Manufacturing and Novel – Applications of Multilayer Polymer Films
Manufacturing and Novel – Applications of Multilayer Polymer Films
Deepak Langhe , Michael Ponting
PolymerPlus LLC, Valley View, Ohio, USA
Table of contents
Preface
1: Introduction to Multilayered Films
Abstract
1.1. Introduction
1.2. Coextrusion Processing Techniques
1.3. Toward Hundreds of Layers
1.4. Multilayer Film Applications
1.5. Multilayer Film Properties
1.6. Novel Applications
1.7. Summary
2: Coextrusion Processing of Multilayered Films
Abstract
2.1. Introduction
2.2. Multilayered Film Processing Technologies
2.3. Rheological Phenomena in Multilayered Films
2.4. Summary
3: Gas Transport, Mechanical, Interphase, and Interdiffusion Properties in Coextruded-Multilayered Films
Abstract
3.1. Introduction
3.2. Gas Transport Properties of Multilayered Films
3.3. Adhesion and Mechanical Properties of Multilayered Composites
3.4. Interphase Materials
3.5. Interdiffusion in Multilayered Polymers
3.6. Summary
4: Optical Properties of Multilayered Films
Abstract
4.1. Introduction
4.2. Polymeric Reflector (Bragg) Films
4.3. Optically Active Nanolayered Film Systems
4.4. Photopatternable Films
4.5. Nanolayer-Enabled Polymer Refractive Optical Devices
4.6. Summary
5: Dielectric and Electrical Properties of Multilayered Films
Abstract
5.1. Introduction
5.2. Dielectric Films
5.3. Summary
6: Novel Multilayered Structures and Applications
Abstract
6.1. Introduction
6.2. Blends and Composites
6.3. Multilayered Foams
6.4. Porous Composites
6.5. Gradient Multilayered Films
6.6. Shape Memory Polymers
6.7. Multilayered Fibers
6.8. Summary
7: Future Trends
Abstract
7.1. Introduction
7.2. Conventional Packaging Applications
7.3. Layered Optical Films
7.4. Molded and Thermoformable Products
7.5. Annular Coextrusion Technology
7.6. Future Markets
7.7. Summary
Index
Index
A
ABS/HIPS/ABS three-layered
sheet, 30
cross-sectional photomicrograph, 31
ABS/HIPS layer structure, 222
A/B type multilayered
structures, 191
Acoustic emission techniques, 156
Acrylonitrile-butadiene-styrene
(ABS), 30
Adhesion properties, 8, 71
via tie layers, 77–82
effect of metallocene PE content
on adhesion of, 82
effect of tie-layer thickness on
delamination toughness, 80
model for PP and ZNPE, mPE,
and blends interfaces, 82
resins used in coextrusion of
LDPE/ES multilayered
composites, 79
tie-layer damage zone,
representation, 81
Anisotropic conductivity, 180
Anisotropy, 143, 185, 187
Annular coextrusion technology, 226
Annular dies, 226
Autoclavable barrier films, 6
Automotive glazing, 6
B
BCPs. See Block copolymers
(BCPs)
Biaxially oriented multilayered films,
175–179
Biaxially oriented PP (BOPP)
film, 63
Biaxially stretched recrystallized
PET/P(VDF–TFE) 32-layered
films, 67
Biaxial stretching, 175, 176
approach, 175
composites, 65
microlayers to nanolayers, 64
thick PET/P(VDF–TFE) multilayer
films, 177
Biodegradable polymers, 224
Blend-like morphology, 191
Block copolymers (BCPs), 17
Blown film microlayer coextrusion,
26–27
challenges and innovations, 27
commercial die with stacked
plates, 35
development of multilayered
feedblocks, 26
AFM image microlayer blown
film, 27
die geometry, 26
early versions, 26
utilized to fabricate, 26
Blown film process, 2
BOPET films, 222
BOPP film. See Biaxially oriented PP
(BOPP) film
Bragg crystal films, 123
Bragg-crystal structural
reflection, 125
Breakdown failure analysis,
145–148
Breakdown progression,
148–150
Breakdown strength, of films, 176
Breathable films, 11232 Index
Brittle, 6, 66
to ductile transition, 84, 207
fracture in SAN, 83
Broadband dielectric
spectroscopy, 162
C
CaCO
3 filler, 201
Capacitance
change associated with different
breakdown events, 152
measurements, 143, 150
Capacitor applications
BOPP and PET films for, 190
Cast film microlayer coextrusion,
17–26
advancement in die cutting tools, 18
alteration of layer multiplying die
length, 23
improvement in layer thickness
deviation, 23
layered polymer films, improvement
over, 17
layer multiplication process,
flexiblity, 20
vs single shot feedblock
approach, 20
layer multiplying die design
optimization program, 22
mathematical relationship to predict
distribution, 24
micro- and nanolayers produced
cross-section AFM image, 22
from layer multiplication process
with multiplier dies, 21
multichannel-layered feedblock,
18, 19
setting pressure drop and
flowrates, 24
through layer multiplying die, 24, 25
optical micrograph, 25
two component multilayer system
comprised of, 20
Cell boundaries stretching, 198
Ceramic/alloy-based membrane
technologies, 201
Chaotic mixing, 28
Cocontinuous morphology, 191
Coextruded film, 205
Coextruded structures, 2
Coextrusion process, 2, 7, 47, 197,
204, 222, 228
coextrusion/2D multiplication
system, schematics
of, 212
conventional horizontal layer
multiplication process, 211
cross-sectional images, 213
3D writable film, 131
to fabricate films with inorganic
phosphate glass, 66
fiber fabrication, 211
filled-filled and unfilled-filled
systems, 181
foam/film multilayer, schematic
of, 197
K values, 185
layer-structure morphologies,
produced using, 5
melt flow instability in, 29–33
cross-sectional
photomicrograph, 31
illustration of film or sheet
appearance, 30
interlayer instability patterns, 32
nanolayered photopatternable
PMMA with, 130
PCL fiber matrix, 216
Compatibilizers, 1
Composites, of polymer, 191
filled composites, 195–196
Compression-molded composites, 183
Conductive pathways, 157
Conductive polymers, 180
Conductivity, as function of electric
field, 166Index 233
Conventional packaging applications,
222–223
green/biodegradable multilayered
films, 224
modified atmosphere packaging
(MAP) materials, 223
multilayer foam/film
composites, 224
Conventional PSU–EO blends, 194
CO
2/O2 selectivity, 11
Copolyester composites, 108
Copolymerization, 1
Craze density, 156
Crazing phenomena, 156
Cross-linked polyolefin
elastomers, 11
Crystallization behavior, 7
impact gas permeability
properties, 48
Custom 3D spherical GRIN
optics, 155
D
DBR nanolayered mirrors, 127
Deformation
interfacial, 29
mechanism, 8
in multilayered films, 87–90
optical micrographs, 88, 89
stress–strain curves, 89, 90
TEM micrographs, 90
optical micrographs of
microdeformation, 86
of polymer nanolayers, 6
tensile strain, 124
D–E hysteresis loops, 161, 167
DFB laser film, 127
Dielectric constants
charge build-up at interfaces,
dependent on, 178
effective, 180
PVDF–TFE layers, 180, 181
P(VDFvHFP) layers, 174, 175
increased, in biaxially
stretched films, impact of
morphology, 180
of multilayered films, 178
Dielectric films, 143, 227
Dielectric lifetime, enhanced, 151–158
Dielectric polarization, 158
Dielectric properties, 10, 141–143
short-term, 149
Dielectric spectroscopy
50/50 PC/PVDF layered films, 163
Dielectric thermal analyzer
(DETA), 150
Diffusion coefficient, 9, 105, 110,
163, 164
Dipole switching, in PVDF, 161
Distributed Bragg reflector (DBR)
laser, 125
Ductile, 6, 86, 95, 207
E
Early-patented applications, 16
Electrical properties, 141–143
Electric displacement-electric field
(D-E) hysteresis, 159
Electrolytic capacitors, 141
Electronic conduction, in polysulfone
multilayered films, 165
Electrospinning, 210, 214
Encapsulation effects, in polymer
melts, 31
Energy density, 141, 179
biaxially oriented films, 178
PC/P(VDF–HFP) multilayered films,
143–145
PVDF-based multilayered films, 167
Energy storage capability, 141
Ethylene–octane copolymer, 11
Ethylene-octene (EO)
copolymers, 8, 11, 40, 194, 197
-based foams, 196
elastomer foam
foam/film composites, 196–200234 Index
Ethylene vinyl alcohol copolymers
(EVOHs), 192
Evaporation, of metal electrodes, 157
F
Fabrication of layers, 7
Fatigue, in multilayered films, 92
Fatigue resistance properties, 8
SEM image, 93
strain energy release rate, 93
Feedblock technology, 7, 226
Fiber-filled PP (FPP), 195
Fiber webs, 228
Filled composites, 12
Filled multilayered composites, 93–94
effect of number of layers on
fracture strain of, 94
Filled multilayered film systems,
66–69
Fillers, 1, 93–94, 180, 184
Film orientation, 201
Flexible barrier materials, 6
Flory–Huggins interaction
parameter, 40
Flow instability, 30
Fluoropolymer barrier layers, 131
Foam/film composites, 199
cell orientation, 196
stress-strain behavior of, 198
Foam/film structures, 11
Focused ion beam (FIB) milling, 146
“Forced assembly” coextrusion
process, 4
Fourier transform infrared
(FTIR), 162
G
Gas barrier polymer, 192
Gas barrier properties, 7
Gas jet process, 210
Gas permeation, through polymer
films, 48
Gas separation membranes, 201
Gas transport properties, 47–49
Gradient films, 207
Gradient layer composites, 94
optical microscopy, 95
Gradient multilayered films, 205
gradient foams, 207
optically reflective gradient films,
205–207
Gradient refractive index (GRIN)
lenses, 165
Gradient structures, 11
Graphene nanoplatelets-filled
PS, 196
Gyration, of polymer molecules, 190
H
High-density polyethylene (HDPE),
7, 62
HDPE/PS films, AFM phase
images, 192
layer thicknesses, 191
melting temperature, 191
polymer droplets, 191
High impact polystyrene (HIPS), 30
Hydro-entanglement technique, 12
Hyperform HPR-803, 195
Hysteresis, 158, 159
reduction, 162
I
Injection molding, of multilayered
films, 69–71, 225
improvements in gas barrier
properties, 70, 71
morphology analysis, 69, 70
Interdiffusion
multilayered polymers, 9, 105
in polyethylenes, 111
Interface phenomena, 47
Interfacial adhesion, in multilayered
films, 74–77
3D plots, 75, 76
effect of styrene content on, 78Index 235
peel curves of PC/SAN and PC/
PMMA, 77
Interfacial polarization, 163
Interfacial slip, in nanolayers,
40–42
film layer instability, 42
interface between entangled
melts of two incompatible
polymers, 41
nominal viscosity of multilayer
samples, 41
peeled surface from PP/EO
multilayer system, 40
process exemplifie shear
conditions, 42
SEM micrographs, 41
Interfacial surface generator, 4
static mixer, 28
Interlayer instability patterns, 32
Interphase materials, 9, 98–105
atomic force microscopy (AFM)
phase images, 100
phase images of film crosssections, 104
effect of layer thickness on oxygen
permeability, 103
glass transition behavior of PC/
PMMA nanolayer films, 101
three-layered interphase model,
representation of, 104
L
Lamellar orientation, control in
crystalline polymers, 48
Layered optical films, 225
Layered polymer technologies, 16
early examples of applications, 16
Layered structures, thermal break-up
of, 191
Layering feedblock technique, 3
Layer instability, 30
Layer interfaces, 40
distortion, 32
Layer multiplication process, 4
coextrusion. See Coextrusion
process
Layer multiplier-like static mixer, 28
Layer structure integrity, 5
Layer thickness nonuniformity, 30
LCD display, 123
LDPE layers, 199
PP layers, coextruded system
of, 214
LDPE–Ni–LLDPE microlayer, 186
LED light bulbs, 225
Linear dielectric material, 159
M
Magnesium-based inorganic
whisker, 195
MAP materials, 223
Maxwell–Wagner–Sillars (MWS)
interfacial polarization, 165
Mechanical properties, 8, 71,
83–84
confined block copolymers, 97–98
stress–strain response of, 99
layer thickness effect on, 84–86
optical micrographs of
microdeformation, 86
stress–strain curves, 85
multilayered composites, 83
stress–strain curves of
49-layered PC/SAN tensile
specimens, 83
tensile specimens from 49-layered
PC/SAN composites
changes in fracture mode, 83
nanoscale confinement effect on,
95–97
AFM images of PEO layer
structure in, 98
deformation mechanism, 97
stress–strain curves, 96
Melt disturbances, 29
Melt feed ratio, 5236 Index
Melt flow instabilities, 29
in coextrusion process, 29–33
encapsulation effects in polymer
melts with, 32, 33
flow rate dependent interfacial
features, 29, 30
methods preferred to avoid
instabilities, 32
and viscosity mismatch, 31
zig-zag/scattering/wave patterns,
30–31
Melt influxes, 40
Melting temperatures, 10
Metal-filled conductive multilayers,
180–186
Microlayered structures, 228
Micro/nanolayer coextrusion, 16
Micro/nanolayered packaging
materials, 224
Microplatelet-based oriented
morphology, 192
Modified atmosphere packaging
(MAP) materials, 223
Modifiers, 1
Molded products, 225
3M’s Ultra Series of multilayered
films, 6
Multicomponent heterogeneous
polymers, 46
Multilayer coextrusion, 196, 211, 221.
See also Coextrusion process
advantages of, 221
PET/P(VDF–TFE) multilayer
films, 177
Multilayered blends, 225
Multilayered composites
for F–F and U–F composites, 181
mechanical properties of, 71, 83–84
scanning electron micrographs, 182
Multilayered fibers, 210
LDPE/PP fibers, 214
modified coextrusion
processing, 211
multilayer blown microfibers,
210–211
PA6/PET fibers, 214
PCL nanofibers, single component
fiber webs, 215–217
Multilayered films, 11, 223, 228
applications, 6, 225
with hundreds of layers, 4
interface modification in, 168–169
effect of PETG and SAN30 tie
layers, 171–175
effect of PMMA tie layers,
169–171
markets, 221
micro- and nanoscale affects, 190
microfibrillation of, 210
narrowband one-dimensional
photonic crystals of, 227
O
2 permeability of, 203
polarization in, 158
high-field hysteresis, 159–162
interfacial polarization, 165–167
ionic polarization, 162–164
processing technologies
commercialization aspects, 17
companies, patented by, 16
historical perspective, 16
micro- and nanolayered usage
patents published, 17
research and develpoment,
16–17
properties, 7
structures, 197, 224
systems, and improvements over
control films, 46
Multilayered foams, 196–200
structures, 197, 224
Multilayer feedblock technology
conventional, early examples,
patented by, 16
Multilayer micro- and nanofibers, 12
Multilayer optical films, applications
of, 225Index 237
Multilayer stacked plate or “pancake”
die, 27
Multiple polymer materials, 1
Multiple thermomechanical
cycles, 208
Multistep coating, 1
Multistep lamination, 1
N
Nanobiaxially oriented PET (NanoBOPET), 66
Nanobiaxially oriented polypropylene
(Nano-BOPP), 63–65
Nanolayered DBR laser, 125
Nanolayered film systems, optically
active, 123–129
Nanolayered reflective films, 125
Nanolayered structures, 5
Nanolayer-enabled polymer refractive
optical devices, 132–138
nanolayered polymeric GRIN lens
fabrication, 134–138
nanolayer film enabled
flat-top beam shaping GRIN lens
system, 137
GRIN “flat prism”, 137
Nanolayers, interfacial slip in, 40
Nd:YAG laser, 125
Nickel filled LLDPE layer, 186
Numerical simulations, 5
Nylon-EVOH composites, 110
O
Olefinic block copolymers (OBCs),
8, 40
Optical film markets, 227
dielectric films, 227
fiber webs/scaffolds, 228
passive sensors, 227
porous structures, 228
shape memory polymers
(SMPs), 228
Optical filtering, 123
Optical micrographs
injection-molded plaques, 192
of transverse and longitudinal
sections, 194
Optical properties, 9, 117
Optical reflection brand gradient layer
thickness films, 123
Optical reflective properties, 119
Oriented morphology, 192
Oxygen permeance values, 201
P
Packaging, 3, 227
fabrication techniques, 225
PA6/PET composite system, 214
SEM images, 215
Particle arrangement, in thick and thin
filled layers, 185
Passive sensors, 227
PC/copolyesters, 9
PCL. See Polycaprolactone (PCL)
PC/PMMA interphase properties, 46
and estimated properties from
various models, 46
PC/PMMA system, 9
PC/P(VDF–HFP) films, 154
multilayered
diffusion models for, 163
energy density, 143–145
PC/PVDF serial capacitor model, 162
PC/SAN multilayer composites, 8
impact properties of, 91
number of crazes in composite, 92
relative rheometrics impact
strength of, 91
shear banding in PC layers acting
as, 92
PEBA/b-PP multilayered composites,
201
PEO. See Poly(ethylene oxide) (PEO)
Permeability coefficient, of film, 48
Permeability model, 67
Permittivity values, 143238 Index
PET/PVDF–TFE films, 176
PET/PVDF–TFE interface, 178
PET/P(VDF –TFE) multilayer
system, 177
Phase angle, 118
Phosphate glass-filled composites, 196
Phosphate glass-filled PP-g-MA, 195
Phosphate glass platelets, 195
Photopatternable films, 129–131
Plaques creating polyamide-66 (PA66)
microplatelets, 192
Plastic/elastic polymers, 11
PMMA/SAN17 polymer films, 135
Polyamides, 192
Polycaprolactone (PCL), 7, 11, 55–57,
208, 222
barrier properties, 55
crystallization temperature, 56
fixity ratio, 209
Herman’s orientation function, 58
images of, 208
interaction of confining substrates, 56
layer thicknesses and
morphology, 55
melting temperature, 208
morphology analysis of, 208
nanofibers, 216
web, 228
nanolayers, 190
oxygen permeability properties, 57
PCL/PEO system, 216
structure/morphology evolution, 58
Polycarbonate, 6, 22, 125
composites, 108
Polyester terephthalate glycol, 125
Poly(ether block amide) (PEBA)
elastomers, 11
polymer, 201
Polyethylene (PE), 196
Poly(ethylene oxide) (PEO), 7,
49–55, 215
based multilayer films, in
commercial applications, 55
crystallinity of, 52
gas barrier properties, 54
Herman’s orientation function, 52
isothermal crystallization
kinetics, 53
on-edge crystal orientation, 54
oxygen permeability, 49
effect of layer thickness on, 50
transition from 3D spehrullitic
morphology to, 50
Polyethylenes, 9
Polyethylene terephthalate (PET),
7, 142
Polymer blending, 1, 191
innovative, 191–195
Polymer C, 5
Polymer fibers, 210
Polymer foams
multilayered foams, 196–200
Polymeric reflector (bragg) films,
117–122
Polymer layers, 3
Polymer materials, in packaging
applications, 47
Polymer melt, 3
Polymer optical films, 225
Polymethyl methacrylate
(PMMA), 9, 22, 39, 87,
130, 170, 171
Poly(4-methylpentene-1) (P4MP1),
7, 62
measured permeability values, 62
Polyolefins, 222
blends, 11
Polypropylene (PP)
-based foam/film systems, 199
elastomer layered composites, 40
EO multilayer system, peeled
surface from, 40
foam/film structure
multilayer, 11
number of layers, 198
HDPE multilayered films, 8Index 239
matrix, 192
multilayer composite, SEM
image, 195
PA66 multilayered system, 10
polystyrene multilayered films, 6
spherulite boundaries, 40
stress–strain behavior of, 200
Polystyrene (PS), 196
horizontal layers, 214
Polysulfone (PSU), 194
SEM image, 195
Polytetramethyl oxide (PTMO), 201
Polyurethane (PU), 11, 196
Polyvinylidene fluoride (PVDF), 7, 142
polymers, 61
oxygen permeability values, 61
Poly(vinylidene fluoride- co
-tetrafluoroethylene)
(PVDF–TFE), 175
Polyvinylidine- co -trifluoroethylenbased terpolymers, 141
Porous alternating layers
process optimization, 204
Porous composites, 201
corrugated layers, 204–205
multilayered gas separation
membranes, 201–204
Porous materials, 11
Postorientation annealing
techniques, 201
PP. See Polypropylene (PP)
Properties, 3
PS/PMMA gradient layer
cross-section optical
micrograph, 205
refractive index difference, 205
128 step-layered thickness
distribution, 206
PS/THV gradient film, 207
PU/PCL films, 11
PVDF-based ferroelectric
polymers, 158
polarization, 158
PVDF-based multilayered films
energy density, 167–168
PVDF dipole flipping, 162
P(VDF–HFP)-based multilayer
films, 158
P(VDF–HFP)/tie interactions, 174
PVDF–TFE layers, 175
crystal morphology in, 178
Q
Quinacridonequinone (QQ), 201
R
Reflective polarizers, 6
Refractive index, 118, 131
gradient, 135
Resitivities, of composites, 183
R6G laser dye, 127
Rheological phenomena, 29
S
Scattering, 30
SEPS block copolymer
elastomer, 204
Shape memory polymers (SMPs), 11,
208, 228
permanent and temporary shapes,
208
polymer blends and block
copolymers, 208
Shear stress, 30
Skin-layer viscosity, 30
SMPs. See Shape memory polymers
(SMPs)
Specific resistivity, 182
sPP. See Syndiotactic polypropylene
(sPP)
Stackable plate die, 2
Stretched multilayered
films, 204
Structure–property
relationships, 1
Styrene-acrylonitrile (SAN), 6240 Index
Syndiotactic polypropylene (sPP), 7,
58–60
cross-hatched lamellae, role, 59
morphological analysis of extruded
film, 58
oxygen transport
measurements, 59
T
Tensile behavior, 198, 214
Tensile stress, 123
Thermal annealing, 175, 186
of biaxially stretched multilayer
films, 177
Thermoformable products, 225
Thermoplastic film applications, 1
Thermoplastic polymers, 6
Thickness uniformity, 5
Three-dimensional photopatterning of
nanolayered films, 130
Tie-layer polymer, 5
Tortuosity, 10
Transmission drop, film
exhibiting, 120
Tree diameter, as a function of electric
field, 179
Treeing mechanism, 178
Treeing phenomenon, 145
Tubular coextrusion process, 2
Two-layered annular
extrudate, 2
U
Ultrathin separation membranes
fabrication of, 201
V
Viscosity, 3
comparison of PS resins, 33
effect in layer multiplication
process, 39
PC and PMMA viscosities as a
function of temperature, 39
mismatch, 31, 33
comparison of PS resins, 33
cross-section images of A/D
samples, 33
effect on layer structure, 33–38
two-layered patterns, 35
skin layer polymer, 30
W
Water vapor transport rates
(WVTR), 66
of extruded, biaxially stretched,
and biaxially stretched
recrystallized PET/
P(VDF–TFE) films, 68
overall film, 68
“Wave” instability, 31
pattern, interfacial instability, 32
Weibull distribution function, 152, 153
Weibull plots, 167
WVTR. See Water vapor transport
rates (WVTR)
Y
Young’s modulus, 214
Z
Zig-zag type interfacial instability, 32
كلمة سر فك الضغط : books-world.net
The Unzip Password : books-world.net
تعليقات