Mechanism and Machine Theory
اسم المؤلف
Ashok G. Ambekar
التاريخ
المشاهدات
645
التقييم
(لا توجد تقييمات)
Loading...
التحميل

Mechanism and Machine Theory
Ashok G. Ambekar
الجزء المتاح فقط هو الجزء المعروض على جوجل كتب
CONTENTS
Preface xy

  1. Introduction to Kinematics and Mechanisms
    ].1 Introduction J
    ].2 The Four-bar Mechanism 2
    1J Motion of a Particle. 2
    1.4 Motion of a Rigid Body 3
    13 Motion of Translation i
    ].6 Motion of Rotation 4
    1.7 Planar Motion and Euler’s Theorem
    1.8 Degrees of Freedom 4
    1.9 Vectors and Their Treatment J
    1.10 Methods of Expressing Vectors 8
    1.11 Position Vectors 10
    1.12 Displacement of a Particle 11
    1.13 Rigid Body Displacement //
    IJ4 Relative Displacement 12
    Review Questions 18
    1-18
    2* Planar Mechanisms and Geometry of Motion 19-60
    2J Introduction 19
    22 Definitions and Basic Concepts 19
    2.3 Classification of Links 22
    2.4 Classification of Pairs 23
    2.4.1 Classification of Pairs Based on Type of Relative Motion 23 2.4.2 Classification of Pairs Based on Type of Contact _25 2.4.3 Classification of Pairs Based on Degrees of Freedom 26 2.4.4 Classification of Pairs Based on Type of Closure 27 mjy Contents 2.5 Mechanism and Machine 27 26 Inversions 28 2.7 Quadric Cycle Chain and Its Inversions 28 2.8 Inversion of Slider Crank Chain 33 29 The Double Slider Crank Chain and Its Inversion 35
    210 Transmission of Torque and Force in Mechanisms 36 2 -11 Constrained Motion and Degrees of Freedom of a Mechanism 38 2.12 Expression for D.OF* of Chains and Mechanisms 38
    2 13 Interpretation of Mobility Equation 40 2.14 Inconsistencies of Gmbler’s Equation 43 2.15 Degrees of Freedom Permitted by Joints other than Turning and Sliding 45 2.16 Equivalent Linkages 48
    2.17 Number Synthesis 49
    2.17 A Effect of Even/Odd Number of Links on Degrees
    of Freedom 50
    2.17.2 Minimum Number of Binary Links in a Mechanism 51
    2.17.3 Maximum Possible Number of Turning Pairt on any
    of the n Links in a Mechanism 52
    2.18 Enumeration of Kinematic Chains 53
    2
    19 Spatial Mechanisms 57
    2.20 Manipulators 55
    Review Questions 58
  2. Velocity and Acceleration Analysis (Graphical Approaches) 61-126
    3.1 Introduction 61
    3.2 Linear and Angular Velocity 61
    3.3 Velocity of a Point on Rotating Rigid Body 53
    3.4 Graphical Differentiation 64
    3.5 RelatiyeJ/elocity 67
    3.6 Relative Velocity between Two Points on the Same Link 68
    3.7 Velocity Image 68
    3.8 Velocity Polygon 70
    39 Velocity of Rubbing 75 3.10 Mechanical Advantage and Power Transmission 77 3.11 Instantaneous Centres of Rotation 75 3.12 Properties of Instantaneous Centre 79 3.13 Location of Velocity Pole (I.C.) 50 3.14 Instant Centres of 4-bar Mechanism 5i 3.15 Aronhold-Kennedy’s Theorem of Three Centres 52 3.16 Locating I,Cs. in Mechanisms S3 317 Acceleration in Mechanisms 57
    3,18 Motion of a Particle along Curved Path 55Contents V
    3J9 Acceleration of a Rigid Link 88
    3.20 Acceleration Image of a Link 90
    3.21 General Acceleration Equation for a Link 91
    3.22 Necessary Conditions for Acor to Exist 94
    3.23 Acceleration Polygon 94
    3.24 Combined Four-Bar Chain and Slider-Crank Mechanism 101
    3.25 Acceleration Polygon Involving Coriolis Component of Acceleration 103
    3.26 Klein’s Construction 109
    3.27 Approximate Analytical Expression for Displacement, Velocity and
    Acceleration of Piston of Reciprocating Engine Mechanism 115
    3.28 Kinematic Analysis of Complex Mechanisms 118
    Review Questions 121
    4, Velocity and Acceleration Analysts (Analytical Approach) 127-157
    4.1 Introduction J27
    4.2 Vector Method /27
    4.3 Types of Analysis Problems 128
    4.4 The Loop Closure Equation 131
    4.5 Algebraic Position Analysis 131
    4.5.1 Case of Slider-Crank Mechanism 132
    4.5.2 Case of Four-Bar Mechanism 133
    4.6 Velocity and Acceleration Analysis Using Complex Algebra
    (Raven’s Approach) 135
    4.7 Application to Slider-Crank Mechanism 136
    4.B Application to Four-Bar Mechanism 137
    4.9 Application to Quick-Retum Mechanism 139
    Review Questions- 153
    S. Mechanisms with Lower Pairs 158-202
    5.1 Introduction
    Offset Slider-Crank Mechanism as a Quick Return Mechanism
    The Pantograph 160
    Straight Line Motion Mechanisms 162
    Exact Straight Line Motion Mechanisms 163
    5.5.3 The Han Mechanism 165
    5.5.4 The Scott-Russel Mechanism 166
    The Approximate Straight Line Moiion 167
    5.6.1 The Watt Mechanism 167
    Condition for Generating Exact Straight Line Motion
    PeaucdMer Mechanism 164
    lire Grasshopper Mechanism 168
    The Tchebieheff Straight Line Motion Mechanism 169
    The Roberts Straight Line Motion Mechanism 171yj Contents
    5,7 Engine Indicators Ill
    Simplex Indicator 111
    Crosby Indicator 772
    Thompson Indicator 113
    5.7.4 Dobbie-Mdnnes Indicator 7 75
    5.8 Motor Car Steering Gear 777
    5.8.1 Condition of Correct Steering Ill
    5.8.2 Davis Steering Gear 118
    5.8.3 Ackerman Steering Gear 181
    5.9 Hooke’s (Cardan) Joint or Universal Coupling 185
    5.9. 1 Transmission Characteristics 186
    5.9.2 Double Hooke’s Joint 192
    5.10 Toggle Mechanism 191
    5.11 Scotch Yoke Mechanism 199
    Review Questions 199
  3. Elements of Kinematic Synthesis of Mechanisms
    (Graphical and Algebraic Methods)
    6.1 Kinematic Synthesis 203
    6.2 Approximate and Exact Synthesis 205
    6.3 Chebyshev’s Spacing of Accuracy Points 205
    6.4 Graphical Methods of Dimensional Synthesis
    Motion Generation
    6.5 Poles and Relative Poles 208
    6.6 Motion Generation: Three Prescribed Positions 210
    6-7 Relative Poles (Roto-Ccntres) of the 4-Bar Mechanism 212
    6.8 Relative Poles of Slider-Crank Mechanism 214
    6.9 Function Generation (Three Precision Points) 27 7
    6.10 Algebraic Method of Function Generation 219
    6.11 Comments on Design Parameters and Special Nature of Results
    6.12 Coupler Curves 228
    6.13 Synthesis for Path Generation 230
    6.14 Graphical Synthesis for Path Generation
    (Three Specified Positions) 2J7
    6.15 Roberts-Chebyshev Theorem (Cognate Linkages) 232
    6.16 Coupler Curves from 5-Bar Mechanisms 235
    Review Questions
    7 Cams
    7J Introduction 24.1
    7.2 Comparison between Cams and Lower Paired Mechanisms 247
    73 Classification:of Cams and Followers 242
    13A Classification of Cams 242
    13.2 Classification of Followers 244
    241-299Contents yjj
    74 Terminology for Radial Cam 247 75 Types of Follower Motion 248
    7.5.3 Simple Harmonic Motion 250
    75,4 Uniformly Accelerated and Retarded (Parabolic) Follower Motion 254 7.5.5 Cycloidal Follower Motion 258 7.6 7.7 Pressure Parameters Angle Affecting (^) Pressure 260 Angle 261 7.8 Effect of Offset Follower Motion 263 7.9 Main Consideration Influencing Choice of Cam 266 7.9.1 Smaller Lateral Pressure on Guides 266 7.9.2 Smaller Force Required to Accelerated Follower 2tf 7 7.9J Smooth Jerkkss Motion 268 7.9.4 Smaller Base-Circle 268 7.10 Radius jrfCuryature and Undercutting 269 7.11 Construction of Cam Profiles 269 1A2 Cam Layout: General Type of Problems 272 7J3 Translating Flat_ Face Follower: Analytical Desjgn_ 7.14 Cam with Oscillating Roller Follower 284 7.15 Cams with Specified Contours 287 7.15.1 Circular Arc Cam with Tangent Follower 287 715*2 Tangent Cam with Roller Follower 292
    Review Questions 296
    Uniform Motion or Constant Velocity Follower Motion 249
    Modified Uniform Motion 249
  4. Gears
    8.1 Introduction 300
    8.2 Rolling Contact and Positive Drive 300
    8.3 Classification of Gears 301
    8.4 Nomenclature for Straight Spur Gears 305
    8.5 Fundamental Law of Toothed Gearing 310
    86 Conjugate Teeth 312 87 Tooth Profiles 313
    8.7.1 Cycloidal Tooth Profile 314
    8.7.2 Involute Tooth Profile 115
    8.8 Length of Path of Contact 318
    8.9 Length of Arc of Contact 320
    S10 Contact Ratio 321 300-365 Gears Mounted on Parallel Axes Gears Mounted on Intersecting Shaft Axes Gears Mounted on Skew Shaft Axes 304Vfii Contents SHII Interference and Undercutting 324 8.12 Standard Proportions of Interchangeable Gears 327 8.13 Minimum Number of Teeth to Avoid Interference 328 8.14 Minimum Number of Teeth on Pinion to Avoid Interference with Rack 336 8.15 Comparison between Involute and Cycloidal Tooth Profiles 342 8, 1b Methods of Reducing or Eliminating Interference 343 8 H17 Helical Gears 344 8.18 Spiral Gears (Skew or Screw Gears) 347 8.19 The Efficiency of Spiral and Helical Gears 350 82Q Worm and Worm Gear 355
    8.21 Bevel Gears 360
    8.22 Special Bevel Gears 362
    Review Questions 363
  5. Gear Trains
    9A Introduction .366
    9.2 Classification .3.66
    9.3 Epicyclic Gear Trains with Bevel Gears 372
    9A Algebraic Method of Analysing Epicyclic Gear Trains 373
    9.5 Tabulation Method for Analysing Epicyclic Gw Train 379
    9.6 Torques and Tooth Loads in Epicyclic Gear Trains
    9.7 Bevel Gear Differentia] 397
    Review Questions 398
    366^403
    384
  6. Gyroscopic Effects
    10.1 Introduction 404
    10.2 Angular Motion and Conventional Vector Representation 405
    10.3 Precessional Motion and Angular Acceleration 406
    10.4 Gyroscopic Couple 4 JO
    10.5 Gyro-couple and Gyro-reaction Couple 411
    10.6 Analogy with Motion of a Particle in Circular Path 411
    10.7 Gyroscopic Effects on an Aeroplane 414
    10.8 Stability Analysis of 4-Wheeler Vehicle 415
    10.9 Stability Analysis of a Two-wheel Vehicle 423
    10.10 Gyroscopic Effects on Naval Ships 427
    10, It Gyroscopic Ship Stabilization 432
    10.12 Gyroscopic Analysis of a Disc Fixed Rigidly to a
    Rotating Shaft at Certain Angle 435
    10.13 Gyroscopic Analysis of Grinding Mill 4J 7
    Review Questions 440
    404-442Contents ix
  7. Friction Gears
    ] ]. I Introduction 443
    11.2 Types of Friction 443
    11.3 Dry Friction 444
    11.4 Angle of Repose and Angle of Friction 446
    11.5 Motion along Inclined Plane 446
    11.6 Friction of Nut and Screw 450
    11.7 Wedge 457
    11.8 Rolling Friction 461
    11.9 Pivot and Collar Friction 463
    11.10 Axial Force and Friction Moment in Pivots and Collars 464
    11.10.1 Assumption of Uniform Pressure Intensity 466
    11.10.2 Assumption of Uniform Rate of Wear 467
    11.11 Design Considerations in the Choice of Assumption 469
    11.12 Thrust Bearing 470
    11.13 Friction Clutches 474
    11 14 Cone Clutch 475 11.15 Single Plate Clutch 479 11.16 Multi-Disc Clutch 481 11.17 Effect of Number of Pairs of Active Surfaces 482 11.18 Centrifugal Clutch 492 11.19 Friction Circle and Friction Axis 495 11.20 Lubricated Surfaces 500 11.21 Friction between Lubricated Surfaces 501 I L22 Film Lubrication in Rotating Shafs 504 11.23 Michel Thrust Bearing 505 11.24 Hydrostatic Lubrication 506 11.25 Rolling Contact Bearing 506
    11.26 Advantages and Disadvantages of Rolling Contact Bearings 508
    Review Questions 509
    443-512
  8. Belt, Rope and Chain Drives 513-558
    12.1 Introduction 5.13
    12.2 Velocity Ratio 513
    12J Belt Length 517
    [ 2.4 Limiting Ratio of Belt-Tensions 519
    12.5 Maximum Effective Tension and H.P. Transmitted 522
    12.6 Centrifugal Tension and Stresses in Belts or Rope 525
    12.7 Maximum Tension in Belt/Rope 526
    12.8 Initial Tension and its Role in Power Transmission 526
    12.9 Condition for Maximum Power Transmission 535
    12.10 Power Transmitted by Belt: Further Comments 537
    12.11 Idler and Jockey Pulleys 540X Contents
    12.12 Timing Bell 541
    12.13 Rope Drive 541
    12.14 Materials of Belt and Rope 552
    12.15 Chains 553
    12.16 Inverted Tooth Chain (Silent Chain) 555
    Review Questions 556
  9. Brakes and Dynamometers
  10. ) Introduction 559
    13.2 Classification of Brakes 559
    13.3 The Simple Block or Shoe Brake 560
    13.4 Short-Shoe Brakes (Condition of Self Energization ) 56J
    13.5 Double Block Brakes 563
    13.6 Long Shoe Brakes 5<5<5
    13.7 Long Shoe Brakes (Shorter Method ) 570
    13.8 Internally Expanding Shoes 573
    13.9 Band Brakes 583
    13.10 Band and Block Brake 587
    13.11 The Braking of a Vehicle 596
    13.12 Types of Dynamometers 604
    Absorption Dynamometers
    13.13 Prony Brake Dynamometer 605
    13.14 Rope Brake Dynamometer 606
    Transmission Dynamometers
    13.15 Epicydic Train Dynamometers 608
    13.16 Belt Transmission Dynamometer 609
    13.17 Torsion Dynamometers 611
    Review Questions 614
    559-616
  11. Dynamics of Machines, Turning Moment, Flywheel
    14.1 Role of Force Analysis in Design Calculations
    14.2 Laws of Motion and D’Alembert’s Principle
    14.3 Static Force Analysis
    14.4 Static Force Analysis for Mechanisms
    14.5 Mass Moment of Inertia and Inertia Torques
    14.6 Simple Harmonic Motion
    14.7 Dynamically Equivalent Two Mass System
    14.8 Centre of Percussion
    14.9 Significance of Kinetic Equivalence
    14.10 Equivalent Dynamic System: Graphical Determination
    14J I Correction Couple Required for Arbitrary’ Choice of Both
    the Mass Locations
    1412 The Effective Force and the Inertia Force 644 14.13 Reversed Effective (Inertia) Force and Force Analysis 646 14.14 Dynamic Force Analysis of a Four-link Mechanism 64S 14.15 Analytical Expressions for Velocity and Acceleration of Slider in Slider-Crank Mechanism 654 1416 Piston Effort, Crank Pin Effort and Crank Effort 657
    14.17 Inertia Forces and Torques in Slider-Crank Mechanism 659
    14.15 Dynamic Force Analysis of a Slider-Crank Mechanism 663
    14.19 Turning Moment Diagram {Crank Effort Diagram) 675
    14.20 Fluctuation of Crank Shaft Speed 678
    14.21 The Flywheel 682
    14.22 Flywheel for Punching Press 683
    Review Questions 701
  12. Governors
    15*1 Introduction 705
    J 5.2 Functions of a Governor 705
    15.3 Types of Governors 707
    15.4 Terms Used in Governors 708
    15.5 The Watt Governor 709
    15.6 Effect of Mass of Amis in Watt Governor 111
    15.7 The Porter Governor 713
    15.8 Effect of Friction 7/ 7
    15.9 Proell Governor 724
    15.10 Spring Controlled Governors 729
    15.11 Hartnell Governor 729
    15.12 Governor with Spring Connected Balls (Wilson-Hartodl Governor) 732
    15.13 Governor with Gravity and Spring Control 742
    15.14 Hartung Governor 744
    15.15 Pickering Governor 746
    15.16 inertia Governors 747
    15.17 Characteristics of Centrifugal Governors 747
    15.18 Quality of Governor: Definitions 748
    15.18.1 Controlling Force 748
    15.18.2 Stability and Isochroitism 749
    15.18.3 Sensitiveness 752
    15 *18.4 Hunting 752
    15.19 Governor Effort and Power 752
    15.20 Effect of Friction: Insensitiveness 754
    Review Questions 763
    705-766xii Contents
  13. Balancing 767-849
    16.1 Introduction 767
    16.2 Balancing of Rotating Masses 767
    J 6J Static and Dynamic Balancing Problem 76#
    \6A Unbalanced Rotating Mass 769
    16.5 Balancing of Several Masses Revolving in the Same Plane 772
    16.6 Analytical Approach for Several Rotating Masses in Same Plane 775
    J 6.7 Balancing of Several Masses Revolving in Different Planes 775
    16.7.1 First Method 775
    16.7.2 Second Method (Dalby’s Method) 779
    16.8 Balancing of Rotors 789
    16.9 Static and Dynamic Balancing 790
    16.10 Static Balancing Machines 790
    16.11 Dynamic Balancing Machines 791
    16.11.1 Pivoted Cradle Balancing Machine 792
    16.12 Field Balancing 794
    16.12. ) Balancing of a Twin Disc 795
    16.12.2 Balancing by Four Observations 796
    16.13 Balancing of Reciprocating Masses 798
    16.14 Inertia Effects of Reciprocating Masses in Engine Mechanism 799
    16.15 Primary and Secondary Unbalanced Forces due to
    Reciprocating Masses 801
    16.16 Inertia Effects of Crank and Connecting Rod 802
    16.17 Partial Balancing of Primary Inertia Forces 804
    16.18 Partial Balancing of Locomotives 807
    16.19 Effect of Partial Balancing in Locomotives 807
    16.20 Primary Balance of Multi-Cylinder In-Line Engine 822
    16.2 i Secondary Balance of Multi-Cylinder In-Line Engines 823
    16.22 Balancing of 2-Stroke and 4-Stroke Tn-Ltne Engines 824
    16.23 Firing Order 827
    16.24 Direct and Reverse Cranks 836
    16.25 Balancing V-Engines 841
    Review Exercises 845
  14. Vibration Analysis
    17.1 Introduction
    17.2 Definitions
    17.3 Simple Harmonic Motion and Rotating Vectors
    17.4 Work Done in Harmonic Motion
    17.5 Elements of Discrete ( Lumped Parameter) Vibratory System
    Single Degree of Freedom Problems
    17.6 Undamped Free Vibrations
    17.6, 1 Method Based on Newton’s Second Law of Motion
    850-935
    850
    850
    852
    853
    855
    856
    856Contents xiijj
    17.6.2 Energy Method 859
    17.6.3 Rayleigh’s Method 860
    17.7 Equivalent Springs and Dashpots 864
    17.8 Equivalent Length of Shaft 867
    17.9 Damped Free Vibrations 868
    17.10 Logarithmic Decrement 572
    17.11 Forced Vibrations with Harmonic Excitation 877
    17.12 Vibration Isolation and Transmissibility 55J
    17.13 Vibration Isolation without Dampers 883
    17.14 Vibration Isolation Using Dampers 885
    17.15 Motion Transmissibility 889
    17.16 Whirling of Shafts 895
    17.17 Critical Speed of Light Vertical Shaft with Single DISC
    (without Damping) 896
    17.18 Critical Speed of Light Vertical Shaft Having
    Single Disc with Damping 900
    17.19 Longitudinal and Transverse Vibrations 905
    17*20 Natural Frequency of Free Transverse Vibrations due to a
    Point Load on a Simply-Supported Shaft 906
    17
    *21 Transverse Vibration of a Uniformly Loaded Shaft 907
    17.22 Transverse Vibrations of Shaft Canying Several Loads 911
    Torsional Vibrations
    17.23 Single Rotor System 917
    17.24 Free Torsional Vibrations: Two Rotor System 918
    17.25 Free Torsional Vibrations: Three Rotors 920
    1726 Torsional Vibration of Geared System 927 Review Questions 931 Appendix I Units Appendix it Mathematics Appendix HI 5-/- and M.K.S Units
    Bibliography
    937-938
    939-941
    942-974
    975-976
    Index 977-986
    I N D E X
    Absolute motion, 28
    Absorption dynamometer. 604. 605
    Acceleration. 87
    absolute, 95
    angular. 87-90, 92-99, 103. 106. 406. 410
    centripetal. 89
    Coriolis. 94. 103
    equation. 91
    gyroscopic. 409. 410
    image. 90, 91
    normal. 88
    of piston. 96. 112. 115
    analytical. II5-117
    polygon, 94. 95. 103
    relative, 89-92
    rigid link, 88
    tangential. 88. 90. 92
    Acceleration analysis, 61, 89-94, 135
    analytical approach. 773
    cam and follower, 287-293
    complex mechanism. IIS
    of direct contact mechanisms. 232, 300
    four-bar linkage. 99
    Raven’s method, 135
    return mechanism. 103-104
    slider-crank mechanism. 101, 136
    slotted lever, 104
    Accuracy points. 205-208
    Ackerman steering gear. 32. 181-183
    Addendum of tooth. 306
    modification. 328
    standard. 327
    Art. 428
    Amplitude of vibration. 920
    damped vibration, 868
    forced vibration. 851. 877
    Angle of approach
    friction. 446
    heel. 424
    lap. 517. 518. 519. 520
    obliquity, 308
    repose, 446
    Approximate straight line motion mechanisms, 162—
    163
    Grasshopper. 168
    Robert’s, 171
    Tchcbichcff. 169
    Amhold-Kennedy’s theorem, 82
    Arc of action contact. 320
    Allas, Urones-Nelson, 228. 230
    Automotive differential, 362
    Axial pilch. 356
    Back cone bevel gear. 360
    Backlash. 307
    Balancing by four-observations, 796
    Balancing, definition, 767
    dynamic, 768-769
    partial. 804
    static, 768
    Balancing of cranks, 806
    locomotives, 807-812
    multicylinder in-line engines. 822-823
    reciprocating masses. 801
    revolving masses. 772, 775
    rotors, 789
    secondary forces. 839
    V-engines. 841
    Ball hearing. 507
    Band brake. 583
    Band and block brake. 587
    977978 Index
    Band brake, differential 584
    simple, 584
    Ba.se circle of cam. 247
  • 270
    Ba.se circle of involute gear, 316* 312
    Bearn engine mechanism. 32. 33
    Bearing
    ball. 507
    horse shoe-shaped* 470* 471
    journal. 504. 505
    Michel thrust
  • 505
    Needle rotten 507-508
    roller
  • 507-508
    Belt drive
    catenary effect 538. 540
    centrifugal tension. 525
    creep, 539
    Hat 519
    initial lension. 526
    law of (helling), 519-522
    length of, 51SJ13
    limiting ratio of tensions. 519-522
    material, 533
    maximum HP transmitted. 522
    maximum tension, 526, 532
    power transmitted, 526, 535
    slip* 515^516
    timer helt 553
    V-bclt 455, 52 J
    velocity ratio. 513-515
    Belt transmission dynamometer. 609
    Bevel gears. 303* 362* 372
    miter
  • 3.62
    pitch angle. 362
    pilch cone, 16ft. 362
    pitch surface, 360* 362
    shaft angle, 361* 362
    tooth thickness. 307
    Ircdgold’s approximation. 360
    Zctol. 304. 362
    Bevis Gibson torsion dynamometer. 604. 612
    Binary links. 22. 54
    minimum number in chain* 53
    Block brake. 560-56*
    Boundary friction, 444. 501
    Bow of a ship. 430
    Brakes, band. 559. 583
    band and block. 587
    block, 560, 561
    external. 559
  • 566
    internal. 573
    long shoe* 566-570
    pivoted shoe. 560
    self energization. 561-563
    self locking. 565
    short shoe. 561-563
    Braking of vehicles. 596
    Bush roller chain, 553, 554
    Cams, advantages. 24J
    Cams, analysis* 287
    analytical design, 280
    angle of action. 244, 290
    angle of retum/descent. 265. 27 J , 274
    angle of rise/assent/outstrnke, 265. 271. 274
    angle of dwell, 21L 111
    base circle
    1. 274
      circular arc. 287
      cylindrical, 243
      disc, 242. 244. 247
      displacement diagram* 248, 249, 25.1. 253
      flat. 245
      follower, oscillating, 243. 284, 285
      jerk, 287
      layout of, 27{)
      master, 287
      pitch circle, 248
      pitch curve, 247
      pitch point 248
      plate cam. 242, 253
      pressure angle, 244, 260
      prime circle* 248
      profile, 248, 263, 266
      radial* 242* 243
      specified contours, 270. 287
      specified follower motion, 269r-287
      tangent. 287. 292
      types, 244
      undercutting, 269
      Centre of percussion. 636
      Centre distance
      spiral gears, 347, 350
      worm gears* 355
      Chain
      constrained* 40
      double slider. 35
      drive, 553-554
      Ibur-bar, 29
      kinematic, 21
      pitch* 553-554
      pitch quadric cycle, 28
      roller, 554
      silent
  • 555
    slider-crank* 33
    sprocket* 554
    Chcbyshcv spacing. 206. 218index 979
    Circular Frequency, 893
    Circular pitch, 306
    Clearance, 307
    Closed chain. 21
    Closed pair, 27, 242
    Closure, loop equation. 131
    Clutches, cone. 475
    disc, 479
    multi-disc, 48 L
    single plate* 479
    Coefficient of rolling friction. 461-462
    sliding friction, 443
    Coefficient of energy fluctuation, 680
    Coefficient insensitiveness, 755
    Coefficient of speed fluctuation, 680
    Cognate linkages. 232
    Collar friction. 463
    Collars and pivots, 463
    Complex algebra. 135
    Complex mechanisms. 118
    Complex polar notations, 9
    Compound gear train, 368
    Conical clutch, 475
    Conjugate tooth profiles, 312-314
    Constrained mechenism, 38
    Constraint. 38-40
    motion, 38, 59
    Contact, arc of, 320
    path of 318
    Contact ratio. 307. 321
    Coriolis acceleration. 103, 104. 126
    Correction couple, 640. 643
    Coupler, 29
    Coupler curves. 228-230
    equation of, 229
    for 5-bar linkage. 235-236
    Couple, gyroscopic, 410, 411
    reaction, 411
    representation vectorial. 405
    swaying, 809
    Cradle balancing machine. 792
    Cramer’s rule, 878
    Crank effort, 657, 675
    Cranks, direct and reverse, 836
    Crank-pin effort. 657
    Crank-rocker mechanisms, 30, 31, 32
    Crankshaft balancing, 806
    Crank-slotted lever mechanism. 33
    Critical damping coefficient. 869, 870, 876
    Critical speed in rope dynamometer, 604. 606
    Crosby indicator. 172
    Crossed belt, 5H, 518
    Curvilinear motion of translation, 3
    Cycloidal follower motion. 258, 268
    Cycloidal gear teeth. 314
    Cycloidal and involute tooth comparison, 342
    Cylindrical cams. 243, 244
    pairs, 25
    D’Alembert’s principle, 618-620
    Dal by’s method, 779-781
    ldamping factor/ratio coefficient, 869
    Damped vibrations. 868
    critical, 870
    overdamped, 870
    undeFdamped, 871
    Davis steering gear. 178
    Dedcndum, 306
    Degrees of freedom, 4, 23, 26, 38, 45
    of chains, 38. 39
    effect of
    multiple joint, 41
    spring connection, 41
    even/odd number of links, 50
    of mechanisms, 38
  • 39
    of pairs, 25* 26, 45
    redundant. 43
    Diametral pitch. 306
    Diagrams, free body, 620
    schematic, 21
    Differential mechanism, 398
    Dimensional synthesis, 204. 208
    Direct contact mechanism. 48
    Direct and reverse cranks. 836
    Displacement finite and infinitesimal, 79
    Displacement of
    particle, 11
    rigid body, 11, 12
    Displacement, relative, 12, 13
    Displacement-time curve
    in follower motion. 250-254
    in quick return motion mechanism, 158. 159
    in slider crank mechanism. 654. 659, 663
    Displacement vector, 11
    Dobbic-Mclnnes indicator mechanism. 175
    Double block brake, 563
    Double-crank mechanism, 29
    Double helical gear,
    Double Hooke’s joint. 192, 193
    Double lever mechanism, 29
    Drag link mechanism. 29
    Drive, belt, 518. 529, 531, 532
    chain, 513
    305980 ^dex
    cam. 242
    clutch
  • 475
    friction, 474, 5H
    rope, 300, 513, 521, 526
    Dry friction, 444
    Dunkcrley’s method* 911
    Dwell period in cams. 245, 246
    Dynamic balancing, 768-769
    Dynamic machines* 790
    Dynamics, defined* 623, 679, 681
    Dynamically equivalent two-mass system* 634, 639
    Dynamometers, 604
    absorption. 604-605
    belt transmission. 609
    epicyclic gear train* 608
    Prony brake, 60S
    rope brake* 606
    torsion, 611
    transmission, 604. 608
    Face of gear tooth. 307
    width of helical gear. 345
    Face cam, 243
    Ferguson’s parados* 386
    Field balancing. 794
    Fillet radius, 307
    Film lubrication. 502, 504
    Firing order. 827
    Flat face follower, 280
    Flat pair, 24
    Fluctuation of crank shaft speed, 678
    Fluctuation of energv, 680
    Flywheel, 682
    energy, 683, 684
    speed! 683. 684
    Foettinger torsion dynamometer, 613
    Follower, classiftcation, 244-246
    Follower, flat raced, 247. 273. 283
    cycloidal* 248. 258
    knife edge. 246
    lift 248
    modified constant velocity, 249
    motions types. 244
    mushroom, 246
    offset, 244
    oscillating, 244
    parabolic, 248, 254
    radial
  • 244
    roller
  • 246
    simple harmonic* 250-251
    spherically seated, 246
    stroke. 248
    uniform velocity, 249, 250
    Force analysis
    dynamic, 646
    static, 62
    Force analysis of
    four-bar mechanism slider. 648
    crank mechanism. 659, 663
    Force closure in cams, 242
    Force, controlling
    effective, 644
    inertia, 644. 646
    Fore of ship, 428
    acceleration polygon, 94
    instantaneous centre. 78^79
    inversions, 29
    mechanical advantage. 36
    pressure angle, 37
    transmission angle. 36
    Free body diagram, 620
    Freedom, degrees of, 4
    Effect of friction on governors. 717, 724, 754
    Effect, gyroscopic, 404, 405, 406, 414. 427
    Effect of partial balancing of locomotives* BG7-810
    Effective force, 619, 644
    tension. 522
    Efficiency of inclined plane
    helical gears, 344, 350
    spiral gears, 347, 350
    worm gears. 355
    Effort at crank
  • 657
    Effort of governor* 752
    piston. 657
    Element* definition of* 20
    Elliptical trammel* 35
    Energy fluctuation* flywheel, 680, 681, 682. 684
    Enumeration of chains, 53-57
    Epicyclic dynamometer, 608
    gear train, 366
    torque and tooth loads. 384
    Epicycloid. 342
    Equilibrium, dynamic, 415
    Equilibrium, static. 618-619
    Equivalent linkage. 48
    Equivalent two-mass system dynamic* 634-635
    Error in function generator structural* 204—205
    Euler’s theorem. 4
    Exact straight line motion
    condition for
    . 163
    Hart
    , 165
    Peaucellier, 164
    Scim-Russcl, 166Index 981
    Frequency of vibration
    cyclic, 677
    damped. 768
    fundamental, 907, 910
    natural. 906
    Freundenstein’s equation. 217
    Friction. 443
    angte. 446
    axis, 495-496. 499
    boundary. 444. 501
    circle, 495
    clutches. 474
    coefficient. 445
    dry, 443, 444
    film, 444. 502
    greasy. 444. 501
    rolling, 444. 461
    skin. 444, 501
    solid. 443, 444
    moment, 464, 496
    viscous, 444, 502
    Friction in governors, 603, 664
    pivot and collar. 463
    roiling. 444. 461
    Full depth tooth. 327
    Function generation, 217, 219
    algebraic method, 219, 373
    graphical method, 208
    Function generator, 204. 205
    Gear trains, 366
    algebraic method, 373
    bevel gear differential, 397
    compound, 368
    epicyclic, 37L 372
    formula (algebraic) method, 376
    ordinary (simple), 366
    reverted. 370
    tabulation method. 379
    train value, 368
    Globular pair, 24
    Governors, 705
    centrifugal, 707
    controlling force, 707
    definitions, 708
    effort. 752
    emergency. 707
    friction, 717, 754
    gravity control. 708
    Hartnell, 729
    Harfung. 744
    isochronous, 757
    inertia. 708, 747
    insensitiveness. 754-757
    pendulum. 709
    pickering, 746
    porter, 713
    power, 752
    Proell. 724
    quality, 748
    sensitiveness. 752
    spring controlled. 729
    stability. 749
    watt, 709
    Wilson Hartnell. 729, 732
    Graphical cam design, 275
    Graphical differentiation. 64—66
    GrashoFs chain, 29
    Grashoff’s law, 29
    Grubler’s criterion inconsistencies. 43
    Gyroscope, definition. 404
    Gyroscopic acceleration. 407
    Gyroscopic action. 439
    Gyroscopic action in grinding mill. 437
    Gyroscopic couple. 410
    Gyroscopic effects on
    air planes. 414
    four wheeler. 415
    naval ship. 427
    two wheeler. 423
    Gyroscopic ship stabilisation, 432
    Gear, definition, 300
    Gear ratio, 307
    Gears, 301
    bevel, 304
    classification. 301
    helical. 302, 344
    Herringbone. 303
    hypoid, 304
    rack and pinion. 303
    spur, 301, 302, 305
    spiral, 304. 305. 347
    worm. 305
    Gear teeth
    base circle, 316
    conjugate. 312
    cycloidal profile, 314
    face. 307
    Hank, 307
    involute, 315
    module, 306, 327
    proportions, 327
    [ 1 I982 index
    Hammer blow, 807
    Hand pump mechanism. 34
    Han mechanism, 165
    Harmonic motion, simple. 625
    Hartnell governor, 729
    Helical gear. 302, 344
    normal circular pilch, 346-347
    Helix angle. 303
    Herringbone gear, 303
    Higher pair, 25, 28, 24J
    effect on d ^o.f-. 40
    Hooke’s joint, 185
    double. 192
    HP transmitted by belt and rope, 522
    Hrones and Nelson atlas, 228
    Hunting governor. 752
    Hypoide gearing, 304
    Jaw dutches, positive, 475
    Jerk, 248. 253, 254, 255
    Jockey pulley’s, 540
    Joints, simple. 41
    multiple, 41
    Journal bearing, 503-504
    friction in, 495-496
    pressure distribution, 503
    Tower’s experiment, 502
    Kennedy’s theorem, 82
    Kinematics, 19
    Kinematic
    chain. 21
    enumeration. 53
    pairs. 23
    synthesis, 203
    Klein’s construction. 109
    Idler pulleys. 540 Kutzbach’s criterion, 40
    Images, velocity and acceleration. 68, 69, 88. 89
    Inclined planes. 446
    efficiency of. 447-448
    friction of, 446-448
    Indicator diagrams for engines. 171, 675
    Inertia effects of
    crank and connecting rod. 802
    reciprocating masses, SOL
    Inertia force, 646
    determination. 639
    Inertia torque, 619, 620. 649
    Inscnsitiveness Instantaneous centres , governor , 78, 754—757
    Aronhold Kennedy’s theorem. 82
    Locations of, 80, S3
    method for velocity, 85
    notation, 81
    number of. 82
    properties. 79
    Interference in involute teeth. 324
    mcihods of elimination, 343
    minimum number of teeth to avoid. 328. 336
    Internally expanding shoe brakes. 573
    Inversion. 28
    of four-bar chain, 212
    of double-slider chain, 35
    of slider-crank chain, 33
    Inversion, importance of, 28
    properties of, 28
    Inverted tooth chain, 555
    Involute teeth, 312-315
    Isochronous governors, 757
    Law of gearing. 310
    Laws of motion. 618
    Laws of solid friction. 444
    Length of arc of contacts, 320
    Length of path of contact 318
    approach. 318
    recess, 318
    Limiting angle of friction, 445. 446
    Limiting coefficient of friction. 445
    Linear motion lower pairs. 40
    Links, classification. 22
    conventional representation. 22
    Linkage. 28
    Locomotives,
    effects in, 807
    partial balancing of. 807
    Logarithmic decrement, 872
    I
    -ong shoe brakes. 566
    shorter method, 570
    Longitudinal vibrations. 905
    Loop closure equation. 39. 131
    Lower pairs. 25
    equivalent. 45
    Lubrication. 444. 502, 504
    film, 502
    hydrostatic, 506
    of journal hearing. 503-504
    of plane surfaces. 500-501
    viscous. 502Index 983
    Machine, definition. 19. 27
    magnification factor 830
    Manipulators, 58
    Master earn. 287
    Materials for belt and rope. 552
    Mechanical advantage. 36, 77
    Mechanism, definition. 22, 27
    Michel thrusl bearing, 505
    Minimum number of pinion teeth, 336
    Miter gear. 362
    Mobility. 38
    Mobility equalion. 40
    Mode of vibration. 907
    Module, standard values. 306, 308
    Motor car steering gear. 177
    Ackerman
    , 181
    Davis, 178
    condition of correct steering. 177
    Motion generation, 204, 205. 208
    Motion of the follower. 244, 245
    Motion of translation. 3
    curvilinear. 3
    rectilinear. 3
    Motion transfer fink, 52
    Motion, simple harmonic, 625
    Movabiltty. 40. 50
    Multile joint, 4J
    higher. 25
    lower. 25
    prismatic, 23
    redundant, 43
    revoltilc. 23
    rolling. 21 45
    screw, 23
    turning, 23
    Pantograph, 32, 160-162
    Parabolic follower motion, 254
    Parallel, helical geats. 302. 344
    Partial balancing of locomotives, 8117-812
    Particle, motion of, 3
    Path generation. 204-205. 230-241
    Peaucdlier mechanism, 164
    Pendulum, compound. 628, 631. 636
    simple, 626
    torsional, 629, 633
    Percussion, centre, 636
    Periodic time. 850
    Phase angle, 793, 8U9. 853
    Pickering governor. 746
    Pinion. 303. 306
    Piston effort, 657
    Pitch circle, 248. 302
    cone. 360-363
    tine. 336
    Pitching motion of ships, 428
    Pivot bearing, friction, 463
    Plane of gyracouple, 405
    precession. 406
    spin, 406
    Planar motion, 24
    Planar pair. 24
    Planetaiy gear trains, 17-1
    Plate clutch, 479
    Poles. 208. 212
    Port 428
    Position vector, ID
    Preeessional motion. 406
    Precision points, 205
    Pressure angle of.
    earns, 244, 260-263
    Ibur-bar mechanism. 17
    spur gears. 305
    Primary and secondary unbalanced forces, SfiI-833
    Primary balancing of multicylinder in-line engines.
    822, 824
    Prismatic pairs, 23
    Properties of 79T41G
    Pulleys, idler and Jockey, 540
    Pure rolling. 45, 177. 300
    Notation, static forces. 621
    Number of instantaneous centres, 79
    Number synthesis, 49, 203
    Offset follower motion, 244, 263
    Offset slider-crank mechanism, 158
    condition of rotatibility of crank, L6G
    Oldham’s coupling, 3.6
    Open chain. 21
    Oscillating cylinder engine mechanism. 33
    Oscillating follower with fial face. 245
    Oscillating follower with roller. 245, 284
    Overdamped vibration. 870
    Pairs, classification, 23
    Pairing dements. 2Q
    Pairs,
    cylindrical, 23
    definition. 20
    flat, 24
    globular. 24
    i984 index
    Quadric cycle chain* 28
    Quaternary link* 22
    Quick T\Mum mechanism. 31
    drag-link type* 31
    offset slider crank type, 158
    slotted lever, 33
    ^ 3.4
    Whit-Worth mechanism. 33* 106
    Skeleton diagram, 20
    Slider-crank mechanism. 34, 58, 132
    acceleration. 654
    displacement, 655
    force analysis, 646* 659
    inversions* 655
    velocity, 655
    Sliding pair* 23
    Slotted lever quick return motion mechanism* 33, 34
    Spacing of accuracy points, 205
    Spatial mechanism, 57
    Specified cam profiles, 287
    follower motion
  • 248, 263
    Speed regulation* 706
    Spherical pair, 24
    Spiral hevcl gear, 304
    Spring constant, 891, 892
    Sprocket, 553
    Spur gears, 302. 303, 305
    addendum
  • 306
    arc. of contact, 307
    backlash. 307
    base circle
  • 315
    circular pitch. 306
    clearance. 307
    conjugate action. 310
    contact ratio, 307
    dedendum* 306
    face width. 307
    fillet radius. 307
    hilt-depth tooth* 327
    interchangeable, 327
    interference, 324
    length of path of contact* 3IS
    minimum number of teeth for pinion, 328. 336
    pitch circle, 306
    pilch circle diameter, 306
    pitch line. 336
    pressure angle. 308
    stub tooth, 327
    tooth face, 307
    tooth proportions 327
    tooth thickness. 307
    undercutting, 324
    working depth. 307
    Stability of
    2-wheeler, 423
    A-wheeler 415
    governors* 748
    Stabilization, gyroscopic, 432
    Star hoard, 427
    Static balance, 768
    Static balancing machines, 790
    Rack. 326
    Radial Hat faced cam follower, 244
    Radial roller earn follower. 244
    Raven’s method, 135
    Rayleigh s method, 912
    Rectilinear motion
  • 2
    Rectilinear translation, 3
    Relative displacement* 12
    Relative velocity, 67* 68
    acceleration, 88
    Relative poles* 208, 212
    Reverted gear trains, 370
    Revolute pair. 23
    Rigid body displacement, II
    guidance. 205
    motion, 2
    Robert’s Chehyehev theorem, 232
    Rolling contact. 300, 506. 508
    Rolling friction* 461
    Rolling of ships, 428
    Rolling contact, bearing, 506* 508
    Rotation, motion* 4
    Roio-centrcs, 212
    Rubbing velocity* 75
    Scott Russel’s mechanism. 166
    Screw friction
  • 450
    jack. 450
    pair, 23
    Secondary force balancing of multi-cylinder in-line
    engines. 823
    Secondary couples, 829
    Self actuating brake, 562
    Self-closed pairs, 27
    Self energisation, 562
    Self locking, 454
    Sensitiveness of governors, 752
    Shaking farce, 650
    Simple harmonic motion* 625
    Simple pendulum, 626
    Simplex indicator, 171
    Singular link, 2 L

كلمة سر فك الضغط : books-world.net
The Unzip Password : books-world.net

تحميل

يجب عليك التسجيل في الموقع لكي تتمكن من التحميل

تسجيل | تسجيل الدخول