Handbook of Ion Beam Processing Technology
Principles, Deposition, Film Modification and Synthesis
Jerome J. Cuomo and Stephen M. Rossnagel
Ibm Thomas J. Watson Research Center
Yorktown Heights, New York
Harold R. Kaufman
Front Range Research
Fort Collins, Colorado and Commonwealth Scientific Corporation
Alexandria, Virginia
Contents
1. Perspective on Past, Present and Future Uses of Ion
Beam Technology 1
Jerome J. Cuomo, Stephen M. Rossnagel and Harold R. Kaufman
1.1 Introduction 1
1.2 Past Technology 2
1.3 Present Capabilities 2
1.3.1 Ion Beam Technology 2
1.3.2 Sputtering Phenomena 3
1.3.3 Film Deposition, Modification and Synthesis 3
1.4 Future Trends 4
1.5 References 5
Part I
Ion Beam Technology
2. Gridded Broad-beam Ion Sources 8
Harold R. Kaufman and Raymond S. Robinson
2.1 Introduction 8
2.2 General Description 9
2.3 Discharge Chamber 11
2.4 Ion Optics 13
2.5 Production Applications 16
2.6 Target Contamination 16
2.7 Concluding Remarks 19
2.8 References 20
3. Electron Cyclotron Resonance (Ecr) Ion Sources 21
William M. Holber
3.1 Introduction 21
3.2 Theory of Operation 22
3.3 Types of Sources and Characteristics 26
3.4 Etching 30
Xixii Contents
3.5 Deposition 33
3.6 References 36
4. Hall Effect Ion Sources 39
Raymond S. Robinson and Harold R. Kaufman
4.1 Introduction 39
4.2 End-hall Ion Source 40
4.2.1 Operation 40
4.2.2 Ion Acceleration 42
4.2.3 Beam Energy Distribution 43
4.2.4 Beam Current Density Profile 46
4.3 Closed Drift Ion Source 48
4.3.1 Operation 49
4.3.2 Ion Acceleration 50
4.3.3 Beam Energy Distribution 51
4.3.4 Beam Current Density Profile 53
4.4 Concluding Remarks 53
4.5 References 54
5. Ionized Cluster Beam (Icb) Deposition and Epitaxy 58
Isao Yamada and Toshinori Takagi
5.1 Introduction 58
5.2 Experiment 59
5.2.1 Principles of Icb Operation 59
5.3 Aspects of Film Deposition With Icb 64
5.3.1 Kinetic Energy Range of Icb and Effects of the Kinetic
Energy 67
5.3.2 Effects of the Ionic Charge 70
5.3.3 Film Deposition by Reactive Icb Techniques 70
5.3.4 Film Deposition by Simultaneous Use of Icb and
Microwave Ion Sources 72
5.4 Summary 74
5.5 References 75
Part Ii
Sputtering Phenomena
6. Quantitative Sputtering 78
Peer C. Zalm
6.1 Introduction 78
6.2 Total Sputter Yield Considerations 79
6.2.1 Polycrystalline and Amorphous Elemental Targets 79
6.2.2 Predictions From Linear Cascade Theory 81
6.2.3 Exceptions to Predictions From Linear Cascade Theory 82
6.2.4 Ion Effects: the Direct Knock-on Regime 83
6.2.5 Ion Effects: Due to I-iigh Fluence 84
6.2.6 Ion Effects: Reactive and Molecular Ions 84
6.2.7 Target Effects: Temperature 85
6.2.8 Target Effects: Single Crystal Targets 86
6.2.9 Target Effects: Multicomponent Materials 87contents Xiii
6.3 Differential Sputter Yield Considerations 87
6.3.1 Angular Distributions of Sputtered Particles 87
6.3.2 Energy Distributions of Sputtered Particles 89
6.4 Experimental Considerations for Sputter Yield Measurements 93
6.4.1 Ion Beam 93
6.4.2 Sputtering Target 95
6.4.3 Measurement Techniques 95
6.5 Total Sputter Yield Measurements 96
6.5.1 Mass Loss Techniques 96
6.5.2 Probe Techniques 97
6.5.3 Thickness Change Techniques 98
6.5.3.1 Masking Techniques 98
6.5.3.2 Optical Methods 100
6.5.3.3 Thin Film Interface Techniques 100
6.5.3.4 Other Techniques 100
6.6 Differential Yield Measurements: Angular and Energy
Distributions 101
6.6.1 Angular Distributions of Ejected Particles 101
6.6.2 Energy Distributions of Ejected Particles 102
6.6.3 Combined Angular- and Energy-resolved Measurements 104
6.7 Concluding Remarks 105
6.8 References 106
7. Laser-induced Fluorescence as a Tool for the Study
Of Ion Beam Sputtering 112
Wallis F. Calaway, Charles E. Young, Michael J. Pellin, and Dieter M.
Gruen
7.1 Introduction 112
7.2 Experimental Technique 113
7.3 Summary of Data 116
7.3.1 Sputtering Yields 116
7.3.2 Velocity Distributions 118
7.3.3 Oxide Coverage and Adsorbates 121
7.3.4 Sputtering of Alloys and Nonmetallic Compounds 123
7.4 Conclusion 124
7.5 References 125
8. Characterization of Atoms Desorbed From Surfaces
By Ion Bombardment Using Multiphoton Ionization
Detection 128
David L. Pappas, Nicholas Winograd and Fred M. Kimock
8.1 Introduction 128
8.2 Analytical Applications 129
8.3 Energy and Angle Measurements 134
8.4 Nonresonant Multiphoton Ionization 138
8.5 Conclusion 140
8.6 References 142
9. The Application of Postionization for Sputtering
Studies and Surface or Thin Film Analysis 145
Hans Oechsnerxiv Contents
9.1 Introduction 145
9.2 Postionization Techniques Using Penning Processes 146
9.3 Electron Gas Postionization in Low Pressure Plasmas 148
9.3.1 Investigations of the Sputtering Process by Plasma
Postionization 149
9.3.2 Electron Gas Postionization for Secondary Neutral
Mass Spectrometry Snms 156
9.4 Summary 164
9.5 References 165
Part Iii
Film Modification and Synthesis
10. The Modification of Films by Ion Bombardment 170
Eric Kay and Stephen M. Rossnagel
10.1 Introduction 170
10.2 Experimental Concerns for Bombardment-modification of
Films 171
10.3 Effects on Film Properties by Energetic Bombardment 175
10.3.1 Physical Effects 175
10.3.1.1 Grain Size 175
10.3.1.2 Orientation 175
10.3.1.3 Nucleation Density 176
10.3.1.4 Defects 176
10.3.1.5 Lattice Distortion 178
10.3.1.6 Surface Diffusion 179
10.3.1.7 Density 180
10.3.1.8 Epitaxial Temperature 181
10.3.1.9 Film Stress 181
10.3.1.10 Surface Topography 182
10.3.1.11 Implantation of Gas Atoms 184
10.3.1.12 Optical Properties 184
10.3.1.13 Resistivity 184
10.3.2 Chemical Effects 185
10.3.2.1 Stoichiometry 185
10.4 Reactive Film Deposition 187
10.4.1 Reactive Ion Beam Deposition 187
10.4.2 Reactive Deposition by Dual Ion Beam Synthesis: Ain 187
10.4.3 Reactive Ion Beam Assisted Evaporation: Cu-o
Compounds 188
10.4.4 Optical Films by Ion Beam Assisted Deposition 190
10.5 Summary 190
10.6 References 190
11. Control of Film Properties by Ion-assisted Deposition
Using Broad Beam Sources 194
Ronnen a. Roy and Dennis S. Vee
11.1 Introduction 194
11.2 Property Changes 194
11.2.1 Ion Energy Effects 194contents Xv
11.2.2 Temperature Effects 199
11.3 Film Structure Modification 201
11.3.1 Ion Energy Effects 201
11.3.2 Temperature Effects 202
11.3.3 Structure-property Relations 205
11.4 General Discussion of Ion Bombardment Mechanisms 210
11.4.1 Materials and Temperature Effects 213
11.4.2 Property Optimization 216
11.5 References 217
12. Etching With Directed Beams 219
Michael Geis, Stella W. Pang, Nicholas E. Efremow, George a. Lincoln,
Gerald D. Johnson and William D. Goodhue
12.1 Introduction 219
12.2 Ion Beam Assisted Etching 219
12.3 Etching Gaas 221
12.4 Etching Diamond 230
12.5 Hot Jet Etching 231
12.6 Etching Damag” 236
12.7 Summary 237
12.8 References 238
13. Film Growth Modification by Concurrent Ion
Bombardment: Theory and Simulation 241
Karl-heinz Muller
13.1 Introduction 241
13.2 Film Microstructure, the Role of Impact Mobility and
Substrate Temperature 242
13.2.1 Classification of Film Structure in Terms of Zones 242
13.2.2 the Henderson Model and Zone-1 Structure 242
13.2.3 Thermal Mobility and the Zone-1-zone-2 Transition 244
13.2.4 Origin of the Zone-2 Structure 245
13.3 Ion Bombardment Induced Structural Modifications During
Film Growth 247
13.3.1 the Thermal-spike Approach 247
13.3.2 the Collision-cascade Approach 249
13.3.2.1 Redeposition Mechanism 249
13.3.2.2 Densification Mechanism 249
13.3.2.3 Critical and Optimum Ion-to-atom Arrival
Rate Ratios 257
13.3.2.4 Film Orientation 259
13.3.3 the Molecular-dynamics Approach 260
13.3.3.1 Vapor Phase Growth 260
13.3.3.2 Vapor and Sputter Deposition 262
13.3.3.3 Ion-assisted Deposition 262
13.3.3.4 Intrinsic Stress Modification 267
13.3.3.5 Ion-beam Deposition 270
13.3.3.6 Ionized-cluster-beam Deposition 271
13.6 Conclusions 274
13.7 References 274xvi Contents
14. Interface Structure and Thin Film Adhesion 279
John Baglin
14.1 Introduction 279
14.2 Factors Affecting Adhesion 279
14.3 Ion Beam Techniques 281
14.4 Interface Stitching 283
14.4.1 Adhesion Enhancement 283
14.4.2 Examples of Stitching 287
14.4.3 Stitching Mechanisms 288
14.4.4 Contaminant Dispersion 289
14.4.5 Applicability of Stitching 291
14.5 Low Energy Ion Sputtering 291
14.5.1 Adhesion Enhancement 292
14.5.2 Adhesion Mechanism 292
14.6 Implantation and Adsorption 295
14.7 Ion Assisted Deposition 296
14.8 Summary 296
14.9 References 297
15. Modification of Thin Films by Off-normal Incidence
Ion Bombardment 300
R. Mark Bradley
15.1 Introduction 300
15.2 Modification of Crystal Structure by Off-normal Incidence
Ion Bombardment 300
15.2.1 Effect of Bombardment After Deposition 300
15.2.2 Effect of Bombardment During Deposition 301
15.3 Topography Changes Induced by Off-normal Incidence
Ion Bombardment 307
15.3.1 Overview 307
15.3.2 Ripple Topography Induced by Off-normal Incidence
Ion Bombardment 307
15.4 Summary 312
15.5 References 313
16. Ion Beam Interactions With Polymer Surfaces 315
Robert C. White and Paul S. Ho
16.1 Introduction 315
16.2 High and Medium Energy Ions 317
16.3 Sims Studies of Polymers 320
16.4 Xps Studies 326
16.5 Summary 336
16.6 References 336
17. Topography: Texturing Effects 338
Bruce a. Banks
17.1 Introduction 338
17.2 Ion Beam Sputter Texturing Processes and Effects 338
17.2.1 Natural Texturing 339
17.2.1.1 Chemically Pure Materials 339contents Xvii
17.2.2 Seed Texturing 346
17.2.2.1 Seed Materials 346
17.2.2.2 Diffusion Effects 348
17.2.2.3 Resulting Topographies 350
17.2.3 Shadow Masking 353
17.3 Textured Surface Properties 355
17.3.1 Mechanical 355
17.3.2 Electrical 357
17.3.3 Chemical 357
17.3.4 Optical 358
17.4 References 359
18. Methods and Techniques of Ion Beam Processes 362
Stephen M. Rossnagel
18.1 Introduction 362
18.2 Ion Beam Sputtering (Ibs) 362
18.2.1 Comparison to Rf Sputtering 365
18.3 Ion Beam Sputter Deposition 366
18.4 Ion Beam Assisted Deposition (Ibad) 368
18.5 Dual Ion Beam Sputtering (Dibs) 370
18.6 Ion Assisted Bombardment: Other Techniques 371
18.6.1 Ionized Cluster Beam 371
18.6.2 Hollow Cathode Magnetron Techniques 371
18.7 Summary 371
18.8 References 372
19. Ion-assisted Dielectric and Optical Coatings 373
Phil J. Martin and Roger P. Netterfield
19.1 Introduction 373
19.2 Microstructure of Thin Films 373
19.2.1 Microstructure and Optical Properties 376
19.3 Effects of Ion Bombardment on Film Properties 378
19.3.1 Microstructure 378
19.3.2 Adhesion and Stress 381
19.3.3 Compound Synthesis 382
19.3.4 Crystal Structure and Stoichiometry 382
19.3.5 Scattering 383
19.3.6 Optimum Parameters for Ion-assisted Film Deposition 384
19.3.7 Summary 387
19.4 Ion-assisted Techniques 387
19.4.1 Ion-assisted Deposition 387
19.4.2 Ion Plating 389
19.4.3 Sputtering 390
19.4.3.1 Ion Beam Sputtering (Ibs) 390
19.4.3.2 Magnetron Sputtering 390
19.4.4 Ionized Cluster Beam Deposition (Icb) 391
19.5 Optical Properties of Ion-assisted Films 392
19.5.1 Oxides 393
19.5.1.1 Silicon Dioxide 393
19.5.1.2 Aluminum Oxide 393xvi Ii Contents
19.5.1.3 Titanium Dioxide 395
19.5.1.4 Zirconium Dioxide 397
19.5.1.5 Cerium Dioxide 400
19.5.1.6 Tantalum Pentoxide 401
19.5.1.7 Vanadium Dioxide 402
19.5.2 Fluorides 404
19.5.3 Conducting Transparent Films 404
19.5.4 Nitrides 405
19.6 Conclusion 407
19.7 References 407
20. Diamond and Diamond-like Thin Films by Ion Beam
Techniques 415
Makoto Kitabatake and Kiyotaka Wasa
20.1 Introduction 415
20.2 Principle of Diamond Synthesis 416
20.2.1 Conventional Synthesis 416
20.2.2 Synthesis From the Gas Phase 419
20.3 Experimental Techniques 420
20.4 Diamond-like Films 422
20.4.1 Characterization 422
20.4.2 Discussion 425
20.4.3 Applications 427
20.5 Diamond Particles 429
20.5.1 Characterization 429
20.5.2 Discussion 432
20.6 Conclusion 433
20.7 References 433
Index
كلمة سر فك الضغط : books-world.net
The Unzip Password : books-world.net
تحميل
يجب عليك التسجيل في الموقع لكي تتمكن من التحميل
تسجيل | تسجيل الدخول