Material Science and Metallurgy
اسم المؤلف
K. I. Parashivamurthy
التاريخ
المشاهدات
333
التقييم
(لا توجد تقييمات)
Loading...
التحميل

Material Science and Metallurgy
K. I. Parashivamurthy
Professor and Head Department of Mechanical Engineering
Government Engineering College
Chamarajanagara
Karnataka
Brief Contents
Preface xvii
Acknowledgements xvii
About the Author xix

  1. Atomic Structure 1
  2. Crystal Structure 13
  3. Crystal Imperfections 39
  4. Atomic Diffusion 50
  5. Mechanical Behaviour of Metals 63
  6. Fracture 86
  7. Creep 94
  8. Fatigue 104
  9. Solidification of Metals and Alloys 113
  10. Solid Solutions 122
  11. Phase Diagrams 127
  12. Iron Carbon Equilibrium Diagram 147
  13. Isothermal and Continuous Cooling Transformation Diagrams 158
  14. Heat Treatment 167
  15. Composite Materials 188
  16. Properties of Ferrous and Non-ferrous Materials 213
  17. Powder Metallurgy 227
  18. Ceramic Materials 236
  19. Corrosion of Metals and Alloys 245
    Index 259
    Contentsviii Contents
  20. Crystal Imperfections 39
    3.1 Classification of Imperfections (Based on Geometry) 39
    3.1.1 Point Imperfections 40
    3.1.2 Line Imperfections 43
    3.1.3 Surface Imperfections 45
    3.2 Volume Imperfections (Stacking Fault) 47
    Exercises 47
    Objective-type Questions 47
  21. Atomic Diffusion 50
    4.1 Diffusion Mechanisms 51
    4.2 Types of Diffusion 52
    4.3 Fick’s Laws of Diffusion 53
    4.3.1 Fick’s First Law of Diffusion—Steady-state Diffusion 53
    4.3.2 Fick’s Second Law—Unsteady-state Diffusion 54
    4.4 Activation Energy for Diffusion (Arrhenius Equation) 56
    4.5 Factors Affecting Diffusion 59
    4.5.1 Temperature 59
    4.5.2 Crystal Structure 59
    4.5.3 Concentration Gradient 59
    4.5.4 Crystal Imperfection 59
    4.5.5 Grain Size 59
    4.6 Applications of Diffusion 59
    Exercises 60
    Objective-type Questions 60
  22. Mechanical Behaviour of Metals 63
    5.1 Stress and Strain 63
    5.1.1 Stress 63
    5.1.2 Strain 63
    5.2 True Stress–Strain Curves 64
    5.2.1 True Stress 64
    5.2.2 True Strain 64
    5.3 Deformation of Metals 65
    5.3.1 Types of Metal Deformation 65
    Exercises 82
    Objective-type Questions 84
  23. Fracture 86
    6.1 Ductile Fracture 86
    6.2 Brittle Fracture (Cleavage Fracture) 88
    6.3 Theoretical Cohesive Strength of Materials 89Contents ix
    6.4 Griffith’s Theory of Brittle Fracture 90
    Exercises 92
    Objective-type Questions 92
  24. Creep 94
    7.1 Creep Curve 94
    7.1.1 Primary Creep 95
    7.1.2 Secondary or Steady-state Creep 95
    7.1.3 Tertiary or Viscous Creep 95
    7.2 Effect of Temperature on Creep Deformation (Low Temperature and High
    Temperature Creep) 95
    7.3 Transient Creep 96
    7.4 Viscous Creep 96
    7.5 Mechanism of Creep 97
    7.5.1 Dislocation Climb 97
    7.5.2 Sliding of Grain Boundary 97
    7.5.3 Diffusion of Vacancy 98
    7.6 Creep Properties 98
    7.7 Creep Fracture 98
    7.8 Elastic After-effect (an Elastic Behaviour or Delayed Elastic) 99
    7.8.1 Stress Relaxation 99
    7.9 Creep Testing 100
    7.10 Factors Affecting Creep 101
    Exercises 101
    Objective-type Questions 102
  25. Fatigue 104
    8.1 Types of Fatigue Loading 105
    8.1.1 Completely Reversed Loading 105
    8.1.2 Repeated Loading 105
    8.1.3 Irregular Loading 106
    8.2 Mechanism of Fatigue Failure 106
    8.2.1 Orowan’s Theory 107
    8.2.2 Wood’s Theory 107
    8.2.3 Cottrel and Hull Theory 107
    8.3 Fatigue Properties 108
    8.4 S–N Diagram 108
    8.5 Factors Affecting Fatigue 108
    8.6 Fatigue Test 109
    8.7 Fatigue Fracture 110
    Exercises 110
    Objective-type Questions 111x Contents
  26. Solidification of Metals and Alloys 113
    9.1 Mechanism of Solidification of Metals 113
    9.2 Nucleation 114
    9.2.1 Homogenous or Self-nucleation 114
    9.2.2 Heterogeneous Nucleation 116
    9.3 Crystal Growth 117
    9.4 Dendrite Growth 117
    9.4.1 Volume Shrinkage 118
    9.5 Effect of Super-cooling or Under-cooling on Critical Radius of a Nucleus 118
    9.6 Casting Metal Structure 119
    Exercises 119
    Objective-type Questions 119
  27. Solid Solutions 122
    10.1 Solid Solutions 122
    10.2 Substitutional Solid Solution 123
    10.2.1 Disordered Substitutional Solid Solution 123
    10.2.2 Ordered Substitutional Solid Solution 123
    10.2.3 Hume Rothery’s Rule 124
    10.3 Interstitial Solid Solution 124
    10.3.1 Metallic Compounds (Intermediate Phases) 125
    Exercises 125
    Objective-type Questions 125
  28. Phase Diagrams 127
    11.1 Cooling Curves 127
    11.1.1 Cooling Curve for Pure Metals or Solidification of Pure Metals 128
    11.1.2 Cooling Curve for Binary Alloy 128
    11.2 Construction of Phase Diagram 129
    11.3 Interpretation of Phase Diagram 130
    11.3.1 Prediction of Phase 130
    11.3.2 Prediction of Chemical Composition of Different Phases for a Given
    Temperature 131
    11.3.3 Prediction of Amount of Phase (Lever-arm Rule) 131
    11.4 Gibbs Phase Rule 132
    11.5 Classification of Phase Diagrams 134
    11.5.1 According to Number of Components in the System 134
    11.5.2 According to Solubility of Components 134
    11.6 Liquid and Solid-state Transformation 140
    11.6.1 Eutectic Reaction (Transformation) 140Contents xi
    11.6.2 Peritectic Reaction 140
    11.6.3 Eutectoid Reaction 141
    11.6.4 Peritectoid Reaction 142
    11.7 Complex Alloy Systems 142
    11.8 Ternary Phase Diagram 143
    Exercises 143
    Objective-type Questions 145
  29. Iron Carbon Equilibrium Diagram 147
    12.1 Solidification of Pure Iron
    (Constitution of Iron or Allotropy Modification of Iron) 147
    12.2 Iron Carbon Phase Diagram 148
    12.3 Phases of Iron Carbide, Phase Diagram 149
    12.3.1 -Ferrite 149
    12.3.2 Austenite 150
    12.3.3 Ferrite 150
    12.3.4 Cementite 150
    12.3.5 Pearlite 150
    12.3.6 Ledeburite 150
    12.3.7 Solubility of Carbon in Iron 150
    12.4 Reaction of Iron Carbon System 151
    12.4.1 Peritectic Reaction 151
    12.4.2 Eutectoid Reaction 151
    12.4.3 Eutectic Reaction 151
    12.5 Steels 151
    12.5.1 Solidification and Transformation of Hypoeutectoid Steel
    (0.4% Carbon Steel) 151
    12.5.2 Solidification and Transformation of Eutectoid Steel
    (0.8% Carbon Steel) 152
    12.5.3 Solidification and Transformation of Hypereutectoid Steel
    (1.5% Carbon Steel) 152
    12.6 Cast Iron 153
    12.6.1 Solidification and Transformation of Hypoeutectic Cast Iron
    (4% Carbon Cast Iron) 153
    12.6.2 Solidification and Transformation of Eutectic Cast Iron
    (4.33% Carbon Cast Iron) 154
    12.6.3 Solidification and Transformation of Hypereutectic Cast Iron
    (6.23% Carbon Cast Iron) 154
    12.7 Critical Temperature of the Iron and Iron Carbon Diagram 154
    Exercises 155
    Objective-type Questions 156xii Contents
  30. Isothermal and Continuous Cooling Transformation Diagrams 158
    13.1 Construction of TTT Diagram 158
    13.2 Effect of Cooling Rate on TTT Diagram 161
    13.2.1 Definitions 162
    13.3 Continuous Cooling Transformation (CCT) Curve 162
    13.4 Effect of Carbon Content and Alloying Elements 163
    Exercises 164
    Objective-type Questions 165
  31. Heat Treatment 167
    14.1 Heat Treatment Purposes 167
    14.1.1 Temperature up to which the Metal or Alloy is Heated 168
    14.1.2 Length of Time the Metal or Alloy is Held at this Temperature
    (Holding Time) 168
    14.1.3 Rate of Cooling 168
    14.1.4 Quenching Media 168
    14.2 Heat Treatment of Steel 168
    14.2.1 Treatments that Produce Equilibrium Condition 169
    14.2.2 Treatments that Produce Nonequilibrium Condition 173
    14.3 Martempering (Interrupted Quenching) 175
    14.4 Austempering (Isothermal Transformation) 176
    14.5 Hardenability 177
    14.5.1 Jominy End-quench Tests 177
    14.6 Surface Hardening 178
    14.6.1 Method in which Whole Component is Heated 178
    14.6.2 Method in which only Surface of Component is Heated 180
    14.7 Heat Treatment of Nonferrous Metals 182
    14.7.1 Precipitation Hardening (Age Hardening) 182
    14.7.2 Annealing 184
    Exercises 184
    Objective-type Questions 185
  32. Composite Materials 188
    15.1 Particulate Reinforced Composites 189
    15.2 Fibre Reinforced Composites 189
    15.3 Laminated Composite Material 190
    15.4 Polymer Matrix Composites 190
    15.5 Metal Matrix Composite 191
    15.6 Ceramic Matrix Composites 191
    15.7 Agglomerated Composite Material 192Contents xiii
    15.8 Manufacturing Methods for Composite Materials 192
    15.9 Manufacturing Method for Particulate Reinforced Composites 192
    15.9.1 Liquid-state Methods 192
    15.9.2 Solid-state Methods 195
    15.10 Manufacturing of Fibre-reinforced Polymer Matrix Composites 197
    15.10.1 Open Mould Process 197
    15.10.2 Closed Mould Process 200
    15.11 Manufacture of Laminated Composite 201
    15.11.1 Solid-state Bonding of Composite 201
    15.12 Mechanical Behaviours of a Composite Material 202
    15.12.1 Determination of E
    1 (Longitudinal Direction or Iso-strain Condition) 203
    15.12.2 Determination of Young’s Modulus in the Direction of E2
    (Transverse Direction or Iso-stress Condition) 204
    15.12.3 Determination of Poisson’s Ratio V
    12 206
    15.12.4 Determination of G
    12 (Shear Modulus) 206
    15.13 Properties of Composite Materials 207
    15.14 Advantages of Composites 207
    15.15 Limitations of Composites 208
    15.16 Applications 208
    Exercises 209
    Objective-type Questions 210
  33. Properties of Ferrous and Non-ferrous Materials 213
    16.1 Ferrous metals 213
    16.1.1 Steels 213
    16.1.2 Pig Iron 217
    16.1.3 Wrought Iron 218
    16.1.4 Cast Iron 218
    16.2 Non-ferrous Metals and Alloys 220
    16.2.1 Copper and Copper-based Alloys 220
    16.2.2 Aluminum and Its Alloys 223
    Exercises 224
    Objective-type Questions 225
  34. Powder Metallurgy 227
    17.1 Method of Producing Powders 228
    17.1.1 Atomization of Molten Metal 228
    17.1.2 Electrodeposition 228
    17.1.3 Reduction of a Compound 229
    17.1.4 Crushing and Milling 229
    17.2 Blending of Powder 229
    17.3 Compaction (Cold and Hot) 229xiv Contents
    17.4 Pre-sintering and Sintering 230
    17.5 Finishing Operations 230
    17.6 Heat Treatment 230
    17.7 Characteristics of Powder and Its Parts 231
    17.8 Applications of Some Powder Metallurgy Parts 231
    17.9 Advantages of Powder Metallurgy Components 232
    17.10 Disadvantages of Powder Metallurgy 232
    Exercises 233
    Objective-type Questions 233
  35. Ceramic Materials 236
    18.1 Classification of Ceramics 236
    18.1.1 Based on Fusing or Melting Temperature 236
    18.1.2 Based on Nature of Reaction 237
    18.1.3 On the Basis of Chemical Composition of the Refractories 237
    18.1.4 Based on the Nature of Materials 237
    18.2 Characteristics of Refractories 239
    18.3 Properties of Ceramic Materials 239
    18.4 Application of Ceramics 239
    18.4.1 Traditional Ceramics 239
    18.4.2 Industrial Ceramics 240
    18.4.3 Automotive Ceramics 240
    18.4.4 Tribological Ceramics 241
    18.4.5 Conductive Ceramics 241
    18.4.6 Nuclear Ceramics 242
    18.4.7 Optical Ceramics 242
    18.4.8 Pigments 242
    Exercises 242
    Objective-type Questions 243
  36. Corrosion of Metals and Alloys 245
    19.1 Electrochemical Theory of Corrosion 245
    19.2 Galvanic Cell 246
    19.3 Electrode Potential 247
    19.3.1 Primary Reference Electrode 248
    19.3.2 Secondary Reference Electrode 249
    19.4 Standard Electrode Potential and Electrochemical Series 250
    19.5 Types of Corrosion 251
    19.5.1 Uniform Corrosion 251
    19.5.2 Galvanic Corrosion 251
    19.5.3 Pitting Corrosion 251
    19.5.4 Stress Corrosion 25219.6 Prevention and Control of Corrosion 252
    19.6.1 Proper Design and Selection of Metals 253
    19.6.2 Change of Environment 253
    19.6.3 Change of Metal Potential 253
    19.6.4 Protective Coatings 254
    19.6.5 Passivation 254
    19.7 Metallic Coatings 255
    19.7.1 Nickel Plating 255
    19.7.2 Chromium Plating 255
    19.7.3 Silver Plating 255
    19.7.4 Cadmium Plating 256
    19.7.5 Gold Plating 256
    19.8 Organic Protective Coatings 256
    19.9 Disadvantages of Corrosion 256
    Exercises 257
    Objective-type Questions 257
    Index 259
    Index
    A
    acidic refractories, 237
    activation energy, 56
    age hardening, 183
    ageing treatment, 183
    aircraft engines, 180
    allotropic modification, 147
    alloy steels, 216
    alpha iron, 147–148
    alumina, 240
    aluminous refractories, 237
    aluminum bronzes, 222
    aluminum–silicon alloys, 224
    aluminum–zinc alloys, 224
    amorphous, 13
    angle of contact, 116
    Angstrom, 15
    angular momentum quantum number, 5
    anisotropic, 189
    annealing, 101, 161, 169
    annealing twin, 47, 73
    antimony–bismuth, 133
    argon, 6
    array of atoms, 14
    Arrhenius equation, 56
    artificial ageing, 183
    atomic mass number, 2
    atomic number, 2
    atomic radius, 17
    atomic weight, 2
    atoms, 13, 122
    attractive force, 89
    austenite, 150, 158, 160
    structure, 169
    austenitic stainless steels, 217
    autoclave process, 199
    automobile bodies, 147
    automotive ceramics, 240
    azimuthal quantum number, 5
    B
    bainite, 160, 162
    bakelite, 13
    basic refractories, 237
    Bauschinger effect, 80
    bearing alloys, 139
    bell metal, 222
    beryllium, 6
    beryllium bronzes, 222
    binary alloy, 142
    binary diagram, 133
    body-centred cubic, 17
    Bohr’s theory, 4
    Boltzmann constant, 56
    boron, 125, 190
    brass, 123
    Bravais lattices, 15
    brick, 240
    brittle fracture, 88, 90–91
    brittle material, 91
    bronzes, 222
    Burgers vector, 43
    C
    cadmium plating, 256
    calcium, 6
    camshafts, 59
    carbon, 3, 52, 178
    carbon nanotube, 189
    carbon steel, 52
    carburization, 52
    case hardening, 178
    cast iron, 147, 153, 218
    caustic embrittlement, 252
    cellulouse, 13
    cementite, 150
    ceramic, 13
    matrix of, 191
    ceramic materials, 237260 Index
    cermets, 240
    chemical affinity factor, 124
    chemical bond, 7
    chemical vessels, 240
    chinaware, 240
    chlorine, 3
    chromium plating, 255
    chromium steels, 216
    civil structures, 147
    coarse-grained steels, 101
    coefficient of diffusion, 54
    cohesive forces, 89
    coining, 230
    cold working effects, 170
    columnar crystal, 119
    composite melt slurry, 193
    concentration gradient, 50, 53
    conductive ceramics, 241
    conventional strain, 63
    conveyers chain, 219
    coordination number, 17
    copper, 123, 220
    alloys of, 170
    copper-based alloys, 220
    corrosion, 245
    prevention and control of, 252–253
    corrosive environment, 109
    Cottrel and Hull theory, 107
    covalent bonds, 7
    crack nucleation, 88
    crack propagation, 88
    crake propagation, 91
    crank shafts, 182
    creep curve, 94
    creep fracture, 98
    creep limit, 98
    creep rupture strength, 98
    creep strength, 101
    critical cooling rate, 174
    critical radius, 118
    critical resolved shear stress, 71
    critical shear stress, 71
    crushing and milling, 229
    crystal growth, 47
    crystal imperfections, 39
    crystal lattice, 14
    crystal structure factor, 124
    crystal systems, 15
    crystalline solids, 13
    crystallization, 78
    crystallographer, 25
    crystallography, 13
    crystals, 114
    Curi temperature, 148
    cyaniding, 180
    D
    Daniel cell, 246
    Debye–Scherrer method, 33
    defects, 39
    deformation, 63
    delta iron, 147
    dendrite growth, 118
    density packing factor, 17
    die casting, 193
    differential aeration, 245
    diffusion annealing, 171
    diffusivity, 55
    dislocation density, 78
    ductility, 77
    dyes, 8
    E
    edge defect, 39
    edge dislocation, 72
    elastic action, 63
    elastic deformation, 65
    elastic limit, 67, 88
    elastic strain energy, 91
    elastic strength, 68
    electrochemical theory, 245
    electrode potential, 247–250
    electrolytic deposition, 228
    electromagnetic radiation, 4
    electromotive force, 246
    electron configuration, 3
    electronic defects, 42
    electrostatic attraction, 7
    embryo, 114Index 261
    endurance limit (EL), 108
    energy barrier, 56
    epoxies, 197
    epoxy composite, 189, 190
    equiaxed grain, 117, 119
    equilibrium diagram, 135
    eutecic mixture, 136, 154
    eutectic reaction, 139, 151
    eutectoid reaction, 151
    eutectoid transformation, 150
    F
    face-centred cubic, 17
    fatigue behaviour, 105
    fatigue fracture, 104
    fatigue life, 108
    fatigue strength, 108
    ferrite, 149, 150
    ferritic stainless steels, 217
    fibre-reinforced composites, 189
    filament-winding method, 199
    fine pearlite, 160
    flame hardening, 181
    flywheels, 220
    fracture strength, 76
    Frenkel defect, 42
    full annealing, 171
    G
    galvanic cell, 245
    galvanic corrosion, 246, 251
    gas carburizing, 179
    gaseous nitrogen, 180
    gating system, 193
    Gaussian error function, 55
    gear, 59
    gold plating, 256
    grain boundaries, 101
    grain boundary diffusion, 52–53
    grain boundary imperfection, 45
    grain growth, 117
    granular coal, 178
    graphite, 10, 153, 240
    gray cast iron, 153
    Guinier-Preston zones, 183
    gun metal, 222
    H
    half-cell reactions, 247
    hand lay-up process, 197
    hard creep, 95
    hardenability, 177
    hardening stress, 175
    helium, 6
    heterogeneous nucleation, 114, 116
    hexagonal close-packed, 17
    hexagonal lattice, 28
    hexagonal planes, 22
    high alloys steels, 216
    high carbon steels, 151, 251
    high-speed steels, 217
    high-performance ceramics, 238
    homogenization, 50
    Hook’s law, 65
    hot creep, 96
    Hume theory, 124
    hydrogen scale, 250
    hypereutectic cast iron, 153
    hypoeutectic cast iron, 148, 153–154
    hypoeutectoid steel, 151
    I
    ideal crystals, 39
    imperfections, 39
    impurity defect, 40
    induction hardening process, 181
    industrial ceramics, 240
    inert gas stream, 194
    infiltration, 230
    injection moulding process, 200
    inoculants, 117
    insulating refractories, 237
    insulators, 237
    interatomic attractions, 7
    interface energy, 116
    interfacial angles, 14262 Index
    intermediate phases, 125
    internal combustion engine, 220
    internal stress, 167
    interplanar spacing, 34
    interstitial defect, 39, 41
    interstitial diffusion mechanism, 52
    interstitial solid solution, 123–124
    ion vacancy, 42
    ionic bond, 7
    iron, 125
    iron–carbon diagram, 168
    irregular loading, 106
    isothermal curve, 158
    isothermal heat treatment, 158
    isothermal transformation, 151
    isotones, 3
    isotope, 3
    L
    laminated composite, 190
    lattice constants, 14
    lattice parameters, 14
    law alloy steel, 216
    leaded yellow brass, 221
    ledeburite, 150, 154
    lithium chloride, 8
    low carbon steel, 170
    lower yield point, 74
    low-temperature refractory, 236
    M
    machinability, 167
    machining, 230
    magnesia, 240
    magnesium, 6
    magnetic iron, 147
    malleability, 77
    malleable cast iron, 219
    manganese steel, 216
    manhole covers, 218
    martensite, 159, 162
    martensitic stainless steels, 217
    Maxwell–Boltzmann distribution law, 56
    mechanical twin, 47
    medium carbon steels, 151
    metal matrix composites, 196
    metal powder, 196
    metallic bond, 9
    metallic coatings, 255–256
    metallurgy, 125
    methane, 10
    microconstituents, 167, 188
    mild steel, 170, 214
    Miller indices, 25
    modulus of elasticity, 65
    modulus of resilience, 68
    molecular weight, 2
    Muntz metal, 221
    N
    natural ageing, 183
    natural refractories, 237
    naval brass, 221
    neck formation, 87
    negligible deformation, 88
    neutron, 1
    nickel plating, 255
    nickel steels, 216
    nitriding, 180
    nitrogen, 125, 178
    nodular cast iron, 220
    non-linear elastic properties, 69
    nonoxide refractories, 237–238
    normalizing, 101
    notch sensitivity, 81
    nuclear ceramics, 242
    nucleating agents, 119
    nucleation, 114, 128
    nuclei crystallizes, 114
    O
    offset method, 75
    oil-hardening steels, 174
    open mould, 197
    optical ceramics, 242
    optical extensometer, 101
    organic protective coatings, 256
    oxidation potential, 247Index 263
    oxide refractories, 238
    oxy-acetylene flame, 181
    P
    packing factor, 17
    paint, 8
    paraffin, 10
    partial annealing, 171
    particulates, 191
    passiviation, 254
    Pauli’s exclusion principle, 6
    pearlite, 150–154
    percent elongation, 77
    peritectic reaction, 140, 151
    peritectic temperature, 140
    peritectoid reaction, 141
    phosphar bronze, 222
    pig iron, 217
    pigments, 242
    piston pins, 59
    piston rings, 218
    pitting corrosion, 251–252
    plain carbon steel, 214
    Plank’s constant, 4
    plastic deformation, 43, 63
    plywood, 190
    point imperfections, 40
    Poisson’s ratio, 64
    polycrystalline, 33
    polycrystals, 98
    polymer matrix composite, 190
    polymers, 109
    porcelain, 240
    positive free energy, 115
    pottery, 240
    precipitation hardening, 182
    pre-sintering, 230
    pressure bag, 198
    primary reference electrode, 248–249
    principle quantum number, 4
    Q
    quantum numbers, 3
    quenching media, 168
    R
    real crystals, 39
    recrystallization, 124, 169
    red brass, 221
    red metal, 221
    reinforcement, 188
    repulsive force, 89
    resilience, 68, 70
    rotating crystal method, 33
    rubber, 69
    rusting of iron, 246
    S
    Schottky defect, 42
    screw dislocation, 43, 45
    secondary quantum number, 5
    secondary reference electrode, 249–250
    self-diffusion, 52
    self-nucleation, 114
    silica bricks, 237
    silica gel, 253
    siliceous refractories, 237
    silicon bronzes, 222
    silver, 20
    silver plating, 255
    solid solubility, 125
    solid solution, 122, 136
    solidification, 193
    solute, 122
    sorbite, 174
    space lattice, 14
    special refractories, 237
    speculum metal, 222
    spheroid graphite iron, 220
    spheroidal annealing, 170
    spin quantum number, 4, 5
    spray deposition, 194–195
    squeeze casting, 193
    stable nucleus, 117
    stacking fault, 47
    stainless steels, 217
    standard electrode potential, 250
    steady loads, 104
    steady-state condition, 54
    steam turbines, 180264 Index
    steel, 147, 151, 168
    steel shaft, 182
    stiffness, 66
    stir casting, 192
    strain energy, 68
    strain hardening, 95
    stress corrosion, 252
    stress relaxation, 100
    stress-relieving, 169
    sub-critical annealing, 171–172
    substitutional impurity, 41
    substitutional solid solution, 123
    supersaturated solid solution, 183
    surface distortion, 45
    T
    technical ceramics, 238
    tempering, 174
    tensile axis, 74
    ternary phase diagram, 142
    theoretical density, 19
    theoretical shear stress, 72
    thermal hysterias, 155
    thermosets moulding, 201
    tin, 72
    traditional ceramic, 240
    transient creep, 95–96
    treatment of steel, 168
    triaxiality, 81
    tribiological ceramics, 241
    true stress, 64
    tungsten high speed steel, 217
    twin boundaries, 45
    twin boundary imperfection, 46
    twin region, 73
    twining, 70
    twinning deformation, 73
    twinning plane, 73
    U
    ultimate tensile strength, 66–67, 76
    unary diagram, 133
    under-cools, 114
    uniform corrosion, 251
    unit cell, 14
    unsteady state, 54
    V
    vacancy defect, 40
    vacant lattice, 51
    vacuum bag process, 198
    valency electrons, 9
    van der Waals forces, 9
    vectors, 14
    vertex, 192
    vibration energy, 51
    viscous creep, 95–96
    volume diffusion, 52
    volume imperfections, 47
    W
    water-hardening steels, 174
    wave mechanics, 4
    wear resistance, 123
    wear-resistant, 180
    white brass, 221
    white cast iron, 153, 219
    whiteware, 240
    Wood’s theory, 107
    work hardening, 110
    wrought iron, 218
    X
    X-ray, 9, 30
    Y
    y-alloy, 224
    yellow brass, 221
    yield point phenomenon, 74
    yield strength, 66, 75–76
    yielding, 74–81
    Young’s modulus, 65
    Z
    zero-dimensional imperfections, 40
    zinc, 109, 123
    zinc oxide, 42
    zirconia, 240

كلمة سر فك الضغط : books-world.net
The Unzip Password : books-world.net

تحميل

يجب عليك التسجيل في الموقع لكي تتمكن من التحميل

تسجيل | تسجيل الدخول