Introduction to Numerical Ordinary and Partial Differential Equations Using MATLAB
اسم المؤلف
Alexander Stanoyevitch
التاريخ
المشاهدات
631
التقييم
(لا توجد تقييمات)
Loading...
التحميل

Introduction to Numerical Ordinary and Partial Differential Equations Using MATLAB
Alexander Stanoyevitch
Contents
Preface ix
PART I: Introduction to MATLAB and
Numerical Preliminaries
Chapter 1: MATLAB Basics 1
Section 1.1: What Is MATLAB?
Section 1.2: Starting and Ending a MATLAB Session
Section 1.3: A First MATLAB Tutorial
Section 1.4: Vectors and an Introduction to MATLAB Graphics
Section 1.5: A Tutorial Introduction to Recursion on MATLAB
Chapter 2: Basic Concepts of Numerical Analysis 23
with Taylor’s Theorem
Section 2.1: What Is Numerical Analysis?
Section 2.2: Taylor Polynomials
Section 2.3: Taylor’s Theorem
Chapter 3: Introduction to M-Files 45
Section 3.1: What Are M-files?
Section 3.2: Creating an M-file for a Mathematical Function
Chapter 4: Programming in MATLAB 57
Section 4.1: Some Basic Logic
Section 4.2: Logical Control Flow in MATLAB
Section 4.3: Writing Good Programs
Chapter 5: Floating Point Arithmetic and Error Analysis 85
Section 5.1: Floating Point Numbers
Section 5.2: Floating Point Arithmetic: The Basics
Section 5.3:1 Floating Point Arithmetic: Further Examples and Details
Chapter 6: Rootfinding 107
Section 6.1: A Brief Account of the History of Rootfinding
Section 6.2: The Bisection Method
Section 6.3: Newton’s Method
Section 6.4: The Secant Method
Section 6.5: Error Analysis and Comparison of Rootfmding Methods
Chapter 7: Matrices and Linear Systems 143
Section 7.1: Matrix Operations and Manipulations with MATLAB
Section 7.2: Introduction to Computer Graphics and Animation
Section 7.3: Notations and Concepts of Linear Systems
Section 7.4: Solving General Linear Systems with MATLAB
Section 7.5: Gaussian Elimination, Pivoting, and LU Factorization
Section 7.6: Vector and Matrix Norms, Error Analysis, and Eigendata
Section 7.7: Iterative Methods
PART II: Ordinary Differential Equations
Chapter 8: Introduction to Differential Equations 285
Section 8.1: What Are Differential Equations?
Section 8.2: Some Basic Differential Equation Models and Euler’s
Method
Section 8.3: More Accurate Methods for Initial Value Problems
Section 8.4: Theory and Error Analysis for Initial Value Problems
Section 8.5: Adaptive, Multistep, and Other Numerical Methods for
Initial Value Problems
Chapter 9: Systems of First-Order Differential Equations 355
and Higher-Order Differential Equations
Section 9.1: Notation and Relations
Section 9.2: Two-Dimensional First-Order Systems
Section 9.3: Phase-Plane Analysis for Autonomous First-Order Systems
Section 9.4: General First-Order Systems and Higher-Order Differential
Equations
Chapter 10: Boundary Value Problems for Ordinary 399
Differential Equations
Section 10.1: What Are Boundary Value Problems and How Can They
Be Numerically Solved?
Section 10.2: The Linear Shooting Method
Section 10.3: The Nonlinear Shooting Method
Section 10.4: The Finite Difference Method for Linear BVPs
Section 10.5: Rayleigh-Ritz Methods Contents vii
PART III: Partial Differential Equations
Chapter 11: Introduction to Partial Differential Equations 459
Section 11.1: Three-Dimensional Graphics with MATLAB
Section 11.2: Examples and Concepts of Partial Differential Equations
Section 11.3: Finite Difference Methods for Elliptic Equations
Section 11.4: General Boundary Conditions for Elliptic Problems and
Block Matrix Formulations
Chapter 12: Hyperbolic and Parabolic Partial Differential 523
Equations
Section 12.1: Examples and Concepts of Hyperbolic PDEs
Section 12.2: Finite Difference Methods for Hyperbolic PDEs
Section 12.3: Finite Difference Methods for Parabolic PDEs
Chapter 13: The Finite Element Method 599
Section 13.1: A Nontechnical Overview of the Finite Element Method
Section 13.2: Two-Dimensional Mesh Generation and Basis Functions
Section 13.3: The Finite Element Method for Elliptic PDEs
Appendix A: Introduction to MATLAB’s Symbolic 691
Toolbox
Appendix B: Solutions to All Exercises for the Reader 701
References 799
MATLAB Command Index 805
General Index 809
General Index
Adams family methods, 338
Adams-Bashforth method, 338
Adams-Moulton method, 339
Abel, Niels Henrik, 108,109
Actual error, 24
Adaptive method, 327
Admissible function, 427
Affine transformation, 163
Algebraic multiplicity, 243
Approximation, 24
Associated matrix norm, 226
Asymptotic error constant, 133
Augmented matrix, 195
Autonomous, 357
Auxiliary condition, 286
Back substitution, 206
Backward difference approximation, 509
Backward Euler method, 332
Base, 85, 94
Basin of attraction, 382
Basis theorem, 193
Bendixson, Ivar, 382
Big-0 notation, 320
Binary arithmetic, 85
Birthrate, 290
Birthday problem, 70
Bisection method, 110
Boundary condition, 475
-Cauchy, 527
-Dirichlet, 476
-Neumann, 476
-Robin, 637
Boundary value problem, 355, 399
Bracket, 116
Bunyakowsky, Viktor Yakovlevich, 455
Cantor, Georg F.L.P., 169
Cantor square, 184
Cardano, Girolamo, 108
Carrying capacity, 292
Cauchy, Augustin Louis, 455
Cauchy-Bunyakowski-Schwarz inequality, 455
Cauchy problem, 527
Center, 362
Central difference formula, 43,418-419, 544
Characteristic polynomial, 241, 342
Chopped arithmetic, 89
Clay Foundation, 68
Cofactor expansion, 76
Collatz, Lothar, 77
Collatz conjecture, 67,68
Column, 143
Combinatorics: alternating power sums, 202
Combinatorics: power sums, 202
Compatibility condition, 508
Component-wise operation, 9
Computed solution, 231
Computer graphics, 157
Condition number, 228-230
Conservation of energy, 537
Convergence order, 132
Convergence theorem, 262,264, 265, 266
Convex hull, 609
Contact rate, 366
Counter, 60
Courant, Richard, 597-598
Courant-Friedrichs-Levy condition, 548
Cramer, Gabriel, 203
Cramer’s rule, 203
Crank, John, 575
Crank-Nicolson method, 575-577
Cycling, 122
D’Alembert, Jean Le Rond, 525
Death rate, 290
Degree, 25
Delaunay triangulation, 608
Determinant, 75,222
Diagonal matrix, 147
Diameter, 71
Differential Equation (DE), 285
Diffusivity, 469
Dilation, 172
Dimension, 171
Direct method, 252
Dirichlet’s principle, 520
Discriminant, 379, 474
Divergence theorem, 519
Divided difference, 131
Domain of dependence, 531
Dot product, 22, 144
Double root, 130
Eigendata, 240
Eigenfunction, 441,496
Eigenspace, 243
Eigenvalue, 240,496, 497
Eigenvector, 240
Element, 598
-Standard, 633

  • Standard rectangular, 629
    Elementary row operation (ERO), 207
    Epicycloids, 13
    809 810
    Epidemie, 366
    Equilibrium solution, 299, 362, 373
    -Isolated, 377
    Equivalent linear system, 195
    Error bound via residual, 233
    Error function, 42
    Error term, 231
    Essentially disjoint, 172
    Euclidean length, 224
    Euler, Leonhard, 292-293
    Euler’s method, 292-294
    Exact answer, 24,231
    Expected value, 83
    Existence theorem, 314, 376, 402,494, 496,
    507,515,585
    Explicit method, 332
    False, 57
    Fern leaf fractal, 185
    Finite difference schemes
  • Crank-Nicolson, 575-577
    -Elliptic, Sec. 11.3, 11.4
    -Explicit, 542-543
  • Forward-time central-space, 573
  • Backward-time central-space, 574
    -Implicit, 558
    -ODEs, 418-425
  • Richardson, 575
    Finite element interpolant, 607
    Finite element method, 597
    First generation, 170
    Fixed point iteration, 140
    Floating point number, 85
    Flop, 74
    Flop counts (for Gaussian elimination), 226
    Flow, 323
    Fontana, Niccolo 108
    Forward substitution, 207
    Forward difference formula, 43, 508
    Fractals (fractal sets), 169
    Future value annuities, 72, 73
    Galerkin, Boris Grigorievich, 440
    Galerkin method, 440
    Galois, Evariste, 109
    Gauss, Carl Friedrich, 204
    Gauss quadrature, 662
    Gauss-Seidel iteration, 256
    Gaussian elimination, 203-213
    General solution, 286
    Generalized minimum residual method, 273-274
    Geometric multiplicity, 243
    Ghost node, 509
    Global solution, 315
    Global variables, 46
    Gomperz law, 300
    Gosper island fractal, 185,186
    Green ‘s identities, 519
    -First, 519
    General Index
    -Second, 520
    Growth rate, 290
    Hamming, Richard Wesley, 348
    Hamming method, 348
    Harmonic function, 476
    Hat function, 432
    Heat conductivity, 469
    Heat (diffusion) equation, 469,470
  • Fundamental solution, 478
  • With source term, 470
    Heun’s method, 303
    Higher-order Taylor methods, 318
    Hubert, David, 193
    Homogeneous, 401,472
    Homogeneous coordinates, 163,164
    Hyper convergence of order or, 133
    IEEE double precision standard, 86
    Ill-conditioned, 102
    Ill-posed, 187
    Implicit method, 332
    Improved Euler method, 303-304
    Infectivity, 364
    Initial condition (IC), 286
    Initial value problem (IVP), 286
    Inline function, 51
    Infinite loop, 16
    Infinity matrix norm, 227
    Infinity (vector) norm, 225
    Initial population, 290
    Inner product, 427
    Input-output analysis, 200,201
    Internal demand matrix, 201
    Internal elastic energy, 428
    Inverse of a matrix, 148
    Invertible (nonsingular), 148
    Iterative, 109
    Iterative method, 252
    Iterative refinement, 249
    Jacobi-Gauss convergence theorem, 262
    Jacobi iteration, 253
    Jacobian matrix, 378
    Julia, Gastón, 169
    Kinetic energy, 535
    Kronecker delta, 608
    Kutta, Martin W., 305
    Lagrange, Joseph Louis, 471
    Laplace, Pierre Simon, 471
    Laplace equation, 471
    Laplace operator (Laplacian), 470
  • in polar coordinates, 686
    Leading one, 195
    Leontief, Wassily, 200
    Linear convergence, 133 General Index 811
    Linear operator, 473
    Linear ODE, 401
    Linear PDE, 472
    Linear transformation, 160
    Linearization, 378
    Lipschitz condition, 313, 376
    Load potential, 428
    Load vector, 434,443
    Local basis, 607
    Local solution, 315
    Local truncation error, 317
    Local variables, 46
    Logic, 57
    Logical operators, 58
    Logistical growth model, 291
    Lorenz, Edward N., 387
    Lorenz strange attractor, 387
    Lotka, Alfred, 359
    Lower triangular, 205
    LU decomposition (or factorization), 213
    M-file, 45
  • Function M-files, 45
  • Script M-files, 45
    Machín, John, 43
    Machine epsilon, 86
    Maclaurin, Colin, 39
    Maclaurin series, 38
    Malthus, Thomas, 290
    Malthus growth model, 290
    Mandelbrot, Benoit, 170
    Mantissa, 87
    Matrix, 143
    -Banded, 152,420
  • Block, 502
  • Diagonally-dominant, 221, 264, 422
  • Elementary, 208
    -Hubert, 192
    -Identity, 148
  • Nonsingular (in vertible), 148
  • Positive definite, 265
    -Sparse, 151,269-278,420
  • Stiffness, 434,443
    -Technology, 201
  • Tridiagonal, 420
    Matrix arithmetic, 144
    Max norm, 225
    Maximum principle, 477, 586, 595
    Midpoint method, 343
    Monte-Carlo method, 173
    Mother loop, 62
    Multiple root, 125
    Multiplicity 1, 55
    Multistep method, 337
    Natural growth rate, 292
    Nearly singular (poorly conditioned), 228
    Necrotic, 300
    Nested loop, 61
    Newton’s method, 118, 119
    Newton-Coates formula, 669
    Nicolson, Phyllis, 575
    Node, 602
    Nonautonomous, 357
    Nullclines, 373
    Numerical differentiation, 43
    Numerically stable, 334
    Numerically unstable, 335
    One-step method, 303
    Orbit, 362
    -Closed, 382
    Order, 130,285,308,317
    Ordinary Differential Equation (ODE), 285
    Output matrix, 201
    Overflow, 88
    Parallel, 239
    Parametric equations, 11
    Partial Differential Equation (PDE), 285, 459
  • Divergence form, 637
    -Elliptic, 474
    -Hyperbolic, 474
  • Parabolic, 474
    Partial pivoting, 211
    Path (MATLAB’s), 45
    Peano, Guiseppe, 169
    Pendulum model, 389
    Perfect number, 81
    Phase-plane, 362
    Piecewise smooth, 496
    Pivot, 211
    Poincaré, Henri, 378
    Poincaré-Bcndixson theorem, 382
    Poisson, Siméon-Denis, 649-649
    Poisson’s integral formula, 649
    Poisson equation, 479
    Polynomial, 25
    Polynomial interpolation, 189, 197-199
    Poorly conditioned matrix, 150, 228
    Potential energy, 536
    Potential theory, 476
    Preconditioned conjugate gradient method, 273
    Preconditioning, 273
    Predator-prey model, 358-360
    Predictor-corrector scheme, 339
    Prime number, 81
    Principle of minimum potential energy, 428
    Principle of virtual work, 428
    Prompt, 2
    Pyramid function, 603
    Quadratic convergence, 139
    Quadrature, 51
    Quartic, 108
    Quintic, 108 812 General Index
    Random integer matrix generator, 152
    Random walk, 82
    Rayleigh-Ritz method, 426-458
    Recursion formulas, 15
    Reduced row echelon form, 195
    Reflection, 162
    -Methodof, 531
    Region of numerical stability, 335
    Relative error bound (via residual), 233
    Relaxation parameter, 258
    Remainder (Taylor’s), 35
    Repelling, 382
    Reproduction rate, 367
    Residual, 116
    Residual matrix, 250
    Residual vector, 232
    Rhind Mathematical Papyrus, 107
    Richardson’s method, 575
    Ritz, Walter, 426
    Root, 110
    Rossler, Otto, 395
    Rotation, 161
    Rounded arithmetic, 89
    Row, 143
    Runge, Carle D. T., 205
    Runge-Kutta method,
    -Classical, 304-305
  • Higher order, 350
    Runge-Kutta-Fehlberg method (RKF45), 327
    Scalar, 240
    Scalar multiplication, 144
    Scaling, 161
    Schwarz, Hermann Amandus, 455
    Secant method, 128, 129
    Self-similarity property, 169
    Separation of variables, 302
    Shearing, 181
    Shift transformation, 162
    Shooting method, 399
    -Linear, 403-411
    -Nonlinear, 411-418
    Sierpinski, Waclaw, 170
    Sierpinski carpet fractal, 184, 185
    Sierpinski gasket fractal, 170
    Significant digits, 85
    Similarity transformation, 172
    Simple root, 125
    Simpson’s Rule, 325
    Simulation, 79
    Single-step method, 337
    Singularity, 527
    SIR model, 363
    SIRS mode, 367
    Solution, 285
    SOR (successive over relaxation), 258
    SOR convergence theorem, 264
    Special function, 693
    Specific heat, 468
    Spectrum, 251,497
    Spline, 449
    Stability, 323,381
    Stability condition, 574
    Stable, 299, 323, 376
    -Conditionally, 586
    -Neutrally, 323
    -Unconditionally, 586
  • Weakly, 342
    Standard local basis, 608
    Statement, 57
    Steady-state solution, 336
    Stencil, 481,542,576
    Step size, 293
    Stiff, 335
    Strutt, John William, 426
    Submatrix, 76
    Superposition principle, 473
    Symbolic computation, 689
    Symmetric matrix, 243
    Tartaglia, 108
    Taylor, Brook, 34
    Taylor polynomial, 25
    Taylor series, 38
    Taylor’s theorem,
  • One variable, 35
  • Two variables, 350
    Tessellation, 186
    Thomas, Llewellyn H., 220
    Thomas method, 220
    Three-body problem, 391
    Tolerance, 24
    Torricelli, Evangelista, 312
    Torricelli’s law, 312
    Traffic logistics, 199,200
    Transient part, 335
    Transpose, 7
    Trapezoid method, 337
    Triangulation, 598
    Tridiagonal matrix, 150
    Triple root, 126
    True, 57
    Truth value, 57
    Two-body problem, 391
    Unconditional numerical stability, 336
    Underflow, 88
    Uniqueness theorem, 314, 376,402,421, 494,
    496,507,515,585
    Unit roundoff, 86
    Unstable, 299, 323, 376, 548
    Upper triangular matrix, 204
    van der Pol, Balthasar, 396
    van der Pol equation, 396
    Vandermonde matrix, 197
    Variable precision arithmetic, 689
    Vector, 7 General Index
    Vector norm, 225
    Verhulst, Peirre Francois, 292
    Volterra, Vito, 358-359
    von Koch, Niels F.H., 179
    von Koch snowflake, 179
    Voronoi diagram, 610
    Voronoi region, 609
    Vortex, 362
    Wave equation, 474, 523, 524
    Weierstrass, Karl, 179
    Weights, 662
    Well-conditioned, 102
    Well-posed, 187
    Zero divisors, 105
    Zeroth generation, 170

كلمة سر فك الضغط : books-world.net
The Unzip Password : books-world.net

تحميل

يجب عليك التسجيل في الموقع لكي تتمكن من التحميل

تسجيل | تسجيل الدخول