Mechanical Behavior of Materials – Engineering Methods for Deformation, Fracture, and Fatigue
Fifth Edition
Global Edition
Norman E. Dowling
Virginia Polytechnic Institute and State University
Blacksburg, VA, USA
Stephen L. Kampe
Michigan Technological University
Houghton, MI, USA
Milo V. Kral
University of Canterbury
Christchurch, New Zealand
Contents
PREFACE 13
ACKNOWLEDGMENTS 18
1 Introduction 19
1.1 Introduction 19
1.2 Types of Material Failure 20
1.3 Design and Materials Selection 29
1.4 Technological Challenge 34
1.5 Economic Importance of Fracture 36
1.6 Summary 37
References 38
Problems and Questions 38
2 Structure, Defects, and Deformation in Materials 40
2.1 Introduction 40
2.2 Bonding in Solids 42
2.3 Structure in Crystalline Materials 45
2.4 Defects in Materials 48
2.5 Elastic Deformation and Theoretical Strength 53
2.6 Inelastic Deformation 58
2.7 Summary 63
References 64
Problems and Questions 64
3 Mechanical Testing: Tension Test and Stress–Strain Mechanisms 66
3.1 Introduction 66
3.2 Introduction to Tension Test 71
3.3 Engineering Stress–Strain Properties 76
3.4 Materials Science Description of Tensile Behavior 85
3.5 Trends in Tensile Behavior 89
78 Contents
3.6 True Stress–Strain Interpretation of Tension Test 95
3.7 Materials Selection for Engineering Components 106
3.8 Summary 112
References 113
Problems and Questions 114
4 Mechanical Testing: Additional Basic Tests 124
4.1 Introduction 124
4.2 Compression Test 124
4.3 Hardness Tests 129
4.4 Notch-Impact Tests 137
4.5 Bending and Torsion Tests 142
4.6 Summary 147
References 148
Problems and Questions 148
5 Stress–Strain Relationships and Behavior 153
5.1 Introduction 153
5.2 Models for Deformation Behavior 154
5.3 Elastic Deformation 165
5.4 Anisotropic Materials 177
5.5 Summary 186
References 188
Problems and Questions 188
6 Review of Complex and Principal States of Stress and Strain 196
6.1 Introduction 196
6.2 Plane Stress 197
6.3 Principal Stresses and the Maximum Shear Stress 207
6.4 Three-Dimensional States of Stress 215
6.5 Stresses on the Octahedral Planes 222
6.6 Complex States of Strain 224
6.7 Summary 229
References 230
Problems and Questions 230
7 Yielding and Fracture under Combined Stresses 236
7.1 Introduction 236
7.2 General Form of Failure Criteria 238
7.3 Maximum Normal Stress Fracture Criterion 240
7.4 Maximum Shear Stress Yield Criterion 243Contents 9
7.5 Octahedral Shear Stress Yield Criterion 249
7.6 Discussion of the Basic Failure Criteria 256
7.7 Coulomb–Mohr Fracture Criterion 262
7.8 Modified Mohr Fracture Criterion 272
7.9 Additional Comments on Failure Criteria 279
7.10 Summary 282
References 283
Problems and Questions 284
8 Fracture of Cracked Members 294
8.1 Introduction 294
8.2 Preliminary Discussion 297
8.3 Mathematical Concepts 304
8.4 Application of K to Design and Analysis 309
8.5 Additional Topics on Application of K 319
8.6 Fracture Toughness Values and Trends 331
8.7 Plastic Zone Size, and Plasticity Limitations on LEFM 341
8.8 Discussion of Fracture Toughness Testing 349
8.9 Extensions of Fracture Mechanics Beyond Linear Elasticity 350
8.10 Summary 357
References 360
Problems and Questions 362
9 Fatigue of Materials: Introduction and Stress-Based Approach 375
9.1 Introduction 375
9.2 Definitions and Concepts 377
9.3 Sources of Cyclic Loading 388
9.4 Fatigue Testing 390
9.5 The Physical Nature of Fatigue Damage 394
9.6 Trends in S-N Curves 399
9.7 Mean Stresses 411
9.8 Multiaxial Stresses 422
9.9 Variable Amplitude Loading 427
9.10 Summary 437
References 439
Problems and Questions 440
10 Stress-Based Approach to Fatigue: Notched Members 450
10.1 Introduction 450
10.2 Notch Effects 452
10.3 Notch Sensitivity and Empirical Estimates of kf 456
10.4 Estimating Long-Life Fatigue Strengths (Fatigue Limits) 46010 Contents
10.5 Notch Effects at Intermediate and Short Lives 465
10.6 Combined Effects of Notches and Mean Stress 469
10.7 Estimating S-N Curves 479
10.8 Use of Component S-N Data 485
10.9 Designing to Avoid Fatigue Failure 494
10.10 Discussion 500
10.11 Summary 501
References 502
Problems and Questions 503
11 Fatigue Crack Growth 517
11.1 Introduction 517
11.2 Preliminary Discussion 518
11.3 Fatigue Crack Growth Rate Testing 526
11.4 Effects of R = Smin/Smax on Fatigue Crack Growth 530
11.5 Trends in Fatigue Crack Growth Behavior 541
11.6 Life Estimates for Constant Amplitude Loading 544
11.7 Life Estimates for Variable Amplitude Loading 558
11.8 Design Considerations 563
11.9 Plasticity Aspects and Limitations of LEFM for Fatigue Crack
Growth 566
11.10 Summary 572
References 573
Problems and Questions 575
12 Environmentally Assisted Cracking 589
12.1 Introduction 589
12.2 Definitions, Concepts, and Analysis 592
12.3 EAC in Metals: Basic Mechanisms 595
12.4 Hydrogen-Induced Embrittlement 599
12.5 Liquid Metal Embrittlement 601
12.6 EAC of Polymers 604
12.7 EAC of Glasses and Ceramics 608
12.8 Additional Comments and Preventative Measures 610
References 610
Problems and Questions 611
13 Plastic Deformation Behavior and Models for Materials 614
13.1 Introduction 614
13.2 Stress–Strain Curves 617
13.3 Three-Dimensional Stress–Strain Relationships 625Contents 11
13.4 Unloading and Cyclic Loading Behavior from Rheological
Models 635
13.5 Cyclic Stress–Strain Behavior of Real Materials 644
13.6 Summary 656
References 658
Problems and Questions 659
14 Stress–Strain Analysis of Plastically Deforming Members 668
14.1 Introduction 668
14.2 Plasticity in Bending 669
14.3 Residual Stresses and Strains for Bending 680
14.4 Plasticity of Circular Shafts in Torsion 683
14.5 Notched Members 686
14.6 Cyclic Loading 698
14.7 Summary 709
References 710
Problems and Questions 711
15 Strain-Based Approach to Fatigue 721
15.1 Introduction 721
15.2 Strain Versus Life Curves 724
15.3 Mean Stress Effects 734
15.4 Multiaxial Stress Effects 743
15.5 Life Estimates for Structural Components 747
15.6 Additional Discussion 758
15.7 Summary 765
References 766
Problems and Questions 767
16 Time-Dependent Behavior: Creep and Damping 777
16.1 Introduction 777
16.2 Creep Testing 779
16.3 Physical Mechanisms of Creep 784
16.4 Time–Temperature Parameters and Life Estimates 796
16.5 Creep Failure under Varying Stress 809
16.6 Stress–Strain–Time Relationships 810
16.7 Creep Deformation under Varying Stress 817
16.8 Creep Deformation under Multiaxial Stress 823
16.9 Component Stress–Strain Analysis 82512 Contents
16.10 Energy Dissipation (Damping) in Materials 830
16.11 Summary 839
References 841
Problems and Questions 842
Appendix A Review of Selected Topics from Mechanics of Materials 854
A.1 Introduction 854
A.2 Basic Formulas for Stresses and Deflections 854
A.3 Properties of Areas 856
A.4 Shears, Moments, and Deflections in Beams 858
A.5 Stresses in Pressure Vessels, Tubes, and Discs 858
A.6 Elastic Stress Concentration Factors for Notches 863
A.7 Fully Plastic Yielding Loads 864
References 873
Appendix B Statistical Variation in Materials Properties 875
B.1 Introduction 875
B.2 Mean and Standard Deviation 875
B.3 Normal or Gaussian Distribution 877
B.4 Typical Variation in Materials Properties 879
B.5 One-Sided Tolerance Limits 880
B.6 Discussion 882
References 883
Appendix C A Survey of Engineering Materials 884
C.1 Introduction 884
C.2 Alloying and Processing of Metals 885
C.3 Irons and Steels 891
C.4 Nonferrous Metals 899
C.5 Polymers 903
C.6 Ceramics and Glasses 912
C.7 Composite Materials 917
C.8 Summary 923
References 924
ANSWERS FOR SELECTED PROBLEMS AND QUESTIONS 926
BIBLIOGRAPHY 937
INDEX 95
Index
For these indexed items, where a topic is discussed continually over more than one page, or on multiple
pages in a section of the book, the initial page is given. Page numbers are given for tables with materials
properties or other information.
A
AASHTO bridge design code, 493
Activation energy, 599, 787, 789, 792, 799, 799
(table), 801
Aging, 890, 901
AISI nomenclature, 892, 894 (table), 897, 898
Albert, W. A. J., 376
Allowable stress design, 32, 257
Alloying, 47, 885, 910
compositions (tables), 892, 894, 900, 901
Alumina (Al2O3), 48, 915
Aluminum alloys, 900
examples (table), 901
nomenclature (table), 900
Amorphous structure:
glasses, 916
polymers, 48, 906
Amplitude (of stress), 378
Amplitude–mean diagram, 412
Anelastic strain, 164, 830
Anisotropic, anisotropy, 54
elastic, 178
yield criteria for, 259
Annealing, 887
Aramid, 905
Areas, properties, 856
Arrhenius equation, 599, 786, 787, 789, 798
ASTM Standards, 69, 71 (table), 103, 137, 140,
142, 148
creep, 841
CTOD fracture, 357, 360
cycle counting, 432, 439
environmentally assisted cracking, 592, 601,
606, 610
fatigue crack growth, 526, 529, 573
fatigue, low-cycle, 644, 658, 724, 766
fatigue, stress-based, 390, 439
fracture toughness, 331, 349, 350, 356,
357, 360
J-integral fracture, 353, 356, 360
steel specifications, 897, 924
Ausforming, 898
Austenite, 896
AWS weld design code, 491, 493
B
Bailey bridge, 485
Bauschinger effect, 616, 639
Beach marks, 395
951952 Index
Beams (see also Bending)
shears, moments, and deflections, 858
Bending:
creep in, 826, 828
cyclic loading analysis, 698
elastic case, 669, 854, 858
fatigue tests, 390
fracture specimen, 310, 331, 355
plasticity analysis
fully plastic case, 676, 677, 867
by integration, 671
for various σ-ε curves, 673–679
residual stresses and strains, 680
tests, 89, 142, 858
on ceramics (tables), 92, 134
Biaxial stress (see Multiaxial stress)
Blunting line, 357
Body-centered cubic structure, 46
Bolt design, 496, 601
Bonding, chemical, 42, 86
Bridgman triaxiality correction, 99
Brinell hardness test, 131
values (tables), 107, 137
Brittle behavior, 21 (see also Fracture criteria)
crack effects on, 87, 260, 282, 299
fracture criteria, 240, 260, 262, 272
multiaxial stress effect on, 279
in notch fatigue, 470
in notched members, 868
in tension, 87
Brittle fracture, 23, 294, 299, 302 (see also
Fracture toughness)
after fatigue growth, 541, 551
Buckling, 22, 125
Budynas, R. G.:
fatigue limit estimate, 463, 464 (table)
S-N curve estimate, 479, 480 (table)
Bulk modulus, 174
C
Casting, 885
Cast irons, 891, 893
Cemented carbides, 915
Cementite (Fe3C), 895
Center-cracked plate, 299, 307, 526
Ceramics, 40, 41 (table), 47, 912
creep in, 788
crystal structures, 47
fracture criteria, 240, 260, 262, 272
fracture toughness, 301 (table), 333
properties (tables), 57, 92, 134, 166, 266, 301,
881
uses (table), 913
Cermets, 915
Chain molecules, in polymers, 41, 45, 63, 88, 788,
904
Charpy test, 138
Chemical bonding, 42, 86
Circular crack, 319
Circumferential crack, 311
Clay products, 914
Cleavage, 337, 543
Climb, dislocation, 790
Closed loop testing machine, 68, 393
Close-packed planes, directions, 61
Coble creep, 790
Coefficient of variation, 876, 880 (table), 881
(table)
Coffin, L. F., 726, 810
Coherent precipitate, 889, 890, 919
Cohesive strength, 56, 86
Cold rolling, 498
Cold work, 886
Compact fracture specimen, 313, 331, 355, 526
Completely reversed cycling, 379
Compliance method, 309, 354
Component tests, 33
S-N curves from, 485, 500
Composite materials, 40, 41 (table), 912, 917, 918
(table)
elastic constants, 180, 181 (table)
fatigue, 395, 402
fracture criteria, 260
properties (tables), 93, 181
Compression test, 124
with lateral pressure, 129, 265, 272
strengths from (tables), 92, 266, 881
Concrete, 266 (table), 795, 881 (table), 914
Constant amplitude stressing, 377
Constant-life diagram, 411
Constraint, geometric, 344, 347, 694, 873
Copper alloys, 902
Corner crack, 320
Corrosion, 20
and fatigue, 28, 403, 543, 594,
Corten–Dolan method, 500
Cost of fracture, 36, 376Index 953
Cost of materials, relative, 108 (table), 111
Coulomb–Mohr criterion, 263
Covalent bond, 42, 44, 47
Cracks, 23, 52, 294, 309, 319
in environmentally assisted cracking,
517, 589
in fatigue, 395, 517, 733, 762
inclined, 327
inspection for, 295, 519, 564
mixed-mode, 328, 340
at notches, 324, 454
surface, 319
Crack growth (see Fatigue crack growth;
Environmentally assisted cracking)
Crack growth retardation, 562
Crack initiation, 394, 733, 762
Crack-tip opening displacement, 298 (see also
CTOD)
Crack velocity, 592, 594 (table), 595, 608
Creep, 22, 61, 154, 777
component σ-ε analysis, 825
cycle-dependent type, 653, 759
life estimates, 796, 808
multiaxial stress, 176, 808, 823
physical mechanisms, 61, 784, 790 (table)
rate equations, 786, 789
rheological models, 159, 810, 817
steady-state (secondary stage) type, 154, 160,
780, 781, 788, 812, 814
stress–strain–time relations, 792, 810, 816
(table), 823
tertiary stage, 780
testing, 779, 841
time-temperature parameters, 796,
802 (table)
transient (primary stage) type, 155, 161, 780,
812, 814
varying stress, 809, 817
Creep cavitation, 796
Creep–fatigue interaction, 403, 733, 809
Creep rupture, 26, 796 (see also Creep)
Critical plane approach, 426, 745
Cross-linking, 907, 909
Crystalline grains, 48
Crystalline structure, 45
ceramics, 47
metals, 46–47
polymers, 48, 905, 910
CTOD, 298
in cyclic loading, 566
in J-integral testing, 357
test standards, 357
Cubic material, 180
Cumulative fatigue damage (see Palmgren–Miner
rule; Variable amplitude loading)
Cycle counting, 427, 430, 652, 752, 756
Cycle-dependent creep, 653, 759
Cycle-dependent hardening, softening, 645
Cycle-dependent relaxation, 653, 759
Cyclic loading:
description of, 377, 521
reological modeling for, 635, 640, 642
sources of, 388
stress analysis for, 698
stress–strain behavior, 616, 644
Cyclic stress–strain curve, 641, 641 (table), 646,
722, 727 (table), 729
Cyclic yield strength, 647
D
Damage-tolerant design, 303, 520, 563
Damping, 779, 830
in components, 837
definitions for, 833
physical mechanisms, 833, 835
rheological modeling of, 830
Defects in materials, 48
Deflections, 855, 858
Deformation, 20, 153 (see also Creep; Elastic
deformation; Plastic deformation)
types (table), 154
Deformation mechanism maps, 792
Deformation plasticity theory, 617, 626, 634
Deformation processing, 885
Delayed fracture, 601
Density (tables), 92, 108, 181, 886
Design, 29
creep, 778, 791
environmentally assisted cracking, 591, 598,
601, 604, 608, 610
damage-tolerant type, 303, 520, 563
fatigue, 494
fatigue crack growth, 563
Design truck, 493
Diamond cubic structure, 44, 47, 916
Diffusion, 599, 788
Diffusional flow, 61, 788954 Index
Dimpled rupture, 337
Disc, rotational stresses, 862
Dislocation, 50 (see also Creep; Plastic
deformation)
Dislocation creep, 790
Dispersion hardening, 919
Distortion energy criterion, 249, 253
Ductile behavior, 21, 86, 88 (see also Yield criteria)
in compression, 127
crack effect on, 302
multiaxial stress effect on, 279
notched members, 868
in notch fatigue, 465, 469, 470
Ductile fracture, 24, 350
Ductility, 79, 80, 85, 88 (see also Tension test)
Durability, 30
Durability testing, 33
Dynamic modulus, 833
Dynamic recrystallization, 797
Dynamic tear test, 138
E
Economics of fracture, 36, 376
Edge dislocation, 50
Effective strain, 626, 629
in fatigue, 744
Effective strain rate, 824
Effective stress, 239, 240, 245, 251, 270, 275, 424,
626, 824
Effective stress–strain curve, 629
Elastic deformation, 21, 53, 165
anisotropic case, 177
constants for (tables), 166, 181
isotropic case, 165
orthotropic case, 179
physical mechanisms, 53, 86
with plastic deformation, 625
Elastic modulus, 21, 53, 77, 156, 165
elastomers, 909, 910
fibrous composites, 180, 181 (table), 182, 183,
920
single crystals, 54
thermoplastics, 906
trends, 54, 86
values (tables), 90–93, 108, 134, 166, 181, 727,
886,
whiskers, fibers, 57 (table)
Elastic stress concentration factor, 297, 379, 452,
687, 864 (see also Notches)
Elastically calculated stress, 692
Elastomers, 903, 909
Elliptical crack, 320
Elongation, 22, 79, 80
values (tables), 90, 91, 93, 300
Endo, T., 430
Endurance limit, 382 (see also Fatigue limit)
Energy, impact, 91 (table), 140
Energy of distortion criterion, 249, 253
Engineering shear strain, 224, 626
Engineering size crack, 764
Engineering stress and strain, 73, 77, 79,
Environmentally assisted cracking (EAC), 25,
517, 589
crack velocity, 592, 594 (table), 595, 599,
601, 608
delayed fracture, 601
design considerations, 591, 598, 601, 604, 608,
610
EAC threshold, 592, 594 (table), 601, 603
environment stress cracking (ESC), 590, 604
fractography, 596–598
hydrogen-induced embrittlement, 590, 597, 599
intergranular fracture, 25, 595, 599, 601
life estimates, 594, 609
liquid metal embrittlement (LME), 590, 601,
602 (table)
metallography, 596, 601
prior austenite grains, 600, 601
sensitization, 25, 595
solubility parameter, 605, 605 (table)
static fatigue, 590, 608
stress corrosion cracking (SCC), 25, 590,
594, 595
transgranular fracture, 595
Environmental effects, 25 (see also
Environmentally assisted cracking)
fatigue, 403
fatigue crack growth, 517, 543
at high temperature, 778, 809
static fracture, 282
Environment stress cracking (ESC), 590, 604
Equivalent completely reversed stress, 416, 420,
470, 736
Equivalent constant amplitude stress, 435, 494,
560Index 955
Equivalent life, for zero-mean-stress, 736, 737,
740, 741
Extensometer, 68
F
Face-centered cubic structure, 46
Factor of safety (see Safety factor)
Failure criteria, 236, 238 (see also Fracture
criteria; Yield criteria)
discussion of, 279
Failure surface, 239 (see also Fracture criteria;
Yield criteria)
Failures, 20
brittle fracture, 294, 299
creep, 779
environmental, 589
fatigue, 376
fatigue crack growth, 517
plastic collapse, 668, 677
Fatigue, 26, 375 (see also Fatigue crack growth;
Fatigue limit; Mean Stress; Strain-based
fatigue; Variable amplitude loading)
approaches, 376, 721
with creep, 403, 733, 809
definitions, 377
design for, 494
discussion, 500, 758
fracture appearance, 395–397
high-cycle vs. low-cycle, 27, 383, 729
mean stress effect, 377, 402, 411, 469, 481, 487,
734
microstructural effects, 405
multiaxial stress, 422, 743
notch effects, 403, 452, 456, 465, 469, 747
notch factor, 452, 456, 494, 765
empirical estimates, 456
at finite life, 465, 759
for mean stress, 469, 759
physical mechanisms, 394, 566
size effect, 452, 461, 733
S-N curves, 380, 382, 485, 724
for components, 485
constants for (tables), 383, 727
equations for, 382
estimation of, 460, 464 (table), 479, 480 (table)
safety factors for, 386, 420
Walker equation fit, 475
statistical scatter, 409
surface effects, 406, 461, 498, 733
tests, 377, 390, 485, 644, 724
trends, 399, 461, 730, 733
variable amplitude loading, 388, 427, 487, 751,
738
Fatigue crack growth, 27, 517
definitions, 520
design considerations, 518, 563
life estimates, 544, 558
plasticity aspects, 562, 566
rate of, 521, 526
rate equations, 521, 533, 537, 539
constants for (tables), 524, 535, 538
R-ratio effects, 523, 530
safety factors for, 519, 563
small crack effects, 570
in strain-based fatigue, 733, 764
tests, 526
threshold, 521, 537, 540, 571
trends, 541
variable amplitude loading, 558, 562
Fatigue limit, 382, 400, 407
crack effect, 454, 500, 571, 765
estimating, 400, 460
reduction factors, 462, 464 (table)
variable amplitude effects, 408, 429, 763
Fatigue notch factor, 452 (see also Fatigue;
Fatigue limit)
Fatigue strength, 382
Ferrite, 895
Fibers, 919 (see also Composite Materials)
properties (tables), 57, 181
Finite element analysis, 154, 259, 314, 379, 670,
692
Flexure test, 142 (see also Bending)
Forman equation, 537, 538 (table)
Fractography, 337, 596–598
Fracture, 20, 23, 294 (see also Fracture toughness)
types of, 23
in brittle materials, 87, 89
Fracture criteria, 236, 279
brittle materials. 260
Coulomb–Mohr, 262
discussion, 260, 279
maximum normal stress, 240
modified Mohr, 272
Fracture mechanics, 23, 294
CTOD approach, 357
for environmentally assisted cracking, 592956 Index
Fracture mechanics (Continued)
for fatigue crack growth, 376, 517, 529
J-integral approach, 352
LEFM approach, 299, 304, 305
plasticity limitations, 344, 568
small crack limitations, 570
stress field equations, 305
Fracture mechanism maps, for creep, 782
Fracture modes, 304, 327, 340
Fracture strain, engineering, 79 (see also
Elongation)
Fracture strain, true, 103, 107 (table), 730, 731
Fracture strength, engineering, 78
Fracture strength, true, 103, 382, 414, 730, 731, 737
values of (tables), 107, 383, 727
Fracture surface, 239 (see also Fracture criteria)
Fracture toughness, 23, 299
in cyclic loading, 541, 551
J-integral testing, 354
microstructural effects, 338
mixed-mode, 340
temperature and rate effects, 334
testing, 331, 347, 349, 354
thickness effect, 299, 331, 347, 350
trends, 331
values of (tables), 300, 301, 535, 538, 594, 881
Frequency effects, 403, 543, 833
Frequency-modified fatigue, 810
Fretting, 28, 496
Fully plastic behavior, 864
in bending, 676, 867
in cracked members, 317, 346, 350, 551, 868
in cyclic loading, 468, 551
in notched members, 690, 868
in torsion, 867
G
Gaussian distribution, 877
Generalized plane stress, 206
Generalized Poisson’s ratio, 628, 694
Geometric constraint effects, 344, 347, 694, 873
Gerber parabola, 414
Glass transition temperature, 54, 63, 788, 906, 907
(table), 909, 910
Glasses, 40, 912, 913 (table), 916
properties of (tables), 57, 92, 134, 166, 181, 301
Glide (dislocation), 790
Glinka’s rule, 693
Goodman equation, modified, 414, 469, 487
Grain boundary sliding, 788
Grain refinement, 887
Grains, crystalline, 48
Griffith, A. A., 304, 305
H
Hardness tests, 129
values from (tables), 107, 134, 137
Heat-deflection test, 144
temperatures from (table), 91
Heat treatment, 885, 889, 891, 899
Hexagonal close-packed structure, 47
High-cycle fatigue, 27, 383, 729
Hill criterion, 259
Homogeneity, 165
Hooke’s Law, 168, 175
anisotropic case, 178
constants for (tables), 166, 181
orthotropic case, 179
with plasticity, 625
Hot isostatic pressing, 915
Hydrogen bond, 45
Hydrogen-induced embrittlement, 590, 597, 599
Hydrostatic stress, 173
fracture effect, 261, 279
as octahedral stress, 222
yielding effect, 238, 246, 252, 253, 260, 280
Hysteresis loop, 640, 643, 645
curve shapes, 649
I
Impact energy tests, 91 (table), 137
Impact loading, 23, 137 (see also Rate effects)
Inclusions, 52
fatigue effect, 395
fracture effect, 295, 338
Incremental plasticity theory, 617, 634, 747
Indentation hardness, 129
Inspection, for cracks, 52, 295, 519, 564
Instron testing machine, 68
Intergranular fracture, 25, 566, 595, 599, 601
Intermetallic compound, 44, 48, 52, 889,
903, 922
Internal friction, 830 (see also Damping)
Internally flawed material, 303
Interstitials, 49, 833, 888, 896Index 957
Invariants, stress, 219
Ionic bond, 42, 47
Irons, cast, 891, 893
Irregular load–time histories (see Variable
amplitude loading)
Irwin, G. R., 305, 344
Isochronous σ-ε curves, 784, 813, 814, 825, 828
constants for (table), 816
Isotropic, isotropy, 54, 165
Isotropic hardening, 617
Izod test, 91 (table), 138
J J
-integral, JIc tests, 352, 354
Juvinall, R. C.:
mean stress approach, 472
fatigue limit estimate, 463, 464 (table)
S-N curve estimate, 479, 480 (table)
K K
-field, 344
Kinematic hardening, 617, 635, 639
L
Laminated composites, 922
Larson–Miller parameter, 801, 802 (table)
Lattice, 48
Leak-before-break, 328
Linear-elastic fracture mechanics (LEFM), 299,
304, 305 (see also Fracture mechanics)
Linear elasticity, 165 (see also Elastic deformation;
Hooke’s Law)
Linear hardening, 157, 619
Linear viscoelasticity, 159, 810
component analysis, 825
damping, 830
varying stress, 819
Liquid metal embrittlement (LME), 590, 601, 602
(table)
Load cell, 68
Load factor design, 32, 257, 421, 436, 493
Loads (see Cyclic loading, Static loading, etc.)
Loads, fully plastic (see Fully plastic behavior)
Local yielding, 379, 455, 465, 470, 686 (see also
Notches)
Log decrement, 833
Loss coefficient, 833
Low-alloy steel, 897
Low-cycle fatigue, 27, 383, 729
M
Machines, testing, 67, 390, 779
Magnesium alloys, 902
Magnetoelastic effect, 835
Manson, S. S., 726, 810
Maps, deformation mechanism, 792
Maps, fracture mechanism, for creep, 782
Martensite, 896
Materials damping, 779, 830 (see also Damping)
Materials selection, 29, 106
Maximum normal stress criterion, 240, 260, 272,
273, 275
Maximum shear stress criterion, 243, 256
Mean stress, 377, 402, 411, 420, 487
equivalent life for, 736, 737, 740
in fatigue crack growth, 523, 530
Gerber parabola, 414
Goodman equation, modified, 414, 469, 487
Morrow equation, 414, 737, 738
in notched members, 469, 481, 487, 500, 747,
759
in strain-based fatigue, 734, 747, 756, 759
SWT parameter, 415, 472, 487, 739
Walker equation, 415, 472, 475, 487,
532, 740
yielding effect on, 470, 500, 759
Mean stress relaxation, 653
Metallography, 596, 601
Melting temperature (tables), 92, 886, 907
Memory effect, 159, 635, 643, 652, 706, 752
Metallic bond, 42
Metals, 40, 41 (table), 44, 885, 886 (table), 891, 899
creep, 788, 796, 813
crystal structures, 46
cyclic deformation, 641 (table), 644,
727 (table)
damping, 833, 835
elastic constants, 166 (table), 167
fatigue, 383 (table), 394, 399, 727 (table), 730
fatigue crack growth, 541
constants for (tables), 524, 535, 538
fracture criteria, 256, 260
fracture toughness, 300 (table), 331,
881 (table)958 Index
Metals (Continued)
hardness, 107 (table), 135
strengthening methods, 61, 885, 887 (table),
895–903
tension (tables), 90, 107, 727
yield criteria, 256
Microstructural effects, 40
creep, damping, 784, 833
fatigue, 405
fatigue crack growth, 543, 566 ,570
fracture toughness, 338
tension, 85
Microvoid coalescence, 337
Miner’s rule, Miner, M. A., 427, 428
Minimum detectable crack, 519, 564
Mirone triaxiality correction, 100
Mixed-mode fracture, 327, 340
Modes of cracking, 304, 327, 340
Models, rheological (see Rheological
models)
Modified Goodman equation, 414, 469, 487
Modified Mohr criterion, 272
Modulus:
bulk, 174
in damping, 830, 833
elastic (Young’s), 21, 77 (see also Elastic
modulus)
rupture, in bending, 143
secant, 627, 628, 784, 823
tangent, 77
Mohr’s circle:
plane strain, 225
plane stress, 202, 212
for strains, 226
three-dimensional cases, 209, 217
Mohs hardness scale, 130
Moment, fully plastic, 676, 690, 867
Monotonic loading, 615, 634, 642
Morrow equation, 414, 737, 738
MTS Systems Corp., 68
Multiaxial stress (see also Fracture criteria; Yield
criteria)
in creep, 808, 823
elastic case, 168, 178
elasto-plastic case, 625
in plane stress, 630
in pure shear, 684
in fatigue, 422, 743
principal stresses and strains, 196
N
Nabarro–Herring creep, 790
Naming systems (see Nomenclature)
Necking, 80, 98, 99
Network modifiers, 916
Neuber constant, 458
Neuber’s rule, 690, 693, 696, 702, 705, 747
Neutron radiation effect, 339
Nomenclature:
aluminum alloys, 900, 900 (table)
irons and steels, 892, 894 (table), 897
stainless steels, 898
tool steels, 898
Nominal stress, 309, 379, 452, 686, 747, 863
Nondestructive testing, 52, 295, 519, 564
Nonlinear hardening, 620, 624
Nonpropagating cracks, 455, 765
Nonproportional loading, 634, 693, 709, 743, 745
Normal distribution, 877
Normal stress fracture criterion, 240, 260, 272,
273, 275
Normalized amplitude–mean diagram, 412
Notch-impact tests, 137
energy from (table), 91
Notch sensitivity, 456
Notches, notched members, 863
cracks at, 324, 454
cyclic loading analysis, 702, 705, 747
elliptical shapes, 297
fatigue effects, 403, 450, 452, 456, 465, 489,
500, 747
with mean stress, 469, 747, 756, 759
fully plastic loads, 690, 868
geometric constraint, 694, 873
initial yielding, 687
local yielding analysis, 465, 470, 686
Neuber’s rule for, 690, 693, 747
strain energy (Glinka) method, 693
residual stresses, 498, 500, 695
in strain-based fatigue, 747
strain concentration factor, 687, 690
stress concentration factor, 297, 452, 687, 690,
863
in test specimens, 67, 138, 394
ultimate strength for, 469, 873
Numerical analysis (see Finite element analysis)
Numerical integration, 554, 558Index 959
O
Octahedral planes, 222
Octahedral shear criterion, 249
Octahedral stresses, 222, 249, 626
Offset yield strength, 78 (see also Yield strength)
Orthotropic material, 179
Overload effects, 408, 428, 500, 562, 759, 762
P
Palmgren–Miner rule, 427, 435
in creep-fatigue interaction, 809
relative form, 500
for notched members, 487, 493
in strain-based fatigue, 751, 756, 762
Paris equation, 521, 524 (table)
Particulate composites, 918
Peak, 430
Pearlite, 895
Percent elongation, 22, 79, 80 (see also Elongation)
Percent reduction in area, 80, 81 (see also
Reduction in area)
Perfectly plastic behavior, 157, 617, 865
bending, 676, 867
at notch, 692, 868
residual stresses, for bending, 680
torsion, 685, 686, 867
Peterson constant, 456
Phase shift, 830
Phase strengthening, 889, 902, 903
Plain-carbon steel, 895
Plane strain, 224, 299
crack plastic zone, 344
fracture effect, 299, 347, 349, 350
in notch, 694, 873
Plane stress, 197, 212, 225
crack plastic zone, 343
fracture effect, 347, 350
generalized, 206
Mohr’s circle for strains, 225
plastic deformation, 630
Plastic collapse, 668, 676, 864
Plastic deformation, 21, 58, 78, 157, 614
in bending, 669, 867
component analysis for, 668, 864
cyclic loading, 616, 644
of components, 698, 747
damping due to, 835
deformation theory, 616, 626, 634
by dislocation motion, 58, 85
engineering significance, 614, 668, 721
fracture mechanics methods for, 350
incremental theory, 617, 634, 747
memory effect, 159, 635, 643, 652, 706, 752
multiaxial loading, 176, 625
at notches, 686, 868, 873
effects in fatigue, 455, 465, 470, 747, 756, 759
physical mechanism, 58, 85
rheological modeling, 154, 617, 619, 624, 635
stress–strain curves, 617
in torsion, 683, 867
variable amplitude loading, 649, 705, 751
Plastic hinge, 677
Plastic modulus, 627
Plastics (see Polymers)
Plastic strain, 21, 78, 79, 85, 157, 617, 625 (see also
Plastic deformation)
Plastic strain damping, 835
Plastic zone, 298, 341
adjustment to crack, 351
in cyclic loading, 566
plane strain, 344
plane stress, 343
Plasticizers, 911
Plating, 406, 499
Point defect, 48
Point stress, 379
Poisson’s ratio, 166 (table), 166, 176
anisotropic case, 179
fibrous composites, 180, 181 (table), 185
generalized form, 628, 694
Polycrystalline materials, 48
Polymers, 40, 41 (table), 45, 903, 904 (table)
creep, 62, 788
crystalline structure, 48
cyclic deformation, 646, 649
damping, 836
deformation, 62, 85, 87
fatigue, 399, 402, 403, 726
fatigue crack growth, 542
fracture toughness, 301 (table), 332
properties (tables), 91, 166, 301, 605, 907
yield criteria, 260
Poncelet, J. V., 376
Pop-in crack, 349
Pores, porosity, 51
Potential energy, in fracture, 304, 352960 Index
Power hardening, 102, 620
in stress–strain analysis:
bending, 673
notched members, 692
torsion, 686
Power-law creep, 790, 813, 818, 829
Precipitate, coherent, 889, 890, 919
Precipitation hardening, 889, 898, 899, 901, 902
Precrack, 350, 526
Presetting, 406, 498
Pressure effects, 238, 246, 252, 260, 261,
279, 280
Pressure vessels:
leak-before-break design, 328
stresses, 858
Primary bonds, 42
Primary stage (transient) creep, 155, 161, 780, 810
(see also Creep)
Principal normal stresses, 199
axes (directions), 199, 206, 217, 219
from Mohr’s circle, 202, 207, 209
plane stress, 199, 212
three-dimensional cases, 206, 207, 217, 218
Principal normal stress space, 239
Principal shear stresses, planes, 200, 208, 212
Principal strains, 224
Prior austenite grains, 600
Probabality, 877
Processing:
ceramics, 915
glasses, 916
metals, 885, 887 (table)
polymers, 903, 909–912
Process zone size (in fatigue), 452
Proportional limit, 78
Proportional loading, 241, 634
Q
Quality factor, 833
Quasi-isotropic material, 185
Quenching and tempering, 895
R
Radiation embrittlement, 339
Rainflow cycle counting, 430, 652, 752, 756
Ramberg–Osgood relation, 620
biaxiality effect, 631
cyclic loading, 647
constants for (tables), 641, 727
pure shear, 684
in stress–strain analysis:
bending, 677
notched members, 692
torsion, 686
for tension test, 103, 107 (table)
time variable added, 814
Range of stress, 377, 430, 521
Ratchetting, 653
Rate (frequency) effects in:
fatigue, 403
fatigue crack growth, 543
fracture, 282
fracture toughness, 334
tension test, 92
R-curve, 356
Reciprocating bending test, 392
Recovery, 156, 161, 164, 788, 796, 817
Reduction in area, 80, 81
values (tables), 90, 300, 727
Refractory metals, 885
Reinforced polymer, 912
Relative Palmgren–Miner rule, 500
Relaxation, 161, 818
cycle dependence, 653, 759
Reliability, 879
Remnant displacement, 831
Residual stress:
for bending, 680
in fatigue, 406, 486, 498, 500
at notches, 498, 500, 695
Resistance curve, 356
Reversed yielding, at notches, 455, 465, 470
Rheological models, 154
creep, 159, 788, 810
cyclic loading, 635, 640
damping, 830
irregular histories, 642
linear viscoelasticity, 810
nonlinear hardening, 624
plasticity, 157, 617, 619, 624
recovery in, 161, 817
relaxation in, 161, 818
unloading of, 635
Rock, 914 (see also Stone)
Rockwell hardness test, 134, 135 (table), 137
(table)Index 961
Rosettes, strain gage, 228
Rotating bending test, 390
Rotating disc, stresses, 862
R-ratio, 378, 521
crack growth effects, 523, 530
S-N effects, 411, 415, 472 (see also Mean stress)
Rupture:
in creep, 26, 796 (see also Creep)
modulus in bending, 143
S
SAE nomenclature, 892, 894 (table)
Safety, 30
Safety factor, 31, 239 (see also Fracture criteria;
Yield criteria)
brittle fracture, 312
cracked members, 316
crack growth, 519, 564
creep rupture, 806
fatigue, 386, 420, 436, 493
Safety margin in temperature, 806
Screw dislocation, 50
Secant modulus, 627, 628, 784, 823
Secondary bonds, 44
Secondary stage (steady-state) creep, 154, 160,
780, 788, 810 (see also Creep)
Sensitization, 25, 595
Sequence effects, 408, 428, 500, 562, 759, 762
Service experience, 34
Servo-hydraulic machines, 68, 393
Shear lip, 397
Shear modulus, 169, 178, 179
fibrous composites, 180, 181 (table), 185
Shear stress yield criterion, 243, 256
Sherby–Dorn parameter, 798, 799 (table)
Shigley S-N curve estimate, 479 (see also Budynas,
R. G.)
Short cracks in fatigue, 570
Shot peening, 406, 498
Silica (SiO2), 912, 914, 916
Simpson’s rule, 555
Simulated service testing, 33
Sintering, 51, 915
Size effect, in fatigue, 452, 462, 733
Size scales, 41
Slip band, 52
Slip, in crystals, 58, 87, 88
Slow-stable cracking, 349, 350, 354
Small cracks in fatigue, 395, 570, 733
Smith, Watson, Topper (SWT) parameter, 415,
472, 487, 739
S-N curves, 380, 479, 485 (see also Fatigue)
Snoek effect, 833
Solid solution strengthening, 888, 899, 902
Solubility parameter, 605, 605 (table)
Solution heat treatment, 889, 898, 899, 901, 902
Specimens, test, 66, 331, 394, 526
Standard test methods, 68 (see also ASTM
Standards; Tests)
Static fatigue, 590, 608
Static loading, 23, 388
Stationary loading, 559
Statistical variation, 875
in fatigue life, 409
in fracture toughness, 334, 880, 881 (table)
in materials properties, 879, 880 (table)
Steady-state (secondary stage) creep, 154, 160,
780, 788, 810 (see also Creep)
Steels, 891 (see also Metals)
types, examples (tables), 891, 892, 894
Stone, 914
properties, uses (tables), 92, 166, 266, 301, 881,
913
Storage modulus, 833
Strain, engineering, 73, 79
Strain, true, 95
Strain-based fatigue, 376, 721
component life estimates, 747
crack growth effects, 733, 764
discussion, 758
mean stress effect, 734, 747, 756, 759
multiaxial stress, 743
sequence effects, 759, 762
strain–life curves, 722, 724, 727 (table), 729
factors affecting, 733
transition life, 729
trends, 730
variable amplitude loading, 751, 756, 759, 762
Strain concentration factor, 687, 690 (see also
Notches)
Strain energy release rate, 304, 352
Strain gages, rosettes, 68, 228
Strain-hardening exponent, 102, 620
for cyclic loading, 641 (table), 647, 727 (table),
730
in tension test, 102, 103, 107 (table)
Strain hardening ratio, 82962 Index
Strain-hardening rule, 821
Strain–life curves, 722, 724, 727 (table) (see also
Strain-based fatigue)
Strain-range partitioning, 810
Strain rate effects, 92 (see also Rate effects)
Strain transformation, 224
Strength, theoretical cohesive, 56, 86
Strengthening methods, 61, 885, 887 (table),
895–903, 909, 910
Strength properties (see also Compression test;
Tension test)
in bending, 134 (table), 142
in materials selection, 106
in tension, 77, 103
in torsion, 144
Stress:
basic formulas for, 854
engineering type, 73, 77
nominal type, 379
in pressure vessels, tubes, discs, 858
principal values, 196, 199, 206, 218
terms for cycling, 377
true type, 95
Stress amplitude, 377
Stress-based fatigue, 375, 450 (see also Fatigue)
discussion, 500, 758
Stress concentration, 67, 297, 379, 450, 863 (see
also Notches)
Stress corrosion cracking (SCC), 25, 590, 595 (see
also Environmentally assisted cracking)
Stress field (at crack), 305
Stress gradient, size effect due to, 452, 461, 733
Stress intensity factor, 305, 309, 319
for crack growth, 518, 521, 529, 592
Stress invariants, 219
Stress–life curves:
fatigue, 380 (see also S-N curves; Fatigue)
creep, 781, 797, 806
Stress raiser, 67, 297, 379, 450, 863 (see also
Notches)
Stress range, 377, 430, 521
Stress ratio, 378 (see also R-ratio)
Stress redistribution, 299, 343
Stress relaxation, 161, 818
Stress relief, 500
Stress–strain curves, 74, 617
biaxiality effect, 630
compression, 127, 128
cyclic loading, 641 (table), 646, 727 (table)
equations for, 102, 617, 647
hysteresis loops, 640, 643, 645, 649
pressure effects, 279
pure shear case, 684
tension test, 74, 85, 89, 102
time variable added, 791, 810, 816 (table)
types, for different materials, 74
unloading, 617, 637, 639
Stress transformation, 198, 215
Striations, 397, 566
Substitutional impurity, 49
Superalloys, 902
Superposition:
for cracked members, 326
in linear viscoelasticity, 819
for stresses, 856
Surface crack, 319, 322
Surface finish effects, in fatigue, 406, 461, 733
SWT parameter, 415, 472, 487, 739
Synergistic effects, 28
Synthesis in design, 30
T
Tangent modulus, 77
Technology, 34, 35 (table)
Temperature (tables):
glass transition, 907
heat deflection, 91
melting, 92, 886, 907
Temperature-compensated time, 798
Temperature effects for:
creep, 777, 786, 788, 789, 796
fatigue, 403, 733, 809
fatigue crack growth, 543
fracture toughness, 334
notch-impact tests, 140
glass transition, 54, 63, 788, 906
tension test, 92
Temperature, safety margin in, 806
Temperature transition for:
fracture toughness, 334
notch-impact tests, 140
Tempering, 896
Tensile toughness, 82, 103
Tension test, 22, 71
necking behavior, 80
properties from, 76, 103, 104 (table)
trends in behavior, 89Index 963
Tension test (Continued)
triaxial stress correction, 99
true stress–strain analysis, 95
values from (tables), 90, 91, 93, 107, 300, 383,
535, 538, 641, 727, 881
Tensors, tensor shear strain, 224, 626
Tertiary stage creep, 780
Test equipment, 67, 390, 779
Test methods, standard, 68 (see also ASTM
Standards; Tests)
Tests (see also each type, such as Bending, etc.):
bending (flexure), 142
component, 33, 485
compression, 124
creep, 779
cyclic stress–strain, 644
environmentally assisted cracking, 592, 606
fatigue, 390, 485
fatigue, low-cycle, 644, 724, 735
fatigue crack growth, 526
fracture toughness, 331, 347, 349, 354
hardness, 129
heat-deflection, 91 (table), 144
notch-impact, 91 (table), 137
prototype (simulated service), 33
tension, 71
torsion, 144
Test specimens, 66, 331, 394, 526
Test standards, 68 (see also ASTM Standards;
Tests)
Theoretical cohesive strength, 56, 86
Thermal activation, 599, 786, 789, 792
Thermal strains, stresses, 174
Thermoelastic effect, 834
Thermoplastics, 903, 904 (table), 904, 905
Thermosetting plastics, 903, 904 (table), 906
Thickness effect:
fatigue crack growth, 568
fracture, 299, 331, 347, 350
yielding at notches, 694
Thick-walled tubes, 860
Three-dimension stress states (see Multiaxial
stress)
Threshold stress intensity:
environmentally assisted cracking, 592, 594
(table), 601, 603
fatigue crack growth, 521, 537, 540, 570
Thin-walled tubes, 146, 861
Time-fraction rule, 809
Time-hardening rule, 821
Time–temperature parameters, 796, 802 (table)
Titanium alloys, 901
Tolerance limits, 880
Tool steels, 898
Torsion of shafts, 683, 856, 861
analysis for various τ-γ curves, 685
fully plastic case, 867
stress–strain curves for, 684
Torsion test, 144, 146
Total strain plasticity theory, 616, 626, 634
Toughness, fracture, 23, 299, 331, 354 (see also
Fracture toughness)
Toughness, tensile, 82, 103
Transformation equations:
strain, 224
stress, 198, 215
Transgranular fracture, 567, 595
Transversely isotropic material, 180, 185
Transient (primary stage) creep, 155, 161, 780, 810
(see also Creep)
Transition crack length, 302
Transition fatigue life, 729
Tresca yield criterion, 243
Triaxial stress (see also Multiaxial stress)
in tension test, 99
Triaxiality factor, 745
True fracture strain, 103, 107 (table), 730, 731
True fracture strength, 103, 382, 414, 730, 731, 737
values of (tables), 107, 383, 727
True stress and strain, 96 (see also Tension test)
True stress–strain curves, 102
True toughness, 103
Tubes:
stresses in, 858
torsion test of, 146
U
Ultimate strength, 77
brittle materials, 242, 260, 262, 272
compression, 127
from hardness, 136, 137 (table)
notched members, 469, 873
tension, 22, 77
values of (tables), 90–93, 266, 300, 383, 641,
727, 881
Unit cell, 46
Unit damping energy, 831964 Index
Universal testing machine, 68
Unloading:
rheological modeling of, 635
stress–strain curves, 616, 639
Unloading compliance, 354
UNS numbering system, 893, 898, 900, 902
V
Vacancy, 49, 60, 789
Valley, 430
Van der Waals bond, 45
Variable amplitude loading, 388, 427
crack growth, 558, 562
effect on fatigue limit, 408, 429, 763
rheological modeling, 635, 640
sequence effects, 408, 428, 500, 562, 759, 762
sources of, 388
in strain-based fatigue, 751, 756, 759, 762
stress–strain analysis of, 705, 751
stress–strain behavior, 650
Vibratory loads, 388
Vickers hardness test, 131, 134 (table), 137 (table)
Viscoelasticity, 159 (see also Linear viscoelasticity)
Viscosity, 156, 159, 785, 823
Viscous creep, 785, 788, 789
Volumetric strain, 173, 176, 628, 823
Von Mises yield criterion, 249
Vulcanization, 909
W
Walker equation:
fatigue, 415, 472, 475, 487, 740
crack growth, 532, 535 (table), 540
Weakest-link effect, 454
Welded members:
S-N curves, 407, 489, 501
design codes, 491, 493
Whiskers, 57, 920
properties (table), 57
Wohler, A., 376, 390
Working loads, 388
Wrought metals, 885, 894, 900
Y
Yield criteria, 236, 256, 279
anisotropic case, 259
maximum shear stress, 243
octahedral shear stress, 249
polymers, 260
Yield strength, 21 (see also Plastic deformation)
compression, 127
cyclic loading, 647
tension, 78
values of (tables), 90, 91, 93, 300, 383, 535, 538,
727, 881
Yield surface, 239 (see also Yield criteria)
Yielding, 21, 78 (see also Plastic deformation)
in bending, 671, 867
in cyclic loading, 465, 470
for notched members, 686
fully plastic, 864 (see also Fully plastic behavior)
Young’s modulus, 21, 77 (see also Elastic modulus)
Z
Zero-mean-stress-equivalent life, 736, 737, 740, 741
Zero-to-tension cycling,
كلمة سر فك الضغط : books-world.net
The Unzip Password : books-world.net
تحميل
يجب عليك التسجيل في الموقع لكي تتمكن من التحميل
تسجيل | تسجيل الدخول