2 Principles of Mathematics Used in NDT Methods . 7
2.1 Initial Considerations . 7
2.2 NDT Geophysical Data Digitalization . 8
2.3 Spectral Analysis 10
2.4 A Few Definitions to Remember . 14
Reference 14
3 Nondestructive Testing Technologies for Cultural Heritage:
Overview 15
3.1 NDT Methods in Cultural Built Heritage and Archaeology:
State of the Art . 15
3.2 NDT Geophysical Methods . 21
3.2.1 The Ground-Penetrating Radar Method . 21
3.2.2 The Electrical-Resistivity Active Method . 44
3.2.3 The Induced-Polarization Method . 54
3.2.4 The Self-potential Method 58
3.2.5 Seismic Method 59
References . 69
4 NDT Geophysical Instrumentation and Data Acquisition
and Processing Enhancement 75
4.1 GPR Instrumentation Enhancement: Reconfigurable
Stepped-Frequency Georadar 75
4.2 The GPR Data Acquisition . 78
4.2.1 The GPR Frequency of Antenna and Depth
of Penetration . 79
4.2.2 The GPR Frequency of Antenna and Resolution 84
4.2.3 The Sampling Interval of Data Acquisition 85
4.2.4 The Two-Way Time Window Set . 85
ix4.2.5 Sampling Interval 86
4.2.6 Sample Spatial Interval 86
4.2.7 Survey Profiles Spacing and Orientation 87
4.3 GPR Data Processing Methodology . 88
4.4 GPR Data Visualization: Time Slices 94
4.5 GPR Data Visualization: Amplitude ISO-Surfaces 94
4.6 Electrical-Resistivity Tomography Field Measurements . 96
4.6.1 ERT Survey-Instrument Parameters 96
4.6.2 Choice of the Best Array . 100
4.6.3 ERT Survey Procedures 104
4.6.4 ERT Data Inversion . 111
4.7 Induced-Polarization Data Acquisition and Inversion 113
4.8 Self-potential Data Acquisition and Inversion 116
4.9 Seismic Sonic and Ultrasonic Data Acquisition
and Inversion . 120
References . 128
5 NDT Geophysical Data Interpretation . 131
5.1 GPR Data Interpretation . 131
5.2 ERT Data Interpretation . 140
5.3 IP Data Interpretation . 146
5.4 SP Data Interpretation . 149
5.5 Interpretation of Seismic and Ultrasonic Data 158
References . 165
6 Site Application: The Archaeological Site of Pompeii (Italy) . 169
6.1 Site History 169
6.2 Site Natural Hazard 172
6.3 NDT Geophysical Surveys . 173
6.3.1 Area 1: GPR, ERT and SP Data Interpretation . 175
6.3.2 Area 2: GPR, ERT and SP Data Interpretation . 177
6.3.3 Area 3: GPR, ERT, and SP Data Interpretation . 179
6.3.4 The NDT Geophysical Survey of Tomb D 181
6.3.5 2D ERT Data Analysis and Interpretation . 182
6.3.6 ERT Data Analysis and Interpretation of the Wall
of the Studied Tomb 185
6.3.7 Seismic Tomography Data Analysis and Interpretation
of the Wall of the Studied Tomb . 187
6.3.8 2D GPR Data Analysis and Interpretation . 189
6.3.9 3D GPR Data Analysis and Interpretation . 190
6.4 GPR Data Acquisition and Analysis on the Columns 191
References . 194
x Contents7 Site Application: The Archaeological Site of Sagalassos
(Turkey) 197
7.1 Site Description . 197
7.2 NDT Geophysical Data Acquisition, Processing
and Interpretation 199
7.2.1 Area 1 200
7.3 The Roman Bath Stability Study . 204
7.3.1 Zone 1 205
7.3.2 Zone 2 209
7.3.3 Analysis of the Probability of Long-Term Collapse 210
7.4 Area 2 213
References . 215
8 Conclusions 217
Appendix: MATLAB Codes for NDT Geophysical Data Analysis 221
Index
Index
A
Absorption constant, 26
Absorption power, 33
Albany, 22
Aliasing, 10, 121
Analogue signal, 8, 9, 14, 120
Anomaly, 5
Apparent polarization, 56
Apparent resistivity, 99
Apparent velocity S, 65
Archaeological site
Cavallino (Italy), 142
Hierapolis (Turkey), 22
Pisa (Italy), 22, 115, 152
Pompeii (Italy), 169
Priolo (Italy), 22
Sagalassos (Turkey), 197
Tindari (Italy), 148
Arrays, 100
dipole-dipole, 100
wenner, 100
wenner-schlumberger, 101
B
Band-pass frequency filters, 91
Bit, 9
Body waves, 60
Bow-tie event, 77
Bright spots, 136
C
Catania (Italy), 110
Cathedral of Tricarico (Italy), 158
Cavallino (Italy), 142
Chargeability, 56
Church of Saint Sebastian in Lecce (Italy), 88
Coherent banding effect, 89
Coherent noise, 13, 92
Common depth point (CDP), 39
Common mid-point (CMP), 39
Crypt of Saint Nicolas in Bari (Italy), 132
Current electrodes, 44, 99
D
Decibel, 9, 38
Dielectric constant, 26, 30, 33, 78, 84, 138
Diffraction, 41
Digital filtering, 13
Digitization of geophysical data, 8
Dix analysis, 43
Durazzo (Albany), 22
E
Elastic moduli, 15, 60
Elastic waves, 60
Electrical esistivity tomography, 15
Electrical imaging, 146
Electrical method, 5
Electrical resistivity tomography, 47
Electrolytic, 55
Electromagnetic amplitude, 8, 23, 24, 27, 29
Electromagnetic reflection, 7
Electromagnetic wave, 7, 22–24, 28–30,
32–36, 39, 41–43
Ffk filtering, 92
Fourier transform (FFT), 12, 93
Frequency filtering, 91
high pass filter, 91
© Springer Nature Switzerland AG 2019
G. Leucci, Nondestructive Testing for Archaeology and Cultural Heritage,
https://doi.org/10.1007/978-3-030-01899-3
239low pass filter, 91
Fresnel zone, 64
Fundamental frequency, 10
G
Geometrical spreading, 66, 83, 136
Ground-penetrating radar (GPR), 15, 21, 173
H
Harmonics, 10
Hierapolis (Turkey), 22
High-pass frequency filters, 91
I
Impulse, 32
Impulse force hammer, 120
Induced Polarization (IP) method, 15, 21,
54–56, 58
Induced polarization data acquisition, 116
Induced polarization data interpretation, 146
Italy, 21, 88, 108, 110, 142, 148, 152, 158
K
k-factor, 47
L
Lecce (Italy), 88
Love waves, 60
Low-pass frequency filters, 91
M
Migration, 89, 91
Multiple reflections, 35
N
Noise, 7, 13
Nyquist frequency, 9
Nyquist interval, 9
O
Offset time, 89
P
Periodic waveforms, 10
Perù, 91
Pisa (Italy), 22, 115, 152
Poisson’s equation, 45, 112
Polarization, 54, 55
Pompeii (Italy), 169
Potential field, 45, 59
Primary waves (longitudinal, compressional, or
P-waves), 60
Priolo (Italy), 22
Pseudosection, 50
P-wave (primary, longitudinal or
compressional), 159
R
Radargram, 41, 42, 192
Ray paths, 122
Rayleigh waves, 60
Reflection, 23, 27, 29, 34, 60, 62, 63
Refraction, 26, 27, 34, 39, 60, 63, 68
Resistivity, 15, 44
Resistivity data, interpretation, 141
Root-mean-square, 125
S
Sagalassos (Turkey), 197
Sampling frequency, 9
Sampling interval, 8, 85, 86
Secondary waves (shear, transverse or
S-waves), 60
Seismic method, 59
Seismic sonic and ultrasonic data acquisition
and inversion, 120
Seismic sonic and ultrasonic data
interpretation, 158
Seismic tomography, 60
Seismogram, 126, 187
Self-potential method, 58
data acquisition, 116
data interpretation, 149
data inversion, 116
Shear waves (transverse, secondary or
S-waves), 60
Simultaneous reconstruction technique (SIRT),
188
Spectral analysis, 10
S-waves (secondary, shear or transverse), 60
Synthetic, 77, 106
T
Time domain, 56
Time-slice, 94, 174
Tindari (Italy), 148
Travel time, 23, 39–42, 60, 62, 63
of a direct ray, 68
of a reflected ray, 68
of a refracted ray, 68
Triglio aqueduct in Taranto (Italy), 135
Turkey, 22, 197
U
Ultrasonic, 120, 121
V
Velocity, 15, 23
240 Indexelectromagnetic wave, 28–30, 32–36,
38–40, 42, 43
seismic waves, 60, 63, 64, 66, 67
Ventarron-Lambayeque (Perù), 91
W
Water content, 30, 36, 79, 138, 139, 159–161,
164, 186
Wenner configuration, 47, 49, 50, 52
Wide-angle reflection and refraction (WARR)
method wide-angle reflections, 3
كلمة سر فك الضغط : books-world.net
The Unzip Password : books-world.net
تحميل
يجب عليك التسجيل في الموقع لكي تتمكن من التحميل
تسجيل | تسجيل الدخول