High Performance Control of Ac Drives With Matlab/Simulink Models
اسم المؤلف
Haitham Abu-Rub, Atif Iqbal, Jaroslaw Guzinski
التاريخ
المشاهدات
746
التقييم
(لا توجد تقييمات)
Loading...
التحميل

High Performance Control of Ac Drives With Matlab / Simulink Models
Haitham Abu-Rub
Texas A&M University at Qatar, Qatar
Atif Iqbal
Qatar University, Qatar and Aligarh Muslim University, India
Jaroslaw Guzinski
Gdansk University of Technology, Poland
Contents
Acknowledgment xiii
Biographies xv
Preface xvii
1 Introduction to High Performance Drives 1
1.1 Preliminary Remarks 1
1.2 General Overview of High Performance Drives 6
1.3 Challenges and Requirements for Electric Drives for Industrial
Applications 10
1.3.1 Power Quality and LC Resonance Suppression 11
1.3.2 Inverter Switching Frequency 12
1.3.3 Motor Side Challenges 12
1.3.4 High dv/dt and Wave Reflection 12
1.3.5 Use of Inverter Output Filters 13
1.4 Organization of the Book 13
References 16
2 Mathematical and Simulation Models of AC Machines 19
2.1 Preliminary Remarks 19
2.2 DC Motors 19
2.2.1 Separately Excited DC Motor Control 20
2.2.2 Series DC Motor Control 22
2.3 Squirrel Cage Induction Motor 25
2.3.1 Space Vector Representation 25
2.3.2 Clarke Transformation (ABC to ab) 26
2.3.3 Park Transformation (ab to dq) 29
2.3.4 Per Unit Model of Induction Motor 30
2.3.5 Double Fed Induction Generator (DFIG) 32
2.4 Mathematical Model of Permanent Magnet Synchronous Motor 35
2.4.1 Motor Model in dq Rotating Frame 36
2.4.2 Example of Motor Parameters for Simulation 38
2.4.3 PMSM Model in Per Unit System 38
2.4.4 PMSM Model in a–b (x–y)-Axis 40
2.5 Problems 42
References 423 Pulse Width Modulation of Power Electronic DC-AC Converter 45
3.1 Preliminary Remarks 45
3.2 Classification of PWM Schemes for Voltage Source Inverters 46
3.3 Pulse Width Modulated Inverters 46
3.3.1 Single-Phase Half-bridge Inverters 46
3.3.2 Single-Phase Full-bridge Inverters 54
3.4 Three-phase PWM Voltage Source Inverter 56
3.4.1 Carrier-based Sinusoidal PWM 64
3.4.2 Third-harmonic Injection Carrier-based PWM 67
3.4.3 Matlab/Simulink Model for Third Harmonic
Injection PWM 68
3.4.4 Carrier-based PWM with Offset Addition 69
3.4.5 Space Vector PWM 72
3.4.6 Discontinuous Space Vector PWM 77
3.4.7 Matlab/Simulink Model for Space Vector PWM 78
3.4.8 Space Vector PWM in Over-modulation Region 90
3.4.9 Matlab/Simulink Model to Implement Space Vector PWM in
Over-modulation Regions 96
3.4.10 Harmonic Analysis 96
3.4.11 Artificial Neural Network-based PWM 96
3.4.12 Matlab/Simulink Model of Implementing ANN-based SVPWM 100
3.5 Relationship between Carrier-based PWM and SVPWM 100
3.5.1 Modulating Signals and Space Vectors 102
3.5.2 Relationship between Line-to-line Voltages and Space Vectors 104
3.5.3 Modulating Signals and Space Vector Sectors 104
3.6 Multi-level Inverters 104
3.6.1 Diode Clamped Multi-level Inverters 106
3.6.2 Flying Capacitor Type Multi-level Inverter 109
3.6.3 Cascaded H-Bridge Multi-level Inverter 112
3.7 Impedance Source or Z-source Inverter 117
3.7.1 Circuit Analysis 120
3.7.2 Carrier-based Simple Boost PWM Control of a Z-source
Inverter 122
3.7.3 Carrier-based Maximum Boost PWM Control of a Z-source
Inverter 123
3.7.4 Matlab/Simulink Model of Z-source Inverter 124
3.8 Quasi Impedance Source or qZSI Inverter 127
3.8.1 Matlab/Simulink Model of qZ-source Inverter 129
3.9 Dead Time Effect in a Multi-phase Inverter 129
3.10 Summary 133
3.11 Problems 134
References 135
4 Field Oriented Control of AC Machines 139
4.1 Introduction 139
4.2 Induction Machines Control 140
viii Contents4.2.1 Control of Induction Motor using V/f Method 140
4.2.2 Vector Control of Induction Motor 143
4.2.3 Direct and Indirect Field Oriented Control 148
4.2.4 Rotor and Stator Flux Computation 149
4.2.5 Adaptive Flux Observers 150
4.2.6 Stator Flux Orientation 152
4.2.7 Field Weakening Control 152
4.3 Vector Control of Double Fed Induction Generator (DFIG) 153
4.3.1 Introduction 153
4.3.2 Vector Control of DFIG Connected with the Grid (ab Model) 155
4.3.3 Variables Transformation 156
4.3.4 Simulation Results 159
4.4 Control of Permanent Magnet Synchronous Machine 160
4.4.1 Introduction 160
4.4.2 Vector Control of PMSM in dq Axis 160
4.4.3 Vector Control of PMSM in a-b Axis using PI Controller 164
4.4.4 Scalar Control of PMSM 166
Exercises 168
Additional Tasks 168
Possible Tasks for DFIG 168
Questions 169
References 169
5 Direct Torque Control of AC Machines 171
5.1 Preliminary Remarks 171
5.2 Basic Concept and Principles of DTC 172
5.2.1 Basic Concept 172
5.2.2 Principle of DTC 173
5.3 DTC of Induction Motor with Ideal Constant Machine Model 179
5.3.1 Ideal Constant Parameter Model of Induction Motors 179
5.3.2 Direct Torque Control Scheme 182
5.3.3 Speed Control with DTC 184
5.3.4 Matlab/Simulink Simulation of Torque Control and Speed
Control with DTC 185
5.4 DTC of Induction Motor with Consideration of Iron Loss 199
5.4.1 Induction Machine Model with Iron Loss Consideration 199
5.4.2 Matlab/Simulink Simulation of the Effects of Iron
Losses in Torque Control and Speed Control 202
5.4.3 Modified Direct Torque Control Scheme for Iron Loss
Compensation 213
5.5 DTC of Induction Motor with Consideration of both Iron Losses and
Magnetic Saturation 217
5.5.1 Induction Machine Model with Consideration of Iron Losses
and Magnetic Saturation 217
5.5.2 Matlab/Simulink Simulation of Effects of both Iron Losses and
Magnetic Saturation in Torque Control and Speed Control 218
Contents ix5.6 Modified Direct Torque Control of Induction Machine with Constant
Switching Frequency 233
5.7 Direct Torque Control of Sinusoidal Permanent Magnet Synchronous
Motors (SPMSM) 233
5.7.1 Introduction 233
5.7.2 Mathematical Model of Sinusoidal PMSM 234
5.7.3 Direct Torque Control Scheme of PMSM 236
5.7.4 Matlab/Simulink Simulation of SPMSM with DTC 236
References 253
6 Non-Linear Control of Electrical Machines Using Non-Linear Feedback 255
6.1 Introduction 255
6.2 Dynamic System Linearization using Non-Linear Feedback 256
6.3 Non-Linear Control of Separately Excited DC Motors 258
6.3.1 Matlab/Simulink Non-Linear Control Model 258
6.3.2 Non-Linear Control Systems 259
6.3.3 Speed Controller 260
6.3.4 Controller for Variable m 261
6.3.5 Field Current Controller 262
6.3.6 Simulation Results 262
6.4 Multiscalar model (MM) of Induction Motor 262
6.4.1 Multiscalar Variables 262
6.4.2 Non-Linear Linearization of Induction Motor Fed by Voltage
Controlled VSI 264
6.4.3 Design of System Control 266
6.4.4 Non-Linear Linearization of Induction Motor Fed by Current
Controlled VSI 267
6.4.5 Stator Oriented Non-Linear Control System (based on Ys, is) 270
6.4.6 Rotor-Stator Fluxes-based Model 271
6.4.7 Stator Oriented Multiscalar Model 272
6.4.8 Multiscalar Control of Induction Motor 274
6.4.9 Induction Motor Model 275
6.4.10 State Transformations 275
6.4.11 Decoupled IM Model 277
6.5 MM of Double Fed Induction Machine (DFIM) 278
6.6 Non-Linear Control of Permanent Magnet Synchronous Machine 281
6.6.1 Non-Linear Control of PMSM for a dq Motor Model 283
6.6.2 Non-Linear Vector Control of PMSM in a-b Axis 285
6.6.3 PMSM Model in a-b (x-y) Axis 285
6.6.4 Transformations 285
6.6.5 Control System 288
6.6.6 Simulation Results 288
6.7 Problems 289
References 290
x Contents7 Five-Phase Induction Motor Drive System 293
7.1 Preliminary Remarks 293
7.2 Advantages and Applications of Multi-Phase Drives 294
7.3 Modeling and Simulation of a Five-Phase Induction Motor Drive 295
7.3.1 Five-Phase Induction Motor Model 295
7.3.2 Five-Phase Two-Level Voltage Source Inverter Model 304
7.3.3 PWM Schemes of a Five-Phase VSI 328
7.4 Indirect Rotor Field Oriented Control of Five-Phase Induction Motor 344
7.4.1 Matlab/Simulink Model of Field-Oriented Control of
Five-Phase Induction Machine 347
7.5 Field Oriented Control of Five-Phase Induction Motor with Current
Control in the Synchronous Reference Frame 348
7.6 Model Predictive Control (MPC) 352
7.6.1 MPC Applied to a Five-Phase Two-Level VSI 354
7.6.2 Matlab/Simulink of MPC for Five-Phase VSI 356
7.6.3 Using Eleven Vectors with g ¼ 0 356
7.6.4 Using Eleven Vectors with g ¼ 1 359
7.7 Summary 359
7.8 Problems 359
References 361
8 Sensorless Speed Control of AC Machines 365
8.1 Preliminary Remarks 365
8.2 Sensorless Control of Induction Motor 365
8.2.1 Speed Estimation using Open Loop Model and Slip
Computation 366
8.2.2 Closed Loop Observers 366
8.2.3 MRAS (Closed-loop) Speed Estimator 375
8.2.4 The Use of Power Measurements 378
8.3 Sensorless Control of PMSM 380
8.3.1 Control system of PMSM 382
8.3.2 Adaptive Backstepping Observer 383
8.3.3 Model Reference Adaptive System for PMSM 385
8.3.4 Simulation Results 388
8.4 MRAS-based Sensorless Control of Five-Phase Induction Motor Drive 388
8.4.1 MRAS-based Speed Estimator 389
8.4.2 Simulation Results 396
References 396
9 Selected Problems of Induction Motor Drives with Voltage Inverter
and Inverter Output Filters 401
9.1 Drives and Filters – Overview 401
9.2 Three-Phase to Two-Phase Transformations 403
9.3 Voltage and Current Common Mode Component 404
9.3.1 Matlab/Simulink Model of Induction Motor Drive with
PWM Inverter and Common Mode Voltage 405
Contents xi9.4 Induction Motor Common Mode Circuit 408
9.5 Bearing Current Types and Reduction Methods 410
9.5.1 Common Mode Choke 412
9.5.2 Common Mode Transformers 414
9.5.3 Common Mode Voltage Reduction by PWM Modifications 415
9.6 Inverter Output Filters 420
9.6.1 Selected Structures of Inverter Output Filters 420
9.6.2 Inverter Output Filters Design 425
9.6.3 Motor Choke 435
9.6.4 Matlab/Simulink Model of Induction Motor Drive with
PWM Inverter and Differential Mode (Normal Mode)
LC Filter 437
9.7 Estimation Problems in the Drive with Filters 440
9.7.1 Introduction 440
9.7.2 Speed Observer with Disturbances Model 442
9.7.3 Simple Observer based on Motor Stator Models 445
9.8 Motor Control Problems in the Drive with Filters 447
9.8.1 Introduction 447
9.8.2 Field Oriented Control 449
9.8.3 Non-Linear Field Oriented Control 453
9.8.4 Non-Linear Multiscalar Control 457
9.9 Predictive Current Control in the Drive System with Output Filter 461
9.9.1 Control System 461
9.9.2 Predictive Current Controller 464
9.9.3 EMF Estimation Technique 467
9.10 Problems 471
9.11 Questions 475
References 475
Index 479
Index
AC machines models, 19
Active power, 153
Adjacent line-to-line voltage, 311, 317
Artificial neural network, 5
Arbitrary common reference frame see machine
model, 298
Back EMF, see Electromotive force
Base values, 406
Bearing
capacitance, 408-409
circulating current, 411
current, 404, 410
calculation, 410
classification, 410–20
reduction, 410–11
types, see Bearing current classification
discharging current, 410
BLDC, 234–5
Butterworth filter, 206–207, 223
Cable parameters, 409
Choke
3 phase, 404
E shape, 404
toroidal, 404, 412–13, 422, 433
Clarke transformation, see transformation Clarke
Common mode
circuit, 408
component, 404, 415
filter, 402
inductance, 434
magnetic field density, 433
choke, 412–14, 423
design, 433
current, 409
path, 409
flux, 433
motor parameters, 410
reduction, 415
active zero voltage vector AZVC, AZVC-1,
AZVC-2, 418–20
three active vectors 3AVM, 418
transformer 414–15
equivalent circuit, 415
voltage, 11, 60, 307, 309, 405–406, 408,
415–20
reduction, 415
waveform, 406
Comparator
flux comparator, 183, 236, 240
torque comparator, 183, 236, 240–42
Compensation, 202, 211, 213–17
Computational, 233
Control problems, 447–61
Co-ordinate Transformation, see motor
model, 297
Cost function see Model Predictive
Control, 355
Current limit, 153
Damper winding, 235
DC motor, 19–24
separately excited, 20–22
analogy, 143–4
series excited, 22–4
DC link, 305, 307, 310, 316, 321, 332
Dead time, 307
dead band, 53
effect, 129
Direct torque control, 6, 8
Differential mode, see Sinusoidal filter
Double fed induction generator
autonomous generation system 153
base values, 34
control system, 158–9
Double fed induction generator (Continued)
grid connected system, 153–4
model, 32–5
vector control, 153–9
DSC direct self control, 253
DTC direct torque control, 173–6, 179, 182–5,
189, 191–7, 199–200, 202, 206, 209,
211–20, 227, 229–30, 233–4, 236–7,
243–4, 253–4
Dumping resistance, 414
dv/dt 401
effects, 401, 437
filters, 401, 411
Dwell time, see Space vector PWM, 75
Dynamic model, 179, 181, 199–200, 202,
209, 234
Electric drive system, 2, 5, 10
Electromotive force EMF, 23
estimation, 467
Estimation, 172, 182–4, 206, 213, 233,
237, 239,
Field oriented method 139, 145–6, 344, 347
direct, 148–9
with filter, 449–53
indirect, 148–9
stator oriented, 152
Field weakening control, 152–3
Five-phase, 293
five-phase drive system, 294
five-phase induction motor model, 295
five-phase inverter model, 307
five-phase supply, 327
five-phase VSI, 304, 307, 310, 326, 328
Fourier Series, 48, 316
Flux
adaptive observer, 150–51
air gap flux, 205–206, 234
estimation, 141–2, 149
rotor rotor flux, 173–6, 186, 233–4, 236, 253
stator stator flux, 172–9, 181–8, 191–4, 196,
198–9, 205–6, 208–9, 211, 213, 220, 222,
224, 228, 233, 236–7, 239–41, 243, 246,
249, 251–2
Flux vector acceleration, 254
Frequency modulation ratio, 49, 66
Gate drive signal, 307–8
High performance drive, 6, 9
Hysteresis band, 172–4, 177–9, 182, 233, 240,
242, 252
Impedance, 429–30, 473
base, 407
characteristic, 473–4
wave, 403, 415
Impedance Source or Z-Source inverter, 117
Induction motor, 172–4, 176, 179, 182–7, 191,
193–5, 199–203, 209–11, 214, 217–18,
220, 226, 229, 233
common mode model, 404–408
dq model, 144
five phase, 388–96
control, 388–96
parameters, 396
machine control, 139–53
per unit model, 30–32
scalar control, 139–40
sensorless control, 365–80
squirrel cage, 25, 139
stator resistance, 141
vector control, 143–9
Inverter output filter, 420
control, 447–61
design, 425–33
estimation, 440–47
structures, 420–25
Iron losses, 185, 202–203, 206, 209–20, 224,
226–32
LC filter, see Sinusoidal filter, 4
Leg/pole Voltage
five-phase, 307, 309–10
three-phase, 62
Load angle control, 461–4
Long cable connection, 401–402, 421, 465
Look-up table, 179, 187, 189, 243
Maximum torque production, 153
Magnetizing inductance, 180–81, 218–20, 225
Matlab, 182, 184–5, 191, 199, 202, 209, 218,
236, 243
Medium voltage drive, 10
Model reference adaptive system MRAS, see
Observer model reference adaptive system
Modulation index defination, 49, 51
Model predictive control, 352, 354
Model transformation, see Five-phase, 297
Motor torque, 297
480 IndexMulti-loop control, 448–9, 461
Multi-phase, 293–4
Multi-level inverters, 104, 326
cascaded H-bridge, 112
diode clamped, 106
flying capacitor, 109
Multiscalar control with filter, 457–61
Nonlinear field oriented method NFOC with
filter, 6, 453–6
Normal mode filter, see Sinusoidal filter
Non-adjacent line-to-line voltage, 311, 316–17
Observer, 9, 442–7
adaptive back stepping, 383–5
close loop, 366–75, 445–7
structure 1, 367–9
structure 2, 370–72
structure 3, 372–5
disturbance, see Observer speed
flux, see Observer close loop
Luenberger, 151
model reference adaptive system MRAS,
365, 375–8
five-phase induction motor, 388–9
observer 1 structure, 376–8
PMSM, 385–8
speed estimator, 389–96
simple, see Observer close loop
speed, 366, 442–5
Over-modulation, 90
over-modulation I, 91
over-modulation II, 94
Parasitic
capacitances, 402, 408
current, 408–409
Passive filter, 401–402, 411–12
Park transformation, 25, 29–30
Per unit system, 14, 38–9, 406
Permanent magnet synchronous motor, 160–68
back EMF observer, 380–82
control, 164–5, 382–3
scalar, 166–8
sensorless, 380–88
model, 35–6, 162
base values, 39
in ab coordinates, 40–41
in dq coordinates, 36–8
in per unit, 38–40
properties, 161
vector control, 160–61
Phase shifting network, 321
Phase variable model, see Five-phase induction
motor, 295
Phase voltage or phase-to-neutral voltage, 62,
307, 309
PI controller, see Proportional-integral
PI controller
Power calculation, 153, 158, 378, 380
Power measurement, see Power calculation
PMSM, 233–7, 239, 243–8, 250–52
Predictive control, 233
Predictive current control with filter, 461–71
Proportional-integral PI controller, 142–3, 145,
158–9, 303, 346–7, 375, 386, 391, 439,
456, 457, 461
cascaded, 163
Pulse width modulation PWM, 4, 326, 328
ANN based PWM, 96
carrier-based PWM, 64, 328, 332, 335
discontinuous PWM, 46, 77
fifth harmonic injection, 332–3, 337
offset addition, three-phase, 69, 71
five-phase, 336
space vector PWM three-phase, 72
five-phase, 294, 338, 342
sinusoidal PWM control, 294
synchronous and asynchronous, 51
third harmonic injection, 67
unipolar, bipolar, 55–6
modifications, 415–20
Quality factor, 429, 431, 434, 473–4
Quasi impedance source or qZSI inverter, 127
Reactive power, 153
Ripple
flux ripple, 191, 233
Torque ripple, 191, 196, 200, 211, 233
Ripple inductor current, 428, 472–4
Rotor flux estimation, 149
Saturation, 179, 184–5, 217–20, 224, 227–32
Sensorless speed control, 5, 9, 365
Sector, 172–3, 176–9, 183–5, 187–8, 236,
239–41
Simulation, 181–2, 184–5, 191, 193–4, 199–202,
206, 209, 214, 217–18, 220, 229–30, 233,
236–8, 243
Index 481Simulink, 182, 184–6, 189–91, 199, 202, 209,
218, 229, 236–7, 243
Sinusoidal filter, 401, 421–2, 425–7, 429
characteristics, 430
circuit, 430
design, 429–30
elements, see Sinusoidal filter design
model, 437, 439
Sinusoidal wave shape, 233
Six-step mode, 60
Space vector, 25
five-phase, 328
representations of AC machines, 143
three-phase, 72
Space Vector Modulation, 233
Speed control, 172–3, 182–5, 191, 193–7, 199, 202,
209, 211–12, 214, 216–8, 229–30, 243, 252
SPMSM, 233–7, 239, 243–8, 250–52
Stator current relationship, 157
Steady state equivalent circuit, see Five-phase
system, 300
SVPWM, 233
Switching combination 405
Switching Frequency
changing switching frequency, 233
constant switching frequency, 233
Switching table, 176, 178, 183, 185, 187, 236, 243
Ten step operation, see Five-phase system,
294, 310
Torque control, 171–6, 177–9, 181–2, 185, 193,
196, 199, 202, 206, 213–15, 218, 220,
227–9, 233, 236
Transformation
Clarke, 26–9, 145
matrix constant
magnitude, 403
power, 404
Park, 29–30
variables, 147, 156–7, 164
Trapezoidal wave shape, 234
Uniform cylindrical surface, 234
Variable speed drives, 235
Voltage source inverter, see three-phase, 56
five-phase, 304, 307, 310, 326, 328
Voltage space vector, 173–7, 182, 185, 187,
190, 233
Wind generation systems, 154
Zero sequence component, see Common
mode, 331

كلمة سر فك الضغط : books-world.net
The Unzip Password : books-world.net

تحميل

يجب عليك التسجيل في الموقع لكي تتمكن من التحميل

تسجيل | تسجيل الدخول