Introductory Classical Mechanics, with Problems and Solutions

Introductory Classical Mechanics, with Problems and Solutions
اسم المؤلف
David Morin
التاريخ
المشاهدات
158
التقييم
(لا توجد تقييمات)
Loading...
التحميل

Introductory Classical Mechanics, with Problems and Solutions
There Once Was a Classical Theory
David Morin
Contents
1 Statics I-1
1.1 Balancing forces . I-1
1.2 Balancing torques . I-5
1.3 Exercises . I-9
1.4 Problems . I-12
1.5 Solutions . I-17
2 Using F = ma II-1
2.1 Newton’s Laws II-1
2.2 Free-body diagrams . II-4
2.3 Solving differential equations II-8
2.4 Projectile motion . II-12
2.5 Motion in a plane, polar coordinates II-15
2.6 Exercises . II-18
2.7 Problems . II-24
2.8 Solutions . II-28
3 Oscillations III-1
3.1 Linear differential equations . III-1
3.2 Simple harmonic motion . III-4
3.3 Damped harmonic motion III-6
3.4 Driven (and damped) harmonic motion III-8
3.5 Coupled oscillators III-13
3.6 Exercises . III-18
3.7 Problems . III-22
3.8 Solutions . III-24
4 Conservation of Energy and Momentum IV-1
4.1 Conservation of energy in 1-D IV-1
4.2 Small Oscillations . IV-6
4.3 Conservation of energy in 3-D IV-8
4.3.1 Conservative forces in 3-D IV-9
4.4 Gravity IV-12
4.4.1 Gravity due to a sphere . IV-12
4.4.2 Tides . IV-14
12 CONTENTS
4.5 Momentum IV-17
4.5.1 Conservation of momentum . IV-17
4.5.2 Rocket motion IV-19
4.6 The CM frame IV-20
4.6.1 Definition . IV-20
4.6.2 Kinetic energy IV-22
4.7 Collisions . IV-23
4.7.1 1-D motion IV-23
4.7.2 2-D motion IV-25
4.8 Inherently inelastic processes IV-26
4.9 Exercises . IV-30
4.10 Problems . IV-41
4.11 Solutions . IV-47
5 The Lagrangian Method V-1
5.1 The Euler-Lagrange equations V-1
5.2 The principle of stationary action V-4
5.3 Forces of constraint V-10
5.4 Change of coordinates V-12
5.5 Conservation Laws V-15
5.5.1 Cyclic coordinates V-15
5.5.2 Energy conservation . V-16
5.6 Noether’s Theorem V-18
5.7 Small oscillations . V-21
5.8 Other applications V-24
5.9 Exercises . V-27
5.10 Problems . V-29
5.11 Solutions . V-34
6 Central Forces VI-1
6.1 Conservation of angular momentum VI-1
6.2 The effective potential VI-3
6.3 Solving the equations of motion . VI-5
6.3.1 Finding r(t) and θ(t) . VI-5
6.3.2 Finding r(θ) . VI-6
6.4 Gravity, Kepler’s Laws VI-6
6.4.1 Calculation of r(θ) VI-6
6.4.2 The orbits . VI-8
6.4.3 Proof of conic orbits . VI-10
6.4.4 Kepler’s Laws . VI-11
6.4.5 Reduced mass . VI-13
6.5 Exercises . VI-16
6.6 Problems . VI-18
6.7 Solutions . VI-20CONTENTS 3
7 Angular Momentum, Part I (Constant Lˆ) VII-1
7.1 Pancake object in x-y plane . VII-2
7.1.1 Rotation about the z-axis VII-3
7.1.2 General motion in x-y plane . VII-4
7.1.3 The parallel-axis theorem VII-5
7.1.4 The perpendicular-axis theorem . VII-6
7.2 Non-planar objects VII-7
7.3 Calculating moments of inertia . VII-9
7.3.1 Lots of examples . VII-9
7.3.2 A neat trick VII-11
7.4 Torque . VII-12
7.4.1 Point mass, fixed origin . VII-13
7.4.2 Extended mass, fixed origin . VII-13
7.4.3 Extended mass, non-fixed origin VII-14
7.5 Collisions . VII-17
7.6 Angular impulse . VII-19
7.7 Exercises . VII-21
7.8 Problems . VII-28
7.9 Solutions . VII-34
8 Angular Momentum, Part II (General Lˆ) VIII-1
8.1 Preliminaries concerning rotations . VIII-1
8.1.1 The form of general motion . VIII-1
8.1.2 The angular velocity vector . VIII-2
8.2 The inertia tensor VIII-5
8.2.1 Rotation about an axis through the origin . VIII-5
8.2.2 General motion VIII-9
8.2.3 The parallel-axis theorem VIII-10
8.3 Principal axes . VIII-11
8.4 Two basic types of problems . VIII-15
8.4.1 Motion after an impulsive blow . VIII-15
8.4.2 Frequency of motion due to a torque VIII-18
8.5 Euler’s equations . VIII-20
8.6 Free symmetric top VIII-22
8.6.1 View from body frame VIII-22
8.6.2 View from fixed frame VIII-24
8.7 Heavy symmetric top . VIII-25
8.7.1 Euler angles VIII-25
8.7.2 Digression on the components of ~! . VIII-26
8.7.3 Torque method VIII-29
8.7.4 Lagrangian method VIII-30
8.7.5 Gyroscope with θ˙ = 0 VIII-31
8.7.6 Nutation . VIII-33
8.8 Exercises . VIII-36
8.9 Problems . VIII-384 CONTENTS
8.10 Solutions . VIII-44
9 Accelerated Frames of Reference IX-1
9.1 Relating the coordinates . IX-2
9.2 The fictitious forces . IX-4
9.2.1 Translation force: ¡md2R=dt2 . IX-5
9.2.2 Centrifugal force: ¡m~! £ (~! £ r) IX-5
9.2.3 Coriolis force: ¡2m~! £ v IX-7
9.2.4 Azimuthal force: ¡m(d!=dt) £ r IX-11
9.3 Exercises . IX-13
9.4 Problems . IX-15
9.5 Solutions . IX-17
10 Relativity (Kinematics) X-1
10.1 The postulates X-2
10.2 The fundamental effects . X-4
10.2.1 Loss of Simultaneity . X-4
10.2.2 Time dilation . X-7
10.2.3 Length contraction X-10
10.3 The Lorentz transformations X-14
10.3.1 The derivation X-14
10.3.2 The fundamental effects . X-18
10.3.3 Velocity addition . X-20
10.4 The invariant interval X-23
10.5 Minkowski diagrams . X-26
10.6 The Doppler effect X-29
10.6.1 Longitudinal Doppler effect . X-29
10.6.2 Transverse Doppler effect X-30
10.7 Rapidity X-32
10.8 Relativity without c . X-35
10.9 Exercises . X-39
10.10Problems . X-46
10.11Solutions . X-52
11 Relativity (Dynamics) XI-1
11.1 Energy and momentum . XI-1
11.1.1 Momentum XI-2
11.1.2 Energy . XI-3
11.2 Transformations of E and ~p . XI-7
11.3 Collisions and decays . XI-10
11.4 Particle-physics units . XI-13
11.5 Force XI-14
11.5.1 Force in one dimension XI-14
11.5.2 Force in two dimensions . XI-16
11.5.3 Transformation of forces . XI-17CONTENTS 5
11.6 Rocket motion XI-19
11.7 Relativistic strings XI-22
11.8 Mass XI-24
11.9 Exercises . XI-26
11.10Problems . XI-30
11.11Solutions . XI-34
12 4-vectors XII-1
12.1 Definition of 4-vectors XII-1
12.2 Examples of 4-vectors XII-2
12.3 Properties of 4-vectors XII-4
12.4 Energy, momentum XII-6
12.4.1 Norm . XII-6
12.4.2 Transformation of E,p XII-6
12.5 Force and acceleration XII-7
12.5.1 Transformation of forces . XII-7
12.5.2 Transformation of accelerations . XII-8
12.6 The form of physical laws XII-10
12.7 Exercises . XII-12
12.8 Problems . XII-13
12.9 Solutions . XII-14
13 General Relativity XIII-1
13.1 The Equivalence Principle XIII-1
13.2 Time dilation . XIII-2
13.3 Uniformly accelerated frame . XIII-4
13.3.1 Uniformly accelerated point particle XIII-5
13.3.2 Uniformly accelerated frame . XIII-6
13.4 Maximal-proper-time principle . XIII-8
13.5 Twin paradox revisited XIII-9
13.6 Exercises . XIII-12
13.7 Problems . XIII-15
13.8 Solutions . XIII-18
14 Appendices XIV-1
14.1 Appendix A: Useful formulas XIV-1
14.1.1 Taylor series . XIV-1
14.1.2 Nice formulas . XIV-2
14.1.3 Integrals XIV-2
14.2 Appendix B: Units, dimensional analysis XIV-4
14.2.1 Exercises . XIV-6
14.2.2 Problems . XIV-7
14.2.3 Solutions . XIV-8
14.3 Appendix C: Approximations, limiting cases XIV-11
14.3.1 Exercise XIV-136 CONTENTS
14.4 Appendix D: Solving differential equations numerically XIV-15
14.5 Appendix E: F = ma vs. F = dp=dt XIV-17
14.6 Appendix F: Existence of principal axes XIV-19
14.7 Appendix G: Diagonalizing matrices XIV-22
14.8 Appendix H: Qualitative relativity questions XIV-24
14.9 Appendix I: Lorentz transformations XIV-29
14.10Appendix J: Resolutions to the twin paradox . XIV-32
14.11Appendix K: Physical constants and data . XIV-34
14.11 Appendix K: Physical constants and data
Earth
Mass ME = 5:98 ¢ 1024 kg
Mean radius RE = 6:37 ¢ 106 m
Mean density 5.52 g=cm3
Surface acceleration g = 9:81 m=s2
Mean distance from sun 1:5 ¢ 1011 m
Orbital speed 29:8 km/s
Period of rotation 23 h 56 min 4 s = 8:6164 ¢ 104 s
Period of orbit 365 days 6 h = 3:16 ¢ 107 s
Moon
Mass ML = 7:35 ¢ 1022 kg
Radius RL = 1:74 ¢ 106 m
Mean density 3.34 g=cm3
Surface acceleration 1:62 m=s2 … g=6
Mean distance from earth 3:84 ¢ 108 m
Orbital speed 1:0 km/s
Period of rotation 27:3 days = 2:36 ¢ 106 s
Period of orbit 27:3 days = 2:36 ¢ 106 s
Sun
Mass MS = 1:99 ¢ 1030 kg
Radius RS = 6:96 ¢ 108 m
Surface acceleration 274 m=s2 … 28g
Fundamental constants
Speed of light c = 2:998 ¢ 108 m/s
Gravitational constant G = 6:673 ¢ 10¡11 N m2=kg2
Planck’s constant h = 6:63 ¢ 10¡34 J s
Electron charge e = 1:602 ¢ 10¡19 C
Electron mass me = 9:11 ¢ 10¡31 kg = 0:511 MeV=c2
Proton mass m
p = 1:673 ¢ 10¡27 kg = 938:3 MeV=c2
Neutron mass mn = 1:675 ¢ 10¡27 kg = 939:6 MeV=c2
كلمة سر فك الضغط : books-world.net
The Unzip Password : books-world.net

تحميل

يجب عليك التسجيل في الموقع لكي تتمكن من التحميل

تسجيل | تسجيل الدخول