Intelligent Information Processing with Matlab
اسم المؤلف
Xiu Zhang, Xin Zhang and Wei Wang
التاريخ
المشاهدات
242
التقييم
(لا توجد تقييمات)
Loading...
التحميل

Intelligent Information Processing with Matlab
Xiu Zhang, Xin Zhang and Wei Wang
Contents
1 Artiϐicial Neural Network

  1. 1 Artiϐicial Neuron
  2. 2 Overview of Artiϐicial Neural Network
  3. 3 Backpropagation Neural Network
  4. 4 Hopϐield Neural Network
  5. 5 Competitive Neural Network
  6. 6 Deep Neural Network
    References
    2 Convolutional Neural Network
  7. 1 Overview of Convolutional Neural Network
  8. 2 Neural Network Performance Evaluation
  9. 3 Transfer Learning with Convolutional Neural Network
  10. 4 Research Progress of Neural Network
    References
    3 Fuzzy Computing
  11. 1 Overview of Fuzzy Computing
  12. 2 Fuzzy Sets
  13. 3 Fuzzy Pattern Recognition
  14. 4 Fuzzy Clustering
  15. 5 Fuzzy Inference
  16. 6 Fuzzy Control System
  17. 7 Fuzzy Logic Designer
    References
    4 Fuzzy Neural Network
  18. 1 Overview of Fuzzy Neural Network4. 2 Adaptive Fuzzy Neural Inference System
  19. 3 Time Series Prediction
  20. 4 Interval Type-2 Fuzzy Logic
  21. 5 Fuzzy C-means Clustering
  22. 6 Suburban Commuting Prediction Problem
  23. 7 Research Progress of Fuzzy Computing
    References
    5 Evolutionary Computing
  24. 1 Overview of Evolutionary Computing
  25. 2 Simple Genetic Algorithm
  26. 3 Genetic Algorithm for Travelling Salesman Problem
  27. 4 Ant Colony Optimization Algorithm
  28. 5 Particle Swarm Optimization Algorithm
  29. 6 Differential Evolution Algorithm
    References
    6 Testing and Evaluation of Evolutionary Computing
  30. 1 Test Set of Traveling Salesman Problem
  31. 2 Test Set of Continuous Optimization Problem
  32. 3 Evaluation of Continuous Optimization Problems
  33. 4 Artiϐicial Bee Colony Algorithm
  34. 5 Fireworks Algorithm
  35. 6 Research Progress of Evolutionary Computing
    References
    References
  36. Yue CT, Price KV, Suganthan PN, Liang JJ, Ali MZ, Qu BY, Award NH, Biswas PP (2020) Problem
    Deϐinitions and evaluation Criteria for the CEC 2020 special session and competition on single
    objective bound constrained numerical optimization. Technical Report 201911,Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China, Nanyang
    Technological University, Singapore
  37. Tan Y (2015) Fireworks algorithm: a novel swarm intelligence optimization method. Springer,
    Berlin
    [Crossref][zbMATH]
  38. Li J, Tan Y (2020) A comprehensive review of the ϐireworks algorithm. ACM Comput Survey
    52:1–28
    [Crossref]
  39. Shi Y (2011) Brain storm optimization algorithm. In: Tan Y, Shi Y, Chai Y, Wang G (eds)
    Advances in swarm intelligence. ICSI 2011. Lecture notes in computer science, vol 6728.
    Springer, Berlin, Heidelberg, pp 303–309
  40. Duan H, Qiao P (2014) Pigeon-inspired optimization: a new swarm intelligence optimizer for
    air robot path planning. Int J Intell Comput Cybern 7:24–37
    [MathSciNet][Crossref]
  41. Cheng S, Qin Q, Chen J et al (2016) Brain storm optimization algorithm: a review. Artif Intell
    Rev 46:445–458
    [Crossref]
  42. Duan H, Huo M, Shi Y (2020) Limit-cycle-based mutant multiobjective pigeon-inspired
    optimization. IEEE Trans Evol Comput 24(5):948–959
    [Crossref]
  43. Mehanović D, Kečo D, Kevrić J et al (2021) Feature selection using cloud-based parallel genetic
    algorithm for intrusion detection data classiϐication. Neural Comput Applic 33:11861–11873.
    https://doi.org/10.1007/s00521-021-05871-5
    [Crossref]
  44. Liang Z, Qin Q, Zhou C (2022) An image encryption algorithm based on Fibonacci Q-matrix
    and genetic algorithm. Neural Comput Applic 34:19313–19341. https://doi.org/10.1007/
    s00521-022-07493-x
    [Crossref]
  45. Nguyen TPQ, Kuo RJ, Le MD et al (2022) Local search genetic algorithm-based possibilistic
    weighted fuzzy c-means for clustering mixed numerical and categorical data. Neural Comput
    Applic 34:18059–18074. https://doi.org/10.1007/s00521-022-07411-1
    [Crossref]
  46. Abbasi S, Rahmani AM, Balador A, Sahaϐi A (2023) A fault-tolerant adaptive genetic algorithm
    for service scheduling in internet of vehicles. Appl Soft Comput 143:110413. https://doi.org/
    10.1016/j.asoc.2023.110413
    [Crossref]
  47. Luo Q, Wang H, Zheng Y et al (2020) Research on path planning of mobile robot based on
    improved ant colony algorithm. Neural Comput Applic 32:1555–1566. https://doi.org/10.
    1007/s00521-019-04172-2
    [Crossref]
    13.Wu Z, Wu J, Zhao M et al (2021) Two-layered ant colony system to improve engraving robot’s
    efϐiciency based on a large-scale TSP model. Neural Comput Applic 33:6939–6949. https://
    doi.org/10.1007/s00521-020-05468-4
    [Crossref]
  48. Yu J, You X, Liu S (2022) Dynamically induced clustering ant colony algorithm based on a
    coevolutionary chain. Knowl-Based Syst 251:109231. https://doi.org/10.1016/j.knosys.2022.
    109231
    [Crossref]
  49. Shami TM, Mirjalili S, Al-Eryani Y et al (2023) Velocity pausing particle swarm optimization: a
    novel variant for global optimization. Neural Comput Applic 35:9193–9223. https://doi.org/
    10.1007/s00521-022-08179-0
    [Crossref]
  50. Kiruthiga D, Manikandan V (2023) Levy ϐlight-particle swarm optimization-assisted BiLSTM +
    dropout deep learning model for short-term load forecasting. Neural Comput Applic 35:2679–
  51. https://doi.org/10.1007/s00521-022-07751-y
    [Crossref]
  52. Zhang X, Zhang X, Wu Z (2019) Spectrum allocation by wave based adaptive differential
    evolution algorithm. Ad Hoc Netw 94:101969
    [Crossref]
  53. Kumar R, Kumar P, Kumar Y (2022) Three stage fusion for effective time series forecasting
    using Bi-LSTM-ARIMA and improved DE-ABC algorithm. Neural Comput Applic 34:18421–
  54. https://doi.org/10.1007/s00521-022-07431-x
    [Crossref]
  55. Zhang X, Zhang X, Han L (2019) An energy efϐicient internet of things network using restart
    artiϐicial bee colony and wireless power transfer. IEEE Access 7:12686–12695
    [Crossref]
  56. Stephan P, Stephan T, Kannan R et al (2021) A hybrid artiϐicial bee colony with whale
    optimization algorithm for improved breast cancer diagnosis. Neural Comput Applic
    33:13667–13691. https://doi.org/10.1007/s00521-021-05997-6
    [Crossref]
  57. Alrosan A, Alomoush W, Norwawi N et al (2021) An improved artiϐicial bee colony algorithm
    based on mean best-guided approach for continuous optimization problems and real brain
    MRI images segmentation. Neural Comput Applic 33:1671–1697. https://doi.org/10.1007/
    s00521-020-05118-9
    [Crossref]
  58. Satoh T, Nishizawa S, Nagase J et al (2023) Artiϐicial bee colony algorithm-based design of
    discrete-time stable unknown input estimator. Inf Sci 634:621–649. https://doi.org/10.1016/
    j.ins.2023.03.130
    [Crossref]
    23.
    Luo H, He C, Zhou J, Zhang L (2021) Rolling bearing sub-health recognition via extreme
    learning machine based on deep belief network optimized by improved ϐireworks. IEEEAccess 9:42013–42026
    [Crossref]
  59. Han S, Zhu K, Zhou M et al (2022) A novel multiobjective ϐireworks algorithm and its
    applications to imbalanced distance minimization problems. IEEE/CAA J Automatica Sinica
    9(8):1476–1489
    [Crossref]
  60. Ma L, Cheng S, Shi Y (2021) Enhancing learning efϐiciency of brain storm optimization via
    orthogonal learning design. IEEE Trans Syst Man Cybern Syst 51(1):6723–6742
    [Crossref]
  61. Xue Y, Zhao Y, Slowik A (2021) Classiϐication based on brain storm optimization with feature
    selection. IEEE Access 9:16582–16590
  62. Duan H, Zhao J, Deng Y, Shi Y, Ding X (2021) Dynamic discrete pigeon-inspired optimization
    for multi-UAV cooperative search-attack mission planning. IEEE Trans Aerosp Electron Syst
    57(1):706–720

كلمة سر فك الضغط : books-world.net
The Unzip Password : books-world.net

تحميل

يجب عليك التسجيل في الموقع لكي تتمكن من التحميل

تسجيل | تسجيل الدخول