Laser Processing of Materials
اسم المؤلف
Peter Schaaf
التاريخ
المشاهدات
468
التقييم
(لا توجد تقييمات)
Loading...
التحميل

Laser Processing of Materials
Fundamentals, Applications and Developments
With 110 Figures
Peter Schaaf
Editor
Contents
1 Introduction 1
Peter Schaaf
References . 3
2 Basics of Lasers and Laser Optics . 5
Michelle Shinn
2.1 Introduction . 5
2.2 Optical Processes 5
2.3 Time Dependence . 8
2.3.1 Q-Switching . 8
2.3.2 Mode-Locking 9
2.3.3 Ultrashort Pulse Generation 9
2.3.4 Harmonic Generation . 9
2.4 Free-Electron Lasers 10
2.5 Laser Optics . 12
2.5.1 Optical Propagation . 13
2.5.2 Sizing Optical Elements and Other Tricks of the Trade 14
2.5.3 Fiber Optics . 14
2.5.4 Managing Diffraction . 15
2.5.5 The Aspheric Lens Beamshaper . 15
2.5.6 Holographic Optical Elements . 16
2.5.7 Laser Damage . 17
2.5.8 Optical Modeling Software . 19
2.6 Conclusions . 19
References . 19
3 Fundamentals of Laser-Material Interactions 21
Ettore Carpene, Daniel Höche, and Peter Schaaf
3.1 Basic Considerations 21
3.2 Laser . 22
3.3 Heat in Solids: Electronic and Lattice Dynamics 23
viiviii Contents
3.4 Laser-Material Interactions . 27
3.4.1 Single Photon and Multi-Photon Processes . 27
3.4.2 Laser Reflection and Absorption . 28
3.4.3 Temperature Profiles 31
3.5 Phenomena Occurring on the Target Surface 35
3.5.1 Vaporization . 35
3.5.2 Recondensation . 36
3.5.3 Plasma Formation . 37
3.5.4 Laser Supported Absorption Waves 39
3.6 Material Transport Phenomena . 42
3.7 Conclusions . 44
References . 44
4 Laser–Plasma Interactions 49
Ion N. Mihailescu and Jörg Hermann
4.1 Introduction . 49
4.2 Fundamentals of Laser–Plasma Interaction 50
4.3 Processes in Nanosecond Laser–Plasma Interactions . 55
4.3.1 Laser-Induced Gas Breakdown 55
4.3.2 Plasma Shielding During Laser Material Processing . 59
4.3.3 Laser-Supported Absorption Waves . 63
4.3.4 Plasma Shutter for Optical Limitation . 66
4.4 Plasma Interactions with Femtosecond Laser Pulses 69
4.4.1 Laser Beam Filamentation . 69
4.4.2 Generation of XUV Radiation by Laser Plasma 75
4.4.3 Plasma Mirror . 80
4.5 Conclusion 83
References . 84
5 Laser Ablation and Thin Film Deposition 89
Christof W. Schneider and Thomas Lippert
5.1 Pulsed Laser Ablation . 89
5.2 Lasers Used for Laser Ablation 91
5.3 Initial Ablation Processes and Plume Formation 92
5.3.1 Femtosecond Laser Irradiation . 93
5.3.2 Nanosecond Laser Irradiation 93
5.4 Plume Expansion 94
5.4.1 Plume Expansion in Vacuum . 94
5.4.2 Plume Expansion into a Background Gas . 94
5.4.3 Imaging 95
5.4.4 Kinetic Energy of Plume Species 97
5.4.5 Thin Film Growth . 98Contents ix
5.5 Laser Ablation of Polymers 104
5.5.1 Ablation Mechanism 105
5.5.2 Polymer Film Ablation .106
5.5.3 Film Pattern Transfer .107
5.6 Conclusions .109
References .109
6 Processing with Ultrashort Laser Pulses 113
Jürgen Reif
6.1 Introduction and General Considerations 113
6.2 Laser-Material Coupling 114
6.2.1 Nonlinear Absorption .115
6.2.2 Hot Electron Generation 116
6.2.3 Incubation .116
6.2.4 Resolution Below the Diffraction Limit .117
6.3 Dissipation Dynamics .118
6.3.1 Dissipation Channels .118
6.3.2 Transient Material Modification .118
6.4 Desorption/Ablation 120
6.4.1 Concept 120
6.4.2 Applications .120
6.5 3-D Bulk Modifications, Waveguide Writing 122
6.5.1 Bulk Structuring, Waveguide Writing .123
6.5.2 Multiphoton Polymerization .123
6.6 Phase Transformation, Laser Annealing .124
6.7 Medical Applications .124
6.8 Nanostructures and Nanoparticles 124
6.9 Conclusions .126
References .126
7 Creating Nanostructures with Lasers 131
Paolo M. Ossi and Maria Dinescu
7.1 Introduction .132
7.2 Fundamentals 133
7.2.1 Plasma–Gas Interaction at Increasing Gas
Pressure in ns PLD: Experiments and Modeling 133
7.2.2 Nanoparticle Synthesis .140
7.2.3 Controlled Deposition of 2D Nanoparticle
Arrays: Self-Organization, Surface Topography,
and Optical Properties 143
7.3 NP Formation in Femtosecond PLD: Experimental
Results and Mechanisms 146
7.4 Applications .151
7.4.1 Direct Writing .152
7.4.2 Laser LIGA .152x Contents
7.4.3 Laser Etching .153
7.4.4 Pulsed Laser Deposition 154
7.4.5 Matrix-Assisted Pulsed Laser Evaporation (MAPLE) 160
7.4.6 Laser-Assisted Chemical Vapor Deposition (LA-CVD) 161
7.4.7 Lasers for MEMS (Micro-Electro-Mechanical Systems) .163
7.5 Concluding Remarks 163
References .165
8 Laser Micromachining 169
Jürgen Ihlemann
8.1 Basic Considerations 169
8.2 Processing Limits .169
8.3 Materials and Processes .171
8.3.1 Polymers 171
8.3.2 Glass .173
8.3.3 Ceramics 173
8.3.4 Metals .174
8.3.5 Layer Ablation 175
8.3.6 Indirect Ablation 176
8.4 Hole Drilling 178
8.5 Patterning of Thin Films 179
8.5.1 Dielectric Masks 179
8.5.2 Diffractive Optical Elements .180
8.6 Fabrication of Micro Optics and Micro Fluidics 181
8.6.1 Gratings .181
8.6.2 Micro Lenses 182
8.6.3 Micro Fluidics 183
8.7 Conclusions .184
References .185
9 Laser Processing Architecture for Improved Material
Processing .189
Frank E. Livingston and Henry Helvajian
9.1 Laser Machining and Materials Processing 190
9.1.1 Introduction .190
9.1.2 Materials, Thermodynamic Properties,
and Light/Matter Interaction .192
9.1.3 Photolytic Control: Conventional Approaches
and Future Trends .193
9.1.4 Process Control .194
9.2 Laser Genotype Pulse Modulation Technique .196
9.2.1 Concept 196
9.2.2 Experimental Setup and Design 198
9.2.3 Performance Tests and Diagnostics 204Contents xi
9.3 Selected Applications .211
9.3.1 Photosensitive Glass Ceramics: A Candidate
Protean Material Class 211
9.3.2 Nanostructured Perovskite Thin-Films 215
9.4 Summary and Perspective 219
9.4.1 Laser Genotype Process Integration .219
9.4.2 Pulse Script Database: A Public Domain Catalog
for Materials Processing 221
References .222
Index .
Index
Ablation debris, 182
Ablation rate, 94, 169, 171, 172
Absorbing defects, 173
Absorption coefficient, 29, 53
Absorption length, 59
Absorption wave life-time, 63
Absorption wave propagation velocity, 65
Adiabatic coefficient, 39
Aerosols, 73
Aforementioned depolymerization, 106
Algorithm for pulse script generation, 195
Ammosov–Delone–Krainov (ADK) model, 53
Amplified spontaneous emission (ASE), 80
Angular broadening, 96
Angular distribution of the propagation, 94
Anti-chirped laser pulse, 72
Application specific integrated circuit, ASIC),
198
Arbitrary waveform signal generator (AWSG),
198
Aspheric lenses, 15
Atmospheric analyses, 73
Atomization, 149, 150
Attosecond pulses, 83
Attosecond radiation pulses, 80
AWSG flash memory board, 202
Background gas, 93
Background oxygen, 94
Backside wet etching, 176
Barium titanate (BaTiO3), 215
Basic physical processes, 21
Beam path, 14
Beam profile, 92
Beamshaper, 15
Beam splitter, 181
Bifurcations, 44
Bio-inspired synthetic pathways, 215
Blackbody spectrum, 148
Blast wave model, 95
Bragg reflectors, 182
Breakdown criterion, 56
Breakdown in hydrogen, 64
Breakdown modeling, 55
Breakdown threshold, 55
Breakdown threshold of gas, 68
Breakdown time, 67
Breakdown wave, 65
BreakdownWaveVelocity, 65
Bremsstrahlung, 77
Bulk solid lattice, 192
Bunch, 11
Bunch frequency, 11
Burst mode, 196
CA film, 145
CA materials, 140, 141
(CAM) software, 198
CAM system, 200
Carbonization, 104
Catalytic activation, 193
Cavity lengths, 11
Cavity Q, 8
Centre of mass velocity, 94
Centrosymmetric atomic structure, 79
Ceramic materials, 173
Characteristic times, 66
Chemical equilibrium, 98
Chirped pulse amplifier (CPA), 71
Clausius-Clapeyron equation, 31, 37
Cleaning, 80, 81
Cluster energy, 135
Cluster formation, 154
Cluster nucleation, 135
Cluster-assembled (CA), 132, 158
Clusters, 98
225226 Index
Coalescence, 140, 144, 146, 148
Co-fabrication, 214
Coherence parameters, 180
Coherent molecular control process, 194
Coherent wake emission, 83
CO2 laser, 152
Colliding pulse amplification (CPA), 9
Collimating lens, 70
Collision, 96
Collisional and non-collisional processes, 52
Collisional heating, 132
Collisional sticking, 149, 150
Collision frequency, 52
Complete thermal equilibrium, 54
Complex stoichiometry, 154
Conductivity, 102
Conical emission, 72
Continuous wave (cw) mode, 22
Controlled cooling, 218
Controlled material transformation, 210
Controlled variation of the optical properties,
214
Convection, 42
Conventional laser direct-write processing, 216
Coulomb explosion, 93
Crack formation, 100
Cracking, 173
Critical density, 51, 64
Critical layer thickness, 104
Critical power, 71
Cr-masks, 179
Cumulative ablation, 162
Cut-off, 78
Damage, 17
2D-conducting interface layers, 103
Debye frequency, 25
Debye shielding length, 50
Debye temperature, 194
Defect-induced conductivity, 104
Defocusing, 79
Defocusing lens, 71
Delay generator, 69
Demultiplexers, 182
Deposition parameters, 102
Depth modulation, 180
Depth of focus (DOF), 170
Detonation wave, 65
Detrimental effects, 98
2D growth, 99
Diagnostic test, 204
Dielectric mask, 179
Dielectric mirrors, 179
Diffraction, 15
Diffractive optical elements (DOE), 15, 180
Diffractive phase elements, 180
Diffusion length, 57
Diffusion losses, 68
Diffusion model, 136
DiffusionLossCriterion, 57
Digitally scripted laser-induced phase
conversion, 219
Digitally scripted laser processing, 198
Direct ablation of polymers, 106
Direct patterning, 105
Direct writing, 107, 152
Direct-write application, 194
Direct-write patterning, 211
Direct-write processing tool, 195
Dissolution kinetics, 212
Disturbance, 193
Divergence, 13
2D layering scheme, 194
Donor, 107
Drag model, 136
Drilling, 178
Droplets, 149
Drude model, 24
Drude’s model, 60
3D-vectored travel distance, 205
Dynamic release layer (DRL), 107
Dynamical restocking, 72
Edge curling, 175
Edge definition, 180
Effective collision frequency, 52
Effective temperature, 97
Ejection of droplets, 93
Electrical conductivity, 29
Electric field plane wave, 28
Electroacoustic transducer elements, 215
Electron avalanche process, 17
Electron bunch, 11
Electron diffusion, 57
Electron-electron, 23
Electron-electron scattering time, 25
Electron-electron thermalization, 24
Electron gas, 25
Electron-hole pair, 23
Electronic reconstruction, 103
Electronic relaxation, 93
Electronic temperature, 24, 25
Electronic thermalization, 24
Electron-lattice scattering, 24
Electron-phonon coupling, 25, 93
Debye sphere, 51Index 227
Electron-phonon interactions, 23
Electron scattering, 24
Electrostatic energy analyzer, 97
Electron’s trajectory, 11
Emission intensity profiles, 96
Energy growth rate, 55
Energy losses, 56
EO cell, 203
Epitaxial growth, 99
Erbium doped fiber amplifers (EDFA), 7
Evaporation, 31
Evaporation of nanoparticles, 63
Excimer lasers, 152
Excitation, 97
Excitation of electrons, 27
Expanding vapor plume, 36
Expansion, 35
Extinction coefficient, 28
Fast photography, 139, 143
Femtosecond laser, 152
Fermi energy, 24
Fermi liquid theory, 24
Fiber laser, 194
Fiber optics, 14
Filamentation, 50
Film growth, 90, 98
Fluence, 147, 148, 150
Fluorescent molecules, 184
Flux velocity, 136
Focal plane, 13
Focal volume, 63
Focussability, 22
Foturan, 211
Fragmentation, 150
Free-electron laser (FEL), 10, 76
Free energy, 192
Free energy of the film surface, 99
Free expansion, 134
Front side ablation, 175, 180
Fs ablation, 93, 132, 146
Fundamental physical processes, 44
Gain, 6
Galilean telescope, 15
Gaussian profile, 30
G-code, 201
Genotype-inspired, digitally scripted laser
direct-write technique, 217
Genotype pulse script, 196
Geometrical optics, 13
Giant pulsing, 8
Gibbs energy, 191, 192
Glasses, 173
Global minimum energy state, 192
Grating, 181
Griem, 54
Group dispersion parameter, 72
Group velocity dispersion parameter, 70
Growth kinetic, 90
Growth modes, 99
Growth rate of electron energy, 52
Hagen-Rubens-equation, 29
Hardware control system, 203
Harmonic generation, 10, 80
H-code, 202
Heat-affected zone (HAZ), 151
Heat conduction, 29
Heat diffusion length, 59
Heat source, 21
Hemispherical shock wave, 95
Heterostructure, 103
HHG by plasma mirrors, 83
High angle annular dark field (HAADF), 103
High-energy particle accelerator, 76
High fidelity photon modulation, 216
High-order harmonic generation (HHG), 77
High-order harmonic generation efficiency, 79
High-order harmonics, 82
High-power pulsed laser, 159
Hole arrays, 179
Hole drilling, 178
Holographic optical elements (HOE), 15, 16
Hydrodynamic motion, 35
Hydrodynamic speed, 35
IB effect, 55
Images distances, 13
Imaging, 76, 95
Impact velocity, 142
Impurities, 61
Incubation effects, 193
Indirect ablation, 176
Indium-tin-oxide (ITO), 108
Inherent limitations, 196
Injection nozzles, 179
Integrated position synchronized output (PSO),
198
Intense laser, 39
Intra-pulse, 216
Inverse bremsstrahlung (IB), 52, 55, 93
Inversion, 22
Ion-damage, 103228 Index
Ionic compensation mechanism, 104
Ionization, 140
Ionization avalanche, 61
Ionization channel, 75
Irradiance, 30
Island growth, 99
ITO patterning, 179
Keldysh parameter, 53
Kerr effect, 70, 81
Kerr lens mode-locking (KLM), 9
Kinetic energy, 97
Knudsen layer, 35, 94, 136
LaAlO3, 103
Laser, 22
Laser ablation, 151
Laser ablation systems, 91
Laser assisted chemical vapor deposition, 161
Laser assisted etching (LAE), 153
Laser beam filamentation, 69, 72
Laser damage, 17
Laser etching, 153
Laser fluence, 32
Laser-generated plasma, 132, 139, 150
Laser genotype pulse modulation processing,
196
Laser genotype pulse modulation technique,
191
Laser-induced breakdown, 63
Laser-induced breakdown spectroscopy
(LIBS), 54
Laser-induced damage thresholds (LIDT), 18
Laser-induced forward transfer (LIFT), 105,
107
Laser-induced plasma, 92
Laser-induced X-ray plasma, 77
Laser LIGA, 152
Laser pulse script, 203, 209
Laser spot size, 30
Laser-supported absorption wave (LSAW), 38,
63
Laser-supported combustion wave (LSCW), 38
Laser-supported detonation wave (LSDW), 38
Laser supported radiation (LSR), 40
Laser-triggered lightning, 74
Latent heat, 30
Lattice dynamics, 23
Lattice temperature, 24, 26
Layer thickness, 100
Layer-by layer growth, 99
LIBDE, 177
LIBWE, 177
Light channelling, 170
Light detection and ranging (LIDAR), 73
Liquid-vapor interface, 35
Liquid-vapor phase transition, 31
Local phonon modes, 193
Local thermal equilibrium (LTE), 26, 54
Long duration contrasts, 80
Lorentz model, 28
Low background pressure, 95
Luminous ablation plume, 89
Machining of glass, 195
Mach number, 36
Marangoni convection, 43
Material preparation, 195
Material transport phenomena, 42
Matrix, 156
Matrix-assisted pulsed laser evaporation
(MAPLE), 106, 160
Maxwell-Boltzmann distribution, 94
Maxwell’s equations, 70
M-code, 200, 202
Mechanical fragmentation, 132
MEH-PPV, 106
Melt ejection, 42
Melting depth, 33
MEMS, 163
Metallic nanoclusters, 156
Metals, 174
Metastable, non-equilibrium state, 192
Microcrater, 179
Microelectronic fabrication, 75
Micro fluidic devices, 183
Micro lenses, 182
Micromachining, 151, 169
Micro optical structures, 181
Mie absorption, 63
Misfit-dislocations, 100
Mixed model, 105
Mixed-propagation, 138
Mixed-propagation model, 141, 143, 145
Mn-plume species, 95
Mode-locking, 9
Model of mixed-propagation, 133
Model the laser ablation, 105
Modified diffusion model, 136
Modified drag model, 138
Modulation, 190
Modulation of photon flux, 195
Molecular collision time, 69
Molecular dynamics (MD) simulations, 147,
148Index 229
Moving focus, 71
Multihole pattern, 178
Multilayer stacks, 179
Multiphoton absorption, 53, 171
Multiphoton ionization, 55, 57, 71
Multiphoton ionization rate, 58
Multi-photon processes, 27
Multiple scattering, 94
Multistep attenuators, 212
N-photon transition probability, 27
Nano-particle formation, 93
Nanoparticles, 156, 211
Nanopearls, 160
Nano-structuring, 158
Nanotubes, 162
Nanowires, 159
National Ignition Facility (NIF), 7
Nature of the photon flux delivery, 195
Nd:YAG laser, 152
Neutral species, 98
Nitrification, 44
Noncollisional interaction, 78
Non-equilibrium velocity, 35
Nonlinear optics, 70
Nonlinear processes, 29
Nonlinear refractive index, 81
Non-thermal evaporation process, 99
Nozzle plates, 178
NP asymptotic size, 133, 141
NP formation, 133
NPs, 140
Nucleation, 98
Numerical aperture (NA), 170
Numerical control intermediate (NCI), 200
Optical absorption length, 29
Optical breakdown, 55, 68
Optical fiber, 183
Optical frequency doubling, 92
Optical penetration depth, 59
Optical reflectivity, 33
Optical resolution, 170
Optical transport system, 13
Organic light emitting diode (OLED), 108
Oscillating mirror model, 82
Oscilloscope traces, 208
Outcoupler, 6
Outcoupler mirror, 12
Outcoupling mirror, 6
Oxygen background, 96
Oxygen defects, 102
Partially ionized, 39
Partial pressure, 90
Particle cooling, 142
Pattern script, 201
Patterned maneuvers, 209
PEDOT:PSS, 106
Penning effect, 57
Percolated structure, 145
Perovskite thin-films, 215
Phase explosion, 150, 151
Phase transformations, 30, 216
Photochemical degradation, 104
Photochemical models, 105
Photoexposure, 211
Photoionization, 93, 132
Photoionization cross section, 53
Photomechanical spallation, 150
Photon absorption, 92
Photon bath, 71
Photon modulation, 193
Photophysical models, 105
Photophysical processes, 211
Photostructurable glass ceramic, 211
Photothermal models, 105
Photovoltaic cells, 179
Physical optics, 14
Piston effect, 39, 43
Pixel by pixel irradiation, 180
Planar waveguides, 181
Plasma, 37
Plasma-assisted ablation, 176
Plasma breakdown, 52
Plasma formation, 60
Plasma frequency, 28, 51
Plasma heating efficiency, 53
Plasma luminosity, 142
Plasma mirror, 81
Plasma oscillations, 51, 134
Plasma parameter, 50
Plasma shielding, 59
Plasma shutter, 68
Plasma’s optical thickness, 59
Plasma surface pressure, 41
Plasma temperature, 65
Plasmatron, 39
Plume dynamics, 95
Plume expansion, 94
Plume imaging, 67
Plume mass, 95
Plume sharpening, 134
Plume species, 97
Plume splitting, 134
PMMA, 156
Pockels cells, 80, 203230 Index
Polarization-dependent crystallization, 198
Polyimide ablation, 207
Polymers, 104, 171
Polysilicon, 153
Ponderomotive potential, 52
Ponderomotive wave, 11
Postpulses, 80
Precision laser modulation techniques, 193
Preionization, 57
Prepulse, 80
Prepulse contrast, 81
Process Script, 201
Processing limits, 169
Propagation factor, 70
Propagation mechanism, 66
Protocols, 195
PSOCFG command, 202
PSO control, 204
PSO firing, 204
Pulse chirp, 70
Pulsed laser deposition (PLD), 89, 154
Pulsed mode, 22
Pulsed reactive crossed beam laser ablation
(PRCLA), 90
Pulse modulation, 194
Pulse train, 194
Pyroelectric phase transformation, 198
Q – Switching, 8
Quasi-adiabatic initial expansion, 54
Quasi-transparent plasma, 71
Quiver energy, 52, 79
Radiofrequency, 158
Raman-active bands, 216
Rarefaction, 41
Raster patterning, 213
Reactive atmosphere, 37
Reactive pulsed laser deposition, 156
Rear side ablation, 175
Rear surface absorption, 173
Recoil pressure, 42
Recombination, 97
Recondensation, 36
Redeposition, 172
Reduce the kinetic energy, 94
Re-excitations, 97
Reflection and absorption, 28
Reflectivity, 29
Refraction, 10
Refractive index, 28, 70
Relativistic electrons, 75
Relaxation, 25
Relaxation mechanism, 100
Resistive bolometers, 215
Resonant cavities, 8
Resonator, 9
Retrodiffused emission, 72
Ripples, 35
Saha equation, 37
S-code, 202
“scratch-dig” values, 18
Screw dislocation, 100
Self-amplified stimulated emission (SASE), 7,
11
Self-focusing, 71
Self-guiding, 72
Self-phase modulation, 72
Semiconductor saturable-absorber mirror
(SESAM), 196
Separation of the plume, 96
Shadowing, 144
Sharpening, 96
Shock wave, 41, 59, 63, 95, 134, 141
Shock wave model, 136
Silicon technology, 163
Silver islands, 144
SimpleBreakdownCriterion, 61
Single photon processes, 27
Single-walled nanohorns, 162
Single-walled nanotubes, 161
Site-selective and patterned micro- and
nanoscale transformation, 215
Site-selective formation, 197
Slicing, 75
Software, 19
Software control system, 198
Soft X-ray lasers, 8
Solar cells, 178
Solidification, 32
Solid state laser, 22
Spectroscopic detection scheme, 195
Spherical lenses, 182
Spontaneous emission, 6
Square wave, 209
Stable shock wave front, 138
Stimulated emission, 22
Stopping distance, 95
Strain, 100
Structural conversion, 215
Structure resolution, 170
Sub-micron patterning, 182
Subtractive diffraction geometry, 72
Superconducting linear accelerator, 10Index 231
Superconducting radiofrequency (SRF) linac,
11
Supercritical density, 81
Supercritical plasma, 81
Supersaturation, 37, 99, 100
Surface debris, 172
Surface defects, 61
Surface plasmon resonance (SPR), 145
Surface reflectivity, 60
Surface relief, 180
Surface temperature profiles, 33
Surface tension, 42
Surface topography, 34
Synchronized-image-scanning (SIS), 183
Synchrotron radiation, 75
Tabletop, 76
Target surface, 35
Temperature profiles, 31
Temporal broadening, 72
Temporal dephasing, 72
Temporal profile, 194
Terrace width, 100
Thermal conductivity, 33
Thermal decomposition, 107
Thermal diffusion length, 29
Thermal pyroelectric detectors, 215
Thermal radiation, 38
Thermocapillary effect, 42
Thermodynamical critical temperature, 150
Thermodynamical equilibrium, 35
Thermoionic effect, 60
Thermopiles, 215
Thin film growth, 93
Thin film patterning, 179
Three-dimensional concentration mapping, 73
Three-step model, 79
Threshold condition, 6
Threshold fluence, 105
Threshold irradiance, 27
Threshold voltage, 104
THz radiation, 75
Time-bandwidth product, 9
Time dependence of laser, 8
Time of flight analysis, 106
Time-resolved photoemission experiments, 24
Titania, 160
Top hat, 43
Transfer precise patterns, 107
Transmitted fraction, 68
Tungsten oxide, 157
Tunneling ionization, 53, 79
Turbulence, 44, 135
Twinning, 100
Two-temperature model (TTM), 25
Ultrafast optical switches, 69
Ultrashort laser damage, 18
Vacuum conditions, 94
Vapor pressure, 31
Vaporization, 35, 93
Vaporization threshold, 59
Vaporization threshold of defect, 62
Vaporization threshold reduction, 62
Vaporization time, 67
Velocity compensation, 208
Viscosity, 137
Vlasov equation, 53
Voltage pulse, 209
Voltage pulse script, 203
Wavelength, 22
4! criterion, 14
White light LIDAR, 73
Wiggler, 11
X-ray emission, 81
X-ray emission spectrum, 78
X-ray imaging, 76
X-ray laser, 76
XUV-lithography, 75
XUV radiation, 75
XUV source, 76
Z-pinch, 76
Z-positioning, 170

كلمة سر فك الضغط : books-world.net
The Unzip Password : books-world.net

تحميل

يجب عليك التسجيل في الموقع لكي تتمكن من التحميل

تسجيل | تسجيل الدخول