Fundamentals of Materials Science and Engineering

Fundamentals of Materials Science and Engineering
اسم المؤلف
William D. Callister, David G. Rethwisch
التاريخ
10 يوليو 2021
المشاهدات
التقييم
(لا توجد تقييمات)
Loading...

Fundamentals of Materials Science and Engineering
4th Edition
AN INTEGRATED APPROACH
William D. Callister, Jr.
Department of Metallurgical Engineering
The University of Utah
David G. Rethwisch
Department of Chemical and Biochemical Engineering
The University of Iowa
Contents
• xv
LIST OF SYMBOLS xxiii
1. Introduction 1
Learning Objectives 2
1.1 Historical Perspective 2
1.2 Materials Science and Engineering 2
1.3 Why Study Materials Science and
Engineering? 4
1.4 Classification of Materials 5
Materials of Importance—Carbonated
Beverage Containers 9
1.5 Advanced Materials 10
1.6 Modern Materials Needs 12
1.7 Processing/Structure/Properties/
Performance Correlations 13
Summary 15
References 16
Question 16
2. Atomic Structure and Interatomic
Bonding 17
Learning Objectives 18
2.1 Introduction 18
ATOMIC STRUCTURE 18
2.2 Fundamental Concepts 18
2.3 Electrons in Atoms 19
2.4 The Periodic Table 25
ATOMIC BONDING IN SOLIDS 26
2.5 Bonding Forces and Energies 26
2.6 Primary Interatomic Bonds 28
2.7 Secondary Bonding or van der Waals
Bonding 32
Materials of Importance—Water (Its
Volume Expansion Upon Freezing) 34
2.8 Molecules 35
Summary 35
Equation Summary 36
Processing/Structure/Properties/Performance
Summary 36
Important Terms and Concepts 37
References 37
Questions and Problems 37
Fundamentals of Engineering Questions and
Problems 39
3. Structures of Metals and Ceramics 40
Learning Objectives 41
3.1 Introduction 41
CRYSTAL STRUCTURES 42
3.2 Fundamental Concepts 42
3.3 Unit Cells 42
3.4 Metallic Crystal Structures 43
3.5 Density Computations—Metals 47
3.6 Ceramic Crystal Structures 48
3.7 Density Computations—Ceramics 54
3.8 Silicate Ceramics 55
3.9 Carbon 59
Materials of Importance—Carbon
Nanotubes 60
3.10 Polymorphism and Allotropy 61
3.11 Crystal Systems 61
Material of Importance—Tin (Its Allotropic
Transformation) 63
CRYSTALLOGRAPHIC POINTS, DIRECTIONS, AND
PLANES 64
3.12 Point Coordinates 64
3.13 Crystallographic Directions 66
3.14 Crystallographic Planes 72
3.15 Linear and Planar Densities 76
3.16 Close-Packed Crystal Structures 77
CRYSTALLINE AND NONCRYSTALLINE
MATERIALS 81
3.17 Single Crystals 81
3.18 Polycrystalline Materials 81
3.19 Anisotropy 81
3.20 X-Ray Diffraction: Determination of
Crystal Structures 83
3.21 Noncrystalline Solids 87
Summary 89
Equation Summary 91
Processing/Structure/Properties/Performance
Summary 92Important Terms and Concepts 93
References 94
Questions and Problems 94
Fundamentals of Engineering Questions and
Problems 101
4. Polymer Structures 102
Learning Objectives 103
4.1 Introduction 103
4.2 Hydrocarbon Molecules 103
4.3 Polymer Molecules 105
4.4 The Chemistry of Polymer Molecules 106
4.5 Molecular Weight 111
4.6 Molecular Shape 113
4.7 Molecular Structure 115
4.8 Molecular Configurations 116
4.9 Thermoplastic and Thermosetting
Polymers 120
4.10 Copolymers 121
4.11 Polymer Crystallinity 122
4.12 Polymer Crystals 125
Summary 128
Equation Summary 129
Processing/Structure/Properties/Performance
Summary 130
Important Terms and Concepts 130
References 131
Questions and Problems 131
Fundamentals of Engineering Questions and
Problems 133
5. Imperfections in Solids 134
Learning Objectives 135
5.1 Introduction 135
POINT DEFECTS 136
5.2 Point Defects in Metals 136
5.3 Point Defects in Ceramics 137
5.4 Impurities in Solids 140
5.5 Point Defects in Polymers 143
5.6 Specification of Composition 143
MISCELLANEOUS IMPERFECTIONS 147
5.7 Dislocations—Linear Defects 147
5.8 Interfacial Defects 150
5.9 Bulk or Volume Defects 153
5.10 Atomic Vibrations 153
MICROSCOPIC EXAMINATION 153
5.11 Basic Concepts of Microscopy 153
Materials of Importance—Catalysts (and
Surface Defects) 154
5.12 Microscopic Techniques 155
5.13 Grain Size Determination 159
Summary 161
Equation Summary 163
Processing/Structure/Properties/Performance
Summary 164
Important Terms and Concepts 165
References 165
Questions and Problems 165
Design Problems 169
Fundamentals of Engineering Questions and
Problems 169
6. Diffusion 170
Learning Objectives 171
6.1 Introduction 171
6.2 Diffusion Mechanisms 172
6.3 Steady-State Diffusion 173
6.4 Nonsteady-State Diffusion 175
6.5 Factors That Influence Diffusion 179
6.6 Diffusion in Semiconducting Materials 184
Material of Importance—Aluminum for
Integrated Circuit Interconnects 187
6.7 Other Diffusion Paths 188
6.8 Diffusion in Ionic and Polymeric
Materials 188
Summary 191
Equation Summary 192
Processing/Structure/Properties/Performance
Summary 193
Important Terms and Concepts 194
References 195
Questions and Problems 195
Design Problems 198
Fundamentals of Engineering Questions and
Problems 199
7. Mechanical Properties 200
Learning Objectives 201
7.1 Introduction 201
7.2 Concepts of Stress and Strain 202
ELASTIC DEFORMATION 205
7.3 Stress–Strain Behavior 205
7.4 Anelasticity 209
7.5 Elastic Properties of Materials 209
MECHANICAL BEHAVIOR—METALS 211
7.6 Tensile Properties 212
7.7 True Stress and Strain 219
7.8 Elastic Recovery After Plastic
Deformation 222
7.9 Compressive, Shear, and Torsional
Deformation 222
xvi • ContentsMECHANICAL BEHAVIOR—CERAMICS 223
7.10 Flexural Strength 223
7.11 Elastic Behavior 224
7.12 Influence of Porosity on the Mechanical
Properties of Ceramics 224
MECHANICAL BEHAVIOR—POLYMERS 226
7.13 Stress–Strain Behavior 226
7.14 Macroscopic Deformation 228
7.15 Viscoelastic Deformation 229
HARDNESS AND OTHER MECHANICAL PROPERTY
CONSIDERATIONS 233
7.16 Hardness 233
7.17 Hardness of Ceramic Materials 238
7.18 Tear Strength and Hardness of
Polymers 239
PROPERTY VARIABILITY AND DESIGN/SAFETY
FACTORS 239
7.19 Variability of Material Properties 239
7.20 Design/Safety Factors 242
Summary 243
Equation Summary 246
Processing/Structure/Properties/Performance
Summary 248
Important Terms and Concepts 249
References 250
Questions and Problems 250
Design Problems 258
Fundamentals of Engineering Questions and
Problems 259
8. Deformation and Strengthening
Mechanisms 260
Learning Objectives 261
8.1 Introduction 261
DEFORMATION MECHANISMS FOR
METALS 261
8.2 Historical 262
8.3 Basic Concepts of Dislocations 262
8.4 Characteristics of Dislocations 264
8.5 Slip Systems 265
8.6 Slip in Single Crystals 267
8.7 Plastic Deformation of Polycrystalline
Metals 270
8.8 Deformation by Twinning 272
MECHANISMS OF STRENGTHENING IN
METALS 273
8.9 Strengthening by Grain Size Reduction 273
8.10 Solid-Solution Strengthening 275
8.11 Strain Hardening 276
RECOVERY, RECRYSTALLIZATION, AND GRAIN
GROWTH 279
8.12 Recovery 279
8.13 Recrystallization 280
8.14 Grain Growth 284
DEFORMATION MECHANISMS FOR CERAMIC
MATERIALS 285
8.15 Crystalline Ceramics 285
8.16 Noncrystalline Ceramics 286
MECHANISMS OF DEFORMATION AND FOR
STRENGTHENING OF POLYMERS 287
8.17 Deformation of Semicrystalline Polymers 287
8.18 Factors That Influence the Mechanical
Properties of Semicrystalline
Polymers 290
Materials of Importance—Shrink-Wrap
Polymer Films 292
8.19 Deformation of Elastomers 293
Summary 295
Equation Summary 298
Processing/Structure/Properties/Performance
Summary 299
Important Terms and Concepts 302
References 302
Questions and Problems 302
Design Problems 307
Fundamentals of Engineering Questions and
Problems 307
9. Failure 308
Learning Objectives 309
9.1 Introduction 309
FRACTURE 310
9.2 Fundamentals of Fracture 310
9.3 Ductile Fracture 310
9.4 Brittle Fracture 312
9.5 Principles of Fracture Mechanics 314
9.6 Brittle Fracture of Ceramics 322
9.7 Fracture of Polymers 326
9.8 Fracture Toughness Testing 328
FATIGUE 332
9.9 Cyclic Stresses 333
9.10 The S-N Curve 334
9.11 Fatigue in Polymeric Materials 337
9.12 Crack Initiation and Propagation 337
9.13 Factors That Affect Fatigue Life 339
9.14 Environmental Effects 341
CREEP 342
9.15 Generalized Creep Behavior 343
Contents • xvii9.16 Stress and Temperature Effects 344
9.17 Data Extrapolation Methods 346
9.18 Alloys for High-Temperature Use 347
9.19 Creep in Ceramic and Polymeric
Materials 347
Summary 348
Equation Summary 351
Important Terms and Concepts 352
References 352
Questions and Problems 352
Design Problems 357
Fundamentals of Engineering Questions and
Problems 357
10. Phase Diagrams 359
Learning Objectives 360
10.1 Introduction 360
DEFINITIONS AND BASIC CONCEPTS 360
10.2 Solubility Limit 361
10.3 Phases 362
10.4 Microstructure 362
10.5 Phase Equilibria 362
10.6 One-Component (or Unary) Phase
Diagrams 363
BINARY PHASE DIAGRAMS 365
10.7 Binary Isomorphous Systems 365
10.8 Interpretation of Phase Diagrams 367
10.9 Development of Microstructure in
Isomorphous Alloys 371
10.10 Mechanical Properties of Isomorphous
Alloys 374
10.11 Binary Eutectic Systems 374
10.12 Development of Microstructure in
Eutectic Alloys 380
Materials of Importance—Lead-Free
Solders 381
10.13 Equilibrium Diagrams Having Intermediate
Phases or Compounds 387
10.14 Eutectoid and Peritectic Reactions 390
10.15 Congruent Phase Transformations 391
10.16 Ceramic Phase Diagrams 391
10.17 Ternary Phase Diagrams 395
10.18 The Gibbs Phase Rule 396
THE IRON–CARBON SYSTEM 398
10.19 The Iron–Iron Carbide (Fe–Fe3C) Phase
Diagram 398
10.20 Development of Microstructure in
Iron–Carbon Alloys 401
10.21 The Influence of Other Alloying
Elements 408
Summary 409
Equation Summary 411
Processing/Structure/Properties/Performance
Summary 412
Important Terms and Concepts 412
References 414
Questions and Problems 414
Fundamentals of Engineering Questions and
Problems 420
11. Phase Transformations 421
Learning Objectives 422
11.1 Introduction 422
PHASE TRANSFORMATIONS IN METALS 422
11.2 Basic Concepts 423
11.3 The Kinetics of Phase Transformations 423
11.4 Metastable Versus Equilibrium
States 433
MICROSTRUCTURAL AND PROPERTY CHANGES IN
IRON–CARBON ALLOYS 434
11.5 Isothermal Transformation Diagrams 434
11.6 Continuous-Cooling Transformation
Diagrams 445
11.7 Mechanical Behavior of Iron–Carbon
Alloys 448
11.8 Tempered Martensite 452
11.9 Review of Phase Transformations and
Mechanical Properties for Iron–Carbon
Alloys 455
Materials of Importance—Shape-Memory
Alloys 456
PRECIPITATION HARDENING 459
11.10 Heat Treatments 459
11.11 Mechanism of Hardening 461
11.12 Miscellaneous Considerations 464
CRYSTALLIZATION, MELTING, AND GLASS
TRANSITION PHENOMENA IN POLYMERS 464
11.13 Crystallization 464
11.14 Melting 465
11.15 The Glass Transition 466
11.16 Melting and Glass Transition
Temperatures 466
11.17 Factors That Influence Melting and Glass
Transition Temperatures 467
Summary 469
Equation Summary 472
Processing/Structure/Properties/Performance
Summary 473
Important Terms and Concepts 475
References 475
Questions and Problems 476
xviii • ContentsDesign Problems 480
Fundamentals of Engineering Questions and
Problems 481
12. Electrical Properties 483
Learning Objectives 484
12.1 Introduction 484
ELECTRICAL CONDUCTION 484
12.2 Ohm’s Law 484
12.3 Electrical Conductivity 485
12.4 Electronic and Ionic Conduction 486
12.5 Energy Band Structures in Solids 486
12.6 Conduction in Terms of Band and Atomic
Bonding Models 488
12.7 Electron Mobility 490
12.8 Electrical Resistivity of Metals 491
12.9 Electrical Characteristics of Commercial
Alloys 494
Materials of Importance—Aluminum
Electrical Wires 494
SEMICONDUCTIVITY 496
12.10 Intrinsic Semiconduction 496
12.11 Extrinsic Semiconduction 499
12.12 The Temperature Dependence of Carrier
Concentration 502
12.13 Factors That Affect Carrier Mobility 503
12.14 The Hall Effect 507
12.15 Semiconductor Devices 509
ELECTRICAL CONDUCTION IN IONIC CERAMICS
AND IN POLYMERS 515
12.16 Conduction in Ionic Materials 516
12.17 Electrical Properties of Polymers 516
DIELECTRIC BEHAVIOR 517
12.18 Capacitance 517
12.19 Field Vectors and Polarization 519
12.20 Types of Polarization 522
12.21 Frequency Dependence of the Dielectric
Constant 524
12.22 Dielectric Strength 525
12.23 Dielectric Materials 525
OTHER ELECTRICAL CHARACTERISTICS OF
MATERIALS 525
12.24 Ferroelectricity 525
12.25 Piezoelectricity 526
Summary 527
Equation Summary 530
Processing/Structure/Properties/Performance
Summary 531
Important Terms and Concepts 535
References 535
Questions and Problems 535
Design Problems 539
Fundamentals of Engineering Questions and
Problems 540
13. Types and Applications of
Materials 542
Learning Objectives 543
13.1 Introduction 543
TYPES OF METAL ALLOYS 543
13.2 Ferrous Alloys 543
13.3 Nonferrous Alloys 556
Materials of Importance—Metal Alloys
Used for Euro Coins 565
TYPES OF CERAMICS 566
13.4 Glasses 567
13.5 Glass-Ceramics 567
13.6 Clay Products 569
13.7 Refractories 569
13.8 Abrasives 571
13.9 Cements 571
13.10 Advanced Ceramics 573
Materials of Importance—Piezoelectric
Ceramics 575
13.11 Diamond and Graphite 576
TYPES OF POLYMERS 577
13.12 Plastics 577
Materials of Importance—Phenolic Billiard
Balls 580
13.13 Elastomers 580
13.14 Fibers 582
13.15 Miscellaneous Applications 583
13.16 Advanced Polymeric Materials 584
Summary 588
Processing/Structure/Properties/Performance
Summary 590
Important Terms and Concepts 592
References 592
Questions and Problems 592
Design Questions 593
Fundamentals of Engineering Questions and
Problems 594
14. Synthesis, Fabrication, and Processing
of Materials 595
Learning Objectives 596
14.1 Introduction 596
FABRICATION OF METALS 596
Contents • xix14.2 Forming Operations 597
14.3 Casting 598
14.4 Miscellaneous Techniques 600
THERMAL PROCESSING OF METALS 601
14.5 Annealing Processes 601
14.6 Heat Treatment of Steels 604
FABRICATION OF CERAMIC MATERIALS 613
14.7 Fabrication and Processing of Glasses and
Glass-Ceramics 615
14.8 Fabrication and Processing of Clay
Products 620
14.9 Powder Pressing 624
14.10 Tape Casting 626
SYNTHESIS AND FABRICATION OF
POLYMERS 627
14.11 Polymerization 627
14.12 Polymer Additives 630
14.13 Forming Techniques for Plastics 631
14.14 Fabrication of Elastomers 634
14.15 Fabrication of Fibers and Films 634
Summary 635
Processing/Structure/Properties/Performance
Summary 637
Important Terms and Concepts 641
References 642
Questions and Problems 642
Design Problems 644
Fundamentals of Engineering Questions and
Problems 645
15. Composites 646
Learning Objectives 647
15.1 Introduction 647
PARTICLE-REINFORCED COMPOSITES 649
15.2 Large-Particle Composites 649
15.3 Dispersion-Strengthened
Composites 653
FIBER-REINFORCED COMPOSITES 653
15.4 Influence of Fiber Length 654
15.5 Influence of Fiber Orientation and
Concentration 655
15.6 The Fiber Phase 663
15.7 The Matrix Phase 665
15.8 Polymer-Matrix Composites 665
15.9 Metal-Matrix Composites 671
15.10 Ceramic-Matrix Composites 672
15.11 Carbon–Carbon Composites 674
15.12 Hybrid Composites 674
15.13 Processing of Fiber-Reinforced
Composites 675
STRUCTURAL COMPOSITES 677
15.14 Laminar Composites 677
15.15 Sandwich Panels 678
Materials of Importance—Nanocomposite
Barrier Coatings 679
Summary 681
Equation Summary 683
Important Terms and Concepts 684
References 684
Questions and Problems 684
Design Problems 687
Fundamentals of Engineering Questions and
Problems 688
16. Corrosion and Degradation of
Materials 689
Learning Objectives 690
16.1 Introduction 690
CORROSION OF METALS 691
16.2 Electrochemical Considerations 691
16.3 Corrosion Rates 697
16.4 Prediction of Corrosion Rates 699
16.5 Passivity 705
16.6 Environmental Effects 706
16.7 Forms of Corrosion 707
16.8 Corrosion Environments 714
16.9 Corrosion Prevention 715
16.10 Oxidation 717
CORROSION OF CERAMIC MATERIALS 720
DEGRADATION OF POLYMERS 720
16.11 Swelling and Dissolution 720
16.12 Bond Rupture 722
16.13 Weathering 724
Summary 724
Equation Summary 726
Important Terms and Concepts 728
References 728
Questions and Problems 728
Design Problems 731
Fundamentals of Engineering Questions and
Problems 732
17. Thermal Properties 733
Learning Objectives 734
17.1 Introduction 734
17.2 Heat Capacity 734
17.3 Thermal Expansion 738
xx • ContentsMaterials of Importance—Invar and Other
Low-Expansion Alloys 740
17.4 Thermal Conductivity 741
17.5 Thermal Stresses 744
Summary 746
Equation Summary 747
Important Terms and Concepts 748
References 748
Questions and Problems 748
Design Problems 750
Fundamentals of Engineering Questions and
Problems 750
18. Magnetic Properties 751
Learning Objectives 752
18.1 Introduction 752
18.2 Basic Concepts 752
18.3 Diamagnetism and Paramagnetism 756
18.4 Ferromagnetism 758
18.5 Antiferromagnetism and Ferrimagnetism 759
18.6 The Influence of Temperature on Magnetic
Behavior 763
18.7 Domains and Hysteresis 764
18.8 Magnetic Anisotropy 767
18.9 Soft Magnetic Materials 768
Materials of Importance—An Iron–Silicon
Alloy That Is Used in Transformer
Cores 769
18.10 Hard Magnetic Materials 770
18.11 Magnetic Storage 773
18.12 Superconductivity 776
Summary 779
Equation Summary 781
Important Terms and Concepts 782
References 782
Questions and Problems 782
Design Problems 785
Fundamentals of Engineering Questions and
Problems 785
19. Optical Properties 786
Learning Objectives 787
19.1 Introduction 787
BASIC CONCEPTS 787
19.2 Electromagnetic Radiation 787
19.3 Light Interactions With Solids 789
19.4 Atomic and Electronic Interactions 790
OPTICAL PROPERTIES OF METALS 791
OPTICAL PROPERTIES OF NONMETALS 792
19.5 Refraction 792
19.6 Reflection 794
19.7 Absorption 794
19.8 Transmission 798
19.9 Color 798
19.10 Opacity and Translucency in
Insulators 800
APPLICATIONS OF OPTICAL PHENOMENA 801
19.11 Luminescence 801
19.12 Photoconductivity 801
Materials of Importance—Light-Emitting
Diodes 802
19.13 Lasers 804
19.14 Optical Fibers in Communications 808
Summary 810
Equation Summary 812
Important Terms and Concepts 813
References 813
Questions and Problems 814
Design Problem 815
Fundamentals of Engineering Questions and
Problems 815
20. Economic, Environmental, and
Societal Issues in Materials Science
and Engineering 816
Learning Objectives 817
20.1 Introduction 817
ECONOMIC CONSIDERATIONS 817
20.2 Component Design 818
20.3 Materials 818
20.4 Manufacturing Techniques 818
ENVIRONMENTAL AND SOCIETAL
CONSIDERATIONS 819
20.5 Recycling Issues in Materials Science and
Engineering 821
Materials of Importance—Biodegradable
and Biorenewable Polymers/Plastics 824
Summary 826
References 827
Design Questions 827
Appendix A The International System of
Units (SI) 828
Appendix B Properties of Selected
Engineering Materials 830
B.1 Density 830
B.2 Modulus of Elasticity 833
B.3 Poisson’s Ratio 837
B.4 Strength and Ductility 838
Contents • xxiB.5 Plane Strain Fracture Toughness 843
B.6 Linear Coefficient of Thermal Expansion 845
B.7 Thermal Conductivity 848
B.8 Specific Heat 851
B.9 Electrical Resistivity 854
B.10 Metal Alloy Compositions 857
Appendix C Costs and Relative Costs for
Selected Engineering Materials 859
Appendix D Repeat Unit Structures for
Common Polymers 864
xxii • Contents
Appendix E Glass Transition and Melting
Temperatures for Common Polymeric
Materials 868
Mechanical Engineering Online
Support Module
Library of Case Studies
Glossary 869
Answers to Selected Problems 882
Index 886• xxiii
The number of the section in which a symbol is introduced or explained is given in
parentheses.
List of Symbols
A area
Å angstrom unit
Ai atomic weight of element i (2.2)
APF atomic packing factor (3.4)
a lattice parameter: unit cell x-axial
length (3.4)
a crack length of a surface crack (9.5)
at% atom percent (5.6)
B magnetic flux density (induction) (18.2)
B
r magnetic remanence (18.7)
BCC body-centered cubic crystal structure (3.4)
b lattice parameter: unit cell y-axial
length (3.11)
b Burgers vector (5.7)
C capacitance (12.18)
Ci concentration (composition) of
component i in wt% (5.6)
Ci concentration (composition) of
component i in at% (5.6)
C , Cp heat capacity at constant volume,
pressure (17.2)
CPR corrosion penetration rate (16.3)
CVN Charpy V-notch (9.8)
%CW percent cold work (8.11)
c lattice parameter: unit cell z-axial
length (3.11)
c , cp specific heat at constant volume,
pressure (17.2)
D diffusion coefficient (6.3)
D dielectric displacement (12.19)
DP degree of polymerization (4.5)
d diameter
d average grain diameter (8.9)
dhkl interplanar spacing for planes of Miller
indices h, k, and l (3.20)
E energy (2.5)
E modulus of elasticity or Young’s
modulus (7.3)
y
y
e electric field intensity (12.3)
Ef
Fermi energy (12.5)
Eg
band gap energy (12.6)
E
r(t) relaxation modulus (7.15)
%EL ductility, in percent
elongation (7.6)
e electric charge per
electron (12.7)
e electron (16.2)
erf Gaussian error function (6.4)
exp e, the base for natural
logarithms
F force, interatomic or mechanical
(2.5, 7.2)
f Faraday constant (16.2)
FCC face-centered cubic crystal
structure (3.4)
G shear modulus (7.3)
H magnetic field strength (18.2)
Hc
magnetic coercivity (18.7)
HB Brinell hardness (7.16)
HCP hexagonal close-packed crystal
structure (3.4)
HK Knoop hardness (7.16)
HRB, HRF Rockwell hardness: B and F
scales (7.16)
HR15N, HR45W superficial Rockwell hardness:
15N and 45W scales (7.16)
HV Vickers hardness (7.16)
h Planck’s constant (19.2)
(hkl) Miller indices for a
crystallographic plane (3.14)
I electric current (12.2)
I intensity of electromagnetic
radiation (19.3)
i current density (16.3)
iC corrosion current
density (16.4)J diffusion flux (6.3)
J electric current density (12.3)
Kc
fracture toughness (9.5)
KIc plane strain fracture toughness for
mode I crack surface displacement (9.5)
k Boltzmann’s constant (5.2)
k thermal conductivity (17.4)
l length
l
c critical fiber length (15.4)
ln natural logarithm
log logarithm taken to base 10
M magnetization (18.2)
polymer number-average molecular
weight (4.5)
polymer weight-average molecular
weight (4.5)
mol% mole percent
N number of fatigue cycles (9.10)
NA Avogadro’s number (3.5)
Nf
fatigue life (9.10)
n principal quantum number (2.3)
n number of atoms per unit cell (3.5)
n strain-hardening exponent (7.7)
n number of electrons in an
electrochemical reaction (16.2)
n number of conducting electrons per
cubic meter (12.7)
n index of refraction (19.5)
n for ceramics, the number of formula
units per unit cell (3.7)
ni intrinsic carrier (electron and hole)
concentration (12.10)
P dielectric polarization (12.19)
P–B ratio Pilling–Bedworth ratio (16.10)
p number of holes per cubic meter (12.10)
Q activation energy
Q magnitude of charge stored (12.18)
R atomic radius (3.4)
R gas constant
%RA ductility, in percent reduction in
area (7.6)
r interatomic distance (2.5)
r reaction rate (16.3)
rA, rC anion and cation ionic radii (3.6)
S fatigue stress amplitude (9.10)
SEM scanning electron microscopy
or microscope
T temperature
Tc
Curie temperature (18.6)
TC superconducting critical temperature
(18.12)
Tg
glass transition temperature (11.15)
Tm
melting temperature
TEM transmission electron microscopy
or microscope
M
w
Mn

TS tensile strength (7.6)
t time
t
r rupture lifetime (9.15)
Ur
modulus of resilience (7.6)
[uw] indices for a crystallographic
direction (3.13)
V electrical potential difference
(voltage) (12.2)
VC unit cell volume (3.4)
VC corrosion potential (16.4)
VH Hall voltage (12.14)
Vi volume fraction of phase i (10.8)
velocity
vol% volume percent
Wi mass fraction of phase i (10.8)
wt% weight percent (5.6)
x length
x space coordinate
Y dimensionless parameter or function in
fracture toughness expression (9.5)
y space coordinate
z space coordinate
lattice parameter: unit cell y–z interaxial
angle (3.11)
, ,  phase designations
l linear coefficient of thermal
expansion (17.3)
 lattice parameter: unit cell x–z interaxial
angle (3.11)
 lattice parameter: unit cell x–y interaxial
angle (3.11)
 shear strain (7.2)
 precedes the symbol of a parameter to
denote finite change
 engineering strain (7.2)
 dielectric permittivity (12.18)

r dielectric constant or relative
permittivity (12.18)
.s
steady-state creep rate (9.16)
T true strain (7.7)
 viscosity (8.16)
 overvoltage (16.4)
 Bragg diffraction angle (3.20)
D Debye temperature (17.2)
 wavelength of electromagnetic radiation
(3.20)
magnetic permeability (18.2)
B Bohr magneton (18.2)
r relative magnetic permeability (18.2)
e electron mobility (12.7)
h hole mobility (12.10)
 Poisson’s ratio (7.5)
 frequency of electromagnetic
radiation (19.2)
density (3.5)
y
xxiv • List of Symbols electrical resistivity (12.2)
t radius of curvature at the tip of a crack (9.5)
engineering stress, tensile or compressive (7.2)
electrical conductivity (12.3)
* longitudinal strength (composite) (15.5)
c
critical stress for crack propagation (9.5)
fs flexural strength (7.10)
m
maximum stress (9.5)
m
mean stress (9.9)

m stress in matrix at composite failure (15.5)
T true stress (7.7)

w safe or working stress (7.20)
y
yield strength (7.6)
shear stress (7.2)
c fiber–matrix bond strength/matrix shear
yield strength (15.4)
crss critical resolved shear stress (8.6)
m magnetic susceptibility (18.2)
Subscripts
c composite
cd discontinuous fibrous composite
cl longitudinal direction (aligned fibrous
composite)
ct transverse direction (aligned fibrous
composite)
f final
f at fracture
f fiber
i instantaneous
m matrix
m, max maximum
min minimum
0 original
0 at equilibrium
0 in a vacuum
886 •
Index
A
Abrasive ceramics, 566, 571
Abrasives, 869
Absorption coefficient, 797
Absorption of light:
in metals, 791–792
in nonmetals, 792–800
Absorptivity, 790
ABS polymer, 578
A
mBnXp crystal structures, 57
Acceptors, 500, 869
Acetic acid, 106
Acetylene, 104
Acid rain, as corrosion
environment, 714
Acids (organic), 106
Acid slags, 570
Acrylics, see Poly(methyl
methacrylate)
Acrylonitrile, see Polyacrylonitrile
(PAN)
Acrylonitrile-butadiene rubber,
581
Acrylonitrile-butadiene-styrene
(ABS), 578
Activation energy, 869
for creep, 345
for diffusion, 180, 426
free, 425, 429
for viscous flow, 643
Activation polarization,
699–701, 869
Actuator, 11, 573
Addition polymerization,
627–628, 869
Additives, polymer, 630–631
Adhesives, 583–584, 869
Adhesive tape, 17
Adipic acid (structure), 630
Adsorption, 154
Advanced ceramics, 566, 573–576
Advanced materials, 10–12
Advanced polymers, 584–588
Age hardening, see Precipitation
hardening
Air, as quenching medium, 609
AISI/SAE steel designation
scheme, 547
Akermanite, 61
Alcohols, 106
Aldehydes, 106
Alkali metals, 25
Alkaline earth metals, 25
Allotropic transformation (tin), 67
Allotropy, 65, 869
Alloys, 5, 869. See also Solid
solutions; specific alloys
atomic weight equations, 145
cast, 556
composition specification,
143–144
compositions for various,
857–858
costs, 859–861
defined, 140
density equations, 145
density values, 830–832
ductility values, 838–841
electrical resistivity values,
854–855
fracture toughness values, 319,
843–844
heat treatable, 556
high-temperature, 347
linear coefficient of thermal
expansion values, 845–846
low expansion, 740
modulus of elasticity values,
833–835
Poisson’s ratio values, 837
specific heat values, 851–852
strengthening, see Strengthening
of metals
tensile strength values, 838–841
thermal conductivity values,
848–849
wrought, 556
yield strength values, 838–841
Alloy steels, 442, 544, 869
See also Steels
Alnico, 771
-Iron, see Ferrite ()
Alternating copolymers, 121,
122, 869
Alumina, see Aluminum oxide
Aluminosilicates, 620
Aluminum:
atomic radius and crystal
structure, 47
bonding energy and melting
temperature, 30
elastic and shear moduli, 206
electrical conductivity, 491
electrical wires, 494–496
for integrated circuit
interconnects, 187–188
Poisson’s ratio, 206
recrystallization temperature, 283
slip systems, 266
superconducting critical
temperature, 778
thermal properties, 737
yield and tensile strengths,
ductility, 217
Aluminum alloys, 558–559
fatigue behavior, 355
plane strain fracture toughness,
319, 843
precipitation hardening, 461–463
properties and applications, 559
Aluminum-copper alloys, phase
diagram, 462
Aluminum-lithium alloys, 558, 559
Aluminum oxide:
electrical conductivity, 515
flexural strength, 217, 841
Page numbers in italics refer to the glossary.Aluminum oxide (Continued)
hardness, 239
index of refraction, 793
modulus of elasticity, 206, 835
plane strain fracture toughness,
319, 844
Poisson’s ratio, 206, 838
sintered microstructure, 626
stress-strain behavior, 225
thermal properties, 737
translucency, 4, 800
as whiskers and fibers, 664
Aluminum oxide-chromium oxide
phase diagram, 392
Ammonia, bonding energy and
melting temperature, 30
Amorphous materials, 46,
91–92, 869
Anelasticity, 209, 869
Angle computation between two
crystallographic directions,
269
Anions, 53, 869
Anisotropy, 85–86, 869
of elastic modulus, 86, 210
magnetic, 767–769
Annealing, 601, 602–604, 869
ferrous alloys, 602–604
glass, 618
Annealing point, glass, 618, 869
Annealing twins, 152
Anodes, 691, 869
area effect, galvanic corrosion, 707
sacrificial, 716, 878
Antiferromagnetism, 759, 869
temperature dependence, 763
Aramid:
cost as a fiber, 863
fiber-reinforced polymer-matrix
composites, 667–668
melting and glass transition
temperatures, 868
properties as fiber, 664
repeat unit structure, 667, 866
Argon, bonding energy and melting temperature, 30
Aromatic hydrocarbons (chain
groups), 106, 467
Arrhenius equation, 431
Artificial aging, 464, 869
Asphaltic concrete, 651
ASTM standards, 202
Atactic configuration, 118, 869
Athermal transformation, 441, 869
Atomic bonding, see Bonding
Atomic mass, 18
Atomic mass unit (amu), 19, 869
Atomic models:
Bohr, 19–20, 21, 870
wave-mechanical, 20, 21, 880
Atomic number, 18, 869
Atomic packing factor, 48, 869
Atomic point defects, 135–136,
137–139
Atomic radii, of selected metals, 47
Atomic structure, 18–26
Atomic vibrations, 153, 735, 869
Atomic weight, 19, 869
metal alloys, equations for, 145
Atom percent, 144, 869
Austenite, 398, 869
shape-memory phase
transformations, 457–458
transformations, 434–448
summary, 455–456
Austenitic stainless steels, 548, 549
Austenitizing, 603, 869
Automobiles, rusted and stainless
steel, 689
Automobile transmission, 170
Auxetic materials, 210
Average value, 240
Avogadro’s number, 19
Avrami equation, 433, 465
AX crystal structures, 56–57
A
mXp crystal structures, 57
B
Bainite, 438–439, 446, 456, 869
mechanical properties, 451
Bakelite, see Phenol-formaldehyde
(Bakelite)
Ball bearings, ceramic, 574, 576
Band gap, 488–490
Band gap energy, 869
determination of, 537
selected semiconductors, 497
Bands, see Energy bands
Barcol hardness, 239
Barium ferrite (as magnetic
storage medium), 775
Barium titanate:
crystal structure, 57, 525–526
as dielectric, 525
as ferroelectric, 525–526
as piezoelectric, 527, 575
Base (transistor), 511–512
Basic refractories, 570
Basic slags, 570
Beachmarks (fatigue), 338
Bend strength, 224. See also
Flexural strength
Beryllia, 571
Beryllium-copper alloys, 556–557
Beverage containers, 1, 816
corrosion of, 816
diffusion rate of CO2 through,
190–191
stages of production, 595
Bifunctional repeat units, 109, 870
Billiard balls, 542, 580
Bimetallic strips, 733
Binary eutectic alloys, 374–387
Binary isomorphous alloys, 365–374
mechanical properties, 374
microstructure development,
equilibrium cooling, 371–372
microstructure development,
nonequilibrium cooling,
372–374
Biodegradable beverage can, 816
Biodegradable polymers/plastics,
824–825
Biomass, 825
Biomaterials, 11
Biorenewable polymers/plastics,
824–825
Block copolymers, 121, 122, 870
Blowing, of glass, 617
Blow molding, plastics, 634
Body-centered cubic structure,
48–49, 870
Burgers vector for, 267
slip systems, 266
twinning in, 272
Bohr atomic model, 19–20, 21, 870
Bohr magneton, 756, 870
Boltzmann’s constant, 136, 870
Bonding:
carbon-carbon, 108
cementitious, 572
covalent, 30–31, 52, 871
hybrid sp, 23
hydrogen, 32, 33, 874
ionic, 28–29, 52–53, 874
metallic, 31–32, 875
van der Waals, see van der Waals
bonding
Bonding energy, 28, 870
and melting temperature for
selected materials, 30
Bonding forces, 26–27
Bond rupture, in polymers,
722–724
Index • 887Bone, as composite, 648
Boron carbide:
hardness, 239
Boron:
boron-doped silicon
semiconductors, 501
fiber-reinforced composites,
668, 671
properties as a fiber, 664
Borosilicate glass:
composition, 567
electrical conductivity, 515
viscosity, 616
Borsic fiber-reinforced composites,
672
Bottom-up science, 12
Bragg’s law, 87–89, 870
Branched polymers, 115, 116, 870
Brass, 556, 557, 870
annealing behavior, 282
elastic and shear moduli, 206
electrical conductivity, 491
fatigue behavior, 355
phase diagram, 388, 389
Poisson’s ratio, 206
recrystallization temperature, 283
stress corrosion, 713
stress-strain behavior, 214
thermal properties, 737
yield and tensile strengths,
ductility, 217
Brazing, 600, 870
Breakdown, dielectric, 511, 525
Bridge, suspension, 200
Brinell hardness tests, 234,
235–236
Brittle fracture, 215–216, 308, 310,
312–315, 870
ceramics, 322–326
Brittle materials, thermal shock,
745–746
Bronze, 556, 557, 870
Bronze age, 2
Bronze, photomicrograph, coring,
374
Buckminsterfullerene, 65
Burgers vector, 148, 870
for FCC, BCC, and HCP, 267
magnitude computation, 303
Butadiene:
degradation resistance, 722
melting and glass transition
temperatures, 868
repeat unit structure, 122, 865
Butane, 104–105
C
Cadmium sulfide:
color, 799
electrical characteristics, 497
Calcination, 572, 870
Calendering, 676
Capacitance, 517–518, 870
Capacitors, 517–522
Carbon:
vs. graphite, 664, 667
polymorphism, 65
Carbon black, as reinforcement in
rubbers, 581, 651
Carbon-carbon composites,
674, 870
Carbon diffusion, in steels, 402, 453
Carbon dioxide emissions, 154
Carbon dioxide (pressuretemperature phase diagram),
421
Carbon fiber-reinforced polymermatrix composites, 666–667,
668
Carbon fibers, 666–667
properties as fiber, 664
Carbon nanotubes, 12, 64
Carburizing, 175, 177, 870
Case-hardened gear, 170
Case hardening, 170, 341, 342, 870
Cast alloys, 556
Casting techniques:
metals, 598–599
plastics, 634
slip, 621–622
tape, 626–627
Cast irons, 400, 544, 549–555, 870
annealing, 604
compositions, mechanical
properties, and applications,
552
graphite formation in, 550
heat treatment effect on
microstructure, 554
phase diagram, 550, 554
stress-strain behavior (gray), 251
Catalysts, 154
Catalytic converters
(automobiles), 134, 154
Cathodes, 692, 870
Cathodic protection, 708,
715–716, 870
Cations, 53, 870
Cemented carbide, 650–651
Cementite, 398–400, 870
decomposition, 550, 554
proeutectoid, 405–406
in white iron, 551, 553
Cementitious bond, 572
Cements, 566, 571–573, 870
Ceramic ball bearings, 574, 576
Ceramic-matrix composites,
672–674, 870
Ceramics, 6–7, 870. See also Glass
advanced, 573–576
application-classification scheme,
566
brittle fracture, 322–326
coefficient of thermal expansion
values, 737, 846–847
color, 799
corrosion, 720
costs, 861–862
crystal structures, 52–58
summary, 58
defects, 137–140
defined, 6–7
density computation, 58–59
density values, 832
elastic modulus values, 206,
835–836
electrical conductivity values for
selected, 515
electrical resistivity values,
855–856
fabrication techniques
classification, 615
flexural strength values, 217,
841–842
fractography of, 324–326
fracture toughness values,
319, 844
impurities in, 142
indices of refraction, 793
as electrical insulators, 516, 525
magnetic, 759–763
mechanical properties of,
223–226
in MEMS, 574
phase diagrams, 391–395
piezoelectric, 11, 575
plastic deformation, 285–286
Poisson’s ratio values, 206, 838
porosity, 224–226, 625–626
porosity, influence on properties,
224–226
silicates, 59–62
specific heat values, 737, 853
as superconductors, 778
thermal conductivity values,
737, 850
888 • IndexCeramics (Continued)
thermal properties, 737, 739,
742–743, 745
traditional, 573
traditional vs. new, 573
translucency and opacity, 800
Cercor (glass-ceramic), 568
Cermets, 650, 870
Cesium chloride structure, 56
Chain-folded model, 125–126, 870
Chain-reaction polymerization, see
Addition polymerization
Chain stiffening/stiffness, 115,
467, 468
Charge carriers:
majority vs. minority, 500
temperature dependence,
502–503
Charpy impact test, 328–329, 870
Chevron markings, 312
Chips, semiconductor, 514
Chlorine, bonding energy and
melting temperature, 30
Chloroprene, repeat unit structure,
122, 865
Chloroprene rubber:
characteristics and applications,
581
melting and glass transition
temperatures, 868
Cis, 119, 870
Clay, characteristics, 620
Clay products, 566, 569
drying and firing, 569, 622–624
fabrication, 620–622
Cleavage (brittle fracture), 313
Clinker, 572
Close-packed ceramic crystal
structures, 83–84
Close-packed metal crystal
structures, 81–83
Coarse pearlite, 436–437, 446, 870
Coatings (polymer), 583
Cobalt:
atomic radius and crystal
structure, 47
Curie temperature, 763
as ferromagnetic material, 758
magnetization curves (single
crystal), 768
Coercivity (coercive force), 765, 870
Cold work, percent, 276
Cold working, 870. See also Strain
hardening
Collector, 511–512
Color, 870
metals, 791–792
nonmetals, 798–799
Colorants, 631, 870
Compacted graphite iron,
544, 551, 555
Compliance, creep, 232
Component, 360, 396, 870
Composites:
aramid fiber-reinforced polymer,
667–668
carbon-carbon, 674, 870
carbon fiber-reinforced polymer,
666–667
ceramic-matrix, 672–674
classification scheme, 649
costs, 863
definition, 10, 648
dispersion-strengthened, 653
elastic behavior:
longitudinal, 657–658
transverse, 659–660
fiber-reinforced, see Fiberreinforced composites
glass fiber-reinforced polymer,
665–666
hybrid, 674–675, 874
laminar, 649, 663, 677–678, 874
large-particle, 649–653
metal-matrix, 671–672
particle-reinforced, 649–653
production processes, 675–677
properties, glass-, carbon-,
aramid-fiber reinforced, 668
rule of mixtures expressions, 650,
657, 660, 661, 662, 670
strength:
longitudinal, 661
transverse, 662
stress-strain behavior, 655–656
structural, 677–679
Composition, 870
conversion equations,
144–145, 167
specification of, 143–144
Compression molding, plastics, 632
Compression tests, 204
Compressive deformation, 203, 222
Computers:
semiconductors in, 513–515
magnetic drives in, 773–775
Concentration, 143, 870. See also
Composition
Concentration cells, 709
Concentration gradient, 174, 870
Concentration polarization,
701–702, 870
Concentration profile, 174, 870
Concrete, 651–653, 870
electrical conductivity, 515
plane strain fracture toughness,
319, 844
Condensation polymerization,
629, 870
Conducting polymers, 516–517
Conduction:
electronic, 486
ionic, 486, 516
Conduction band, 488, 871
Conductivity, see Electrical
conductivity; Thermal
conductivity
Configuration, molecular, 116–119
Conformation, molecular, 114
Congruent phase transformations,
391–392, 871
Constitutional diagrams, see Phase
diagrams
Continuous casting, 599
Continuous-cooling transformation
diagrams, 445–448, 871
4340 steel, 448
1.13 wt% C steel, 478
0.76 wt% C steel, 445
for glass-ceramic, 568
Continuous fibers, 654
Conventional hard magnetic
materials, 771
Conversion factors, magnetic units,
755
Cooling rate, of cylindrical rounds,
609
Coordinates, point, 68–70
Coordination numbers, 48, 50,
53–54, 871
Copolymers, 108, 121–122, 871
styrenic block, 587–588
Copper:
atomic radius and crystal
structure, 47
diffraction pattern, 105
elastic and shear moduli, 206
electrical conductivity, 491
OFHC, 494
Poisson’s ratio, 206
recrystallization, 283, 433
slip systems, 266
thermal properties, 737
yield and tensile strengths,
ductility, 217
Index • 889Copper alloys, 556–557
properties and applications of,
557
Copper-aluminum phase diagram,
462
Copper-beryllium alloys, 494,
556–557
phase diagram, 481
Copper-nickel alloys:
ductility vs. composition, 275, 375
electrical conductivity, 492
phase diagram, 365–366
tensile strength vs. composition,
275, 375
yield strength vs. composition, 275
Copper-silver phase diagram,
375, 397
Coring, 374
CorningWare (glass-ceramic), 568
Corrosion, 871
of beverage cans, 816
ceramic materials, 720
electrochemistry of, 691–696
environmental effects, 706
environments, 714–715
forms of, 707–714
galvanic series, 697, 698
overview of, 690
passivity, 705–706, 876
rates, 697–699
prediction of, 699–705
Corrosion fatigue, 342, 871
Corrosion inhibitors, 715
Corrosion penetration rate,
698–699, 871
Corrosion prevention, 715–716
Corundum, 571. See also
Aluminum oxide
crystal structure, 104
Cost of various materials, 859–863
Coulombic force, 29, 871
Covalency, degree of, 31
Covalent bonding, 30–31,
52–53, 104, 871
Crack configurations in ceramics,
324
Crack critical velocity, 324
Crack formation, 310
in ceramics, 324
fatigue and, 337
glass, 619
Crack propagation, 310. See also
Fracture mechanics
in brittle fracture, 312–313
in ceramics, 322–326
in ductile fracture, 310–311
fatigue and, 337–339
Cracks:
stable vs. unstable, 310
Crack surface displacement modes,
318
Crazing, 327
Creep, 342–346, 871
ceramics, 347
influence of temperature and
stress on, 344–345
mechanisms, 345
in polymers, 232, 347
stages of, 343–344
steady-state rate, 343
viscoelastic, 232
Creep compliance, 232
Creep modulus, 232
Creep rupture tests, 343
data extrapolation, 346–347
Crevice corrosion, 708–709, 871
Cristobalite, 60–61, 395
Critical cooling rate:
ferrous alloys, 446–448
glass-ceramics, 568
Critical fiber length, 654–655
Critical resolved shear stress,
268, 871
as related to dislocation density,
304
Critical stress (fracture), 316
Critical temperature, superconductivity, 776, 778
Critical velocity (crack), 324, 325
Crosslinking, 115, 116, 871
elastomers, 293–294
influence on viscoelastic
behavior, 232
thermosetting polymers, 120
Crystalline materials, 46, 85, 871
defects, 136–153
single crystals, 85, 878
Crystallinity, polymers,
122–124, 871
influence on mechanical
properties, 290–291
Crystallites, 125, 871
Crystallization, polymers, 464–465
Crystallographic directions, 70–76
easy and hard magnetization, 767
families, 72
hexagonal crystals, 72–76
Crystallographic planes, 76–80
atomic arrangements, 79
close-packed, ceramics, 83–84
close-packed, metals, 81–83
diffraction by, 87–89
families, 79
hexagonal crystals, 79–80
Crystallographic point coordinates,
68–70
Crystal structures, 46–50, 871. See
also Body-centered cubic
structure; Close-packed
crystal structures; Facecentered cubic structure;
Hexagonal close-packed
structure
ceramics, 52–58
close-packed, ceramics, 83–84
close-packed, metals, 81–83
determination by x-ray
diffraction, 87–91
selected metals, 47
types, ceramics, 52–58, 83–84
types, metals, 47–51, 81–83
Crystallization (ceramics), 567,
620, 871
Crystal systems, 65–66, 871
Cubic crystal system, 65, 66
Cubic ferrites, 759–762
Cunife, 771, 772
Cup-and-cone fracture, 311
Curie temperature, 763, 871
ferroelectric, 526
ferromagnetic, 737
Curing, plastics, 632
Current density, 485
Cyclic stresses, 333–334
D
Damping capacity, steel vs. cast
iron, 553
Data scatter, 239–241
Debye temperature, 736
Decarburization, 175
Defects, see also Dislocations
atomic vibrations and, 153
dependence of properties on, 135
in ceramics, 137–140, 142
interfacial, 150–153
point, 136–140, 877
in polymers, 143
surface, 153
volume, 153
Defect structure, 137, 871
Deformation:
elastic, see Elastic deformation
elastomers, 293–294
plastic, see Plastic deformation
890 • IndexDeformation mechanism maps
(creep), 345
Deformation mechanisms
(semicrystalline polymers),
elastic deformation, 287, 288
plastic deformation, 287, 289
Degradation of polymers,
720–724, 871
Degree of polymerization, 112, 871
Degrees of freedom, 396
Delayed fracture, 323
Density:
computation for ceramics, 58–59
computation for metal alloys, 145
computation for metals, 51–52
computation for polymers,
124–125
of dislocations, 264
linear atomic, 80–81
planar atomic, 81
polymers (values for), 832–833
ranges for material types
(bar chart), 5
relation to percent crystallinity
for polymers, 123
values for various materials,
830–833
Design, component, 818
Design examples:
cold work and recrystallization,
283–284
conductivity of a p-type
semiconductor, 506–507
cubic mixed-ferrite magnet,
762–763
creep rupture lifetime for an
S-590 steel, 346–347
nonsteady-state diffusion, 183–184
spherical pressure vessel, failure
of, 320–322
steel shaft, alloy/heat treatment
of, 612–613
tensile-testing apparatus, 243
tubular composite shaft,
669–671
Design factor, 242
Design stress, 242, 871
Dezincification, of brass, 711
Diamagnetism, 756–757, 871
Diamond, 63, 576–577
as abrasive, 571
bonding energy and melting
temperature, 30
cost, 861
films, 576–577
hardness, 239
thermal conductivity value, 850
Diamond cubic structure, 63
Die casting, 599
Dielectric breakdown, 511, 525
Dielectric constant, 518, 871
frequency dependence, 524–525
relationship to refractive index,
793
selected ceramics and polymers,
519
Dielectric displacement, 520, 871
Dielectric loss, 525
Dielectric materials, 516–517,
525, 871
Dielectric strength, 525, 871
selected ceramics and polymers,
519
Diffraction (x-ray), 87, 871
Diffraction angle, 90
Diffractometers, 90
Diffusion, 171–172, 871
drive-in, 184–185
grain growth and, 284, 285
in ionic materials, 188
in integrated circuit
interconnects, 187–188
in Si of Cu, Au, Ag, and Al, 188
interstitial, 173, 874
mechanisms, 172–173
and microstructure development,
372–374, 384
nonsteady-state, 175–179, 876
in polymers, 189–191
predeposition, semiconductors,
184–185
in semiconductors, 184–187
short-circuit, 188
steady-state, 173–175, 879
vacancy, 172–173, 188, 880
Diffusion coefficient, 174, 871
relation to ionic mobility, 516
temperature dependence,
179–184
values for various metal systems,
179
Diffusion couples, 171, 196
Diffusion flux, 173, 871
for polymers, 189
Digitization of information/signals,
774, 808
Dimethyl ether, 106
Dimethylsiloxane, 122, 581, 582,
865. See also Silicones;
Silicone rubber
melting and glass transition
temperatures, 868
Diode, 509, 871
Dipole moment, 519
Dipoles:
electric, 32, 871
induced, 32
magnetic, 752–753
permanent, 33
Directional solidification, 347
Directions, see Crystallographic
directions
Discontinuous fibers, 654
Dislocation density, 264, 302,
304, 871
Dislocation etch pits, 260
Dislocation line, 147, 148, 149, 871
Dislocation motion, 262–263
caterpillar locomotion analogy, 263
in ceramics, 285–286
at grain boundaries, 273–274
influence on strength, 274
recovery and, 280
Dislocations, 147–150, 871
in ceramics, 150, 264, 285–286
characteristics of, 264–265
interactions, 265
multiplication, 265
at phase boundaries, 450, 453
pile-ups, 274
plastic deformation and, 211–212,
261–271, 272
in polymers, 143, 150
strain fields, 264–265
Dispersed phase, 648, 871
definition, 648
geometry, 648
Dispersion (optical), 792
Dispersion-strengthened
composites, 653, 871
Disposal of materials, 820–821
Domain growth, 764–765
iron single crystal, 765
Domains, 758, 764, 768, 872
Domain walls, 764
Donors, 500, 872
Doping, 501, 504, 872
Double bonds, 104
Drain casting, 621
Drawing:
glass, 617
influence on polymer properties,
291
metals, 598, 872
polymer fibers, 634, 872
Index • 891Drift velocity, electron, 490
Drive-in diffusion, 184–185
Driving force, 174, 872
electrochemical reactions, 694
grain growth, 284
recrystallization, 280
sintering, 626
steady-state diffusion, 174
Dry corrosion, 717
Dry ice, 421
Drying, clay products, 622–623
Ductile fracture, 215–216,
310–312, 872
Ductile iron, 551, 553, 872
compositions, mechanical
properties, and applications,
552
Ductile-to-brittle transition,
330–332, 872
polymers, 326
and temper embrittlement, 455
Ductility, 215–216, 872
fine and coarse pearlite, 450
precipitation hardened
aluminum alloy, 463
selected materials, 217, 838–843
spheroidite, 450
tempered martensite, 454
Durometer hardness, 236, 239
E
Economics, materials selection:
considerations in materials
engineering, 817–818
tubular composite shaft, 669–671
Eddy currents, 770
Edge dislocations, 147, 262–263,
872. See also Dislocations
interactions, 264–265
E-glass, 664, 666
Elastic deformation, 205–211, 872
Elastic modulus, see Modulus of
elasticity
Elastic (strain) recovery, 222, 872
Elastomers, 227, 293–295, 580–582,
634, 872
in composites, 651
deformation, 293–294
thermoplastic, 587–588
trade names, properties, and
applications, 581
Electrical conduction:
in insulators and semiconductors,
489–490
in metals, 489
Electrical conductivity, 485, 491, 872
ranges for material types
(bar chart), 7
selected ceramics and polymers,
515
selected metals, 491
selected semiconductors, 497
temperature variation (Ge), 537
values for electrical wires, 495
Electrical resistivity, 485, 878. See
also Electrical conductivity
metals
influence of impurities, 493
influence of plastic deformation,
492, 493
influence of temperature,
492–493
values for various materials,
854–857
Electrical wires, aluminum and
copper, 494–496
Electric dipole moment, 519
Electric dipoles, see Dipoles
Electric field, 485, 490, 872
Electrochemical cells, 693–694
Electrochemical reactions, 691–696
Electrodeposition, 693
Electrode potentials, 693–694
values of, 695
Electroluminescence, 803, 872
Electrolytes, 693, 872
Electromagnetic radiation,
787–789
interactions with atoms/electrons,
790–791
Electromagnetic spectrum, 787–788
Electron band structure, see
Energy bands
Electron cloud, 31
Electron configurations, 22–25, 872
elements, 24
periodic table and, 25–26
stable, 23
Electronegativity, 25, 31, 872
influence on solid solubility, 141
values for the elements, 26
Electroneutrality, 137, 872
Electron gas, 489
Electronic conduction, 486, 516
Electronic polarization, 523, 575,
790, 794, 877
Electron microscopy, 157–158
Electron mobility, 490
influence of dopant content on,
504
influence of temperature on,
504–505
selected semiconductors, 497
Electron orbitals, 19
Electron probability distribution,
20, 21
Electrons, 18
conduction process, 498, 511–512
role, diffusion in ionic materials,
188
energy bands, see Energy bands
energy levels, 20–22
free, see Free electrons
scattering, 490–491, 735
in semiconductors, 496–502
temperature variation of
concentration, 502–503
spin, 22, 755–756
valence, 22
Electron states, 872
Electron transitions, 790–791
metals, 791–792
nonmetals, 792–794
Electron volt, 29, 872
Electropositivity, 25, 872
Electrorheological fluids, 11
Elongation, percent, 215
selected materials, 217, 838–843
selected metals, 217
selected polymers, 217
Embrittlement:
hydrogen, 713–714
temper, 455
Embryo, phase particle, 424–426
Emf series, 694–695, 872
Emitter, 511
Endurance limit, 335. See also
Fatigue limit
Energy:
activation, see Activation energy
bonding, 28–30, 870
current concerns about, 12,
820–821
free, 362, 363, 424–426, 873
grain boundary, 151
photon, 789
surface, 150
vacancy formation, 136
Energy band gap, see Band gap
Energy bands, 486–488
structures for metals, insulators,
and semiconductors, 488
Energy levels (states), 19–22,
486–487
Energy and materials, 820
892 • IndexEnergy product, magnetic, 770–771
Engineering stress/strain, 203–204,
879
Entropy, 293, 362, 424
Environmental considerations and
materials, 819–826
Epoxies:
degradation resistance, 721
polymer-matrix composites, 668
repeat unit structure, 864
trade names, characteristics, and
applications, 579
Equilibrium:
definition of, 362
phase, 362–363, 872
Equilibrium diagrams, see Phase
diagrams
Erosion-corrosion, 711–712, 872
Error bars, 241
Error function, Gaussian, 176
Etching, 156
Etch pits, 260
Ethane, 104
Ethers, 106
Ethylene, 104
polymerization, 106–107
Ethylene glycol (structure), 629
Euro coins, alloys used for, 565
Eutectic isotherm, 376
Eutectic phase, 385, 872
Eutectic reactions, 376, 383, 872
iron-iron carbide system, 400
Eutectic structure, 383, 872
Eutectic systems:
binary, 374–387
microstructure development,
380–387
Eutectoid, shift of position, 408
Eutectoid ferrite, 404
Eutectoid reactions, 390, 872
iron-iron carbide system, 400
kinetics, 434–436
Eutectoid steel, microstructure
changes/development,
401–403
Exchange current density, 700
Excited states, 791, 872
Exhaustion, in extrinsic
semiconductors, 502
Expansion, thermal, see
Thermal expansion
Extrinsic semiconductors,
499–502, 872
electron concentration vs.
temperature, 503
exhaustion, 502
saturation, 502
Extrusion, 872
clay products, 621
metals, 598
polymers, 633
F
Fabrication:
ceramics, 615–627
clay products, 620–624
fiber-reinforced composites,
675–677
metals, 597–601
Face-centered cubic structure,
47–48, 872
anion stacking (ceramics), 83–84
Burgers vector for, 267
close packed planes (metals), 81–83
slip systems, 265–266
Factor of safety, 242, 321
Failure, mechanical, see Creep;
Fatigue; Fracture
Faraday constant, 696
Fatigue, 332–342, 872
corrosion, 342
crack initiation and propagation,
337–339
cyclic stresses, 333–334
environmental effects, 341–342
low- and high-cycle, 336
polymers, 337
probability curves, 336
thermal, 341–342
Fatigue damage, commercial
aircraft, 308
Fatigue life, 336, 872
factors that affect, 339–341
Fatigue limit, 335, 872
Fatigue strength, 335, 336, 872
Fatigue testing, 334–335
S-N curves, 334–337, 355
Feldspar, 620
Fermi energy, 488, 501, 736, 872
Ferrimagnetism, 759–763, 872
temperature dependence, 763
Ferrite (), 398–400, 872
eutectoid/proeutectoid,
404–405, 877
from decomposition of
cementite, 550
Ferrites (magnetic ceramics),
759–761, 872
Curie temperature, 763
as magnetic storage, 775
Ferritic stainless steels, 548, 529
Ferroelectricity, 525–526, 873
Ferroelectric materials, 525–526
Ferromagnetic domain walls, 153
Ferromagnetism, 758–759, 873
temperature dependence, 763
Ferrous alloys, 873. See also Cast
irons; Iron; Steels
annealing, 601–604
classification, 401, 544
continuous-cooling
transformation diagrams,
445–448
costs, 859–860
hypereutectoid, 405–408, 874
hypoeutectoid, 403–405, 874
isothermal transformation
diagrams, 434–444
microstructures, 401–408
mechanical properties of,
448–452, 838–839
Fiber efficiency parameter,
663, 685
Fiberglass, 567
Fiberglass-reinforced composites,
665–666
Fiber-reinforced composites,
653–677, 873
continuous and aligned, 655–661
discontinuous and aligned, 662
discontinuous and randomly
oriented, 662–663
fiber length effect, 654–655
fiber orientation/concentration
effect, 655–663
fiber phase, 663–665
longitudinal loading, 655–659,
660–661
matrix phase, 665
processing, 675–677
reinforcement efficiency, 663
transverse loading, 659–660, 661
Fibers, 582–583, 873
coefficient of thermal expansion
values, 847
in composites, 649
continuous vs. discontinuous,
654–655
fiber phase, 663–665
length effect, 654–655
orientation and concentration,
655–663
costs, 863
density values, 833
elastic modulus values, 664, 836
Index • 893Fibers (Continued)
electrical resistivity values, 857
optical, 808–810
polymer, 582–583
properties of selected, 664
specific heat values, 853
spinning of, 634
tensile strength values, 664, 842
thermal conductivity values, 851
Fick’s first law, 174, 741, 873
for polymers, 189
Fick’s second law, 175–176, 749, 873
Fictive temperature, 615
Filament winding, 676–677
Fillers, 630, 873
Films:
diamond, 576, 577
polymer, 584
shrink-wrap (polymer), 292
Fine pearlite, 436, 437, 448–449,
450, 452, 873
Fireclay refractories, 570
Firing, 570, 623–624, 873
Flame retardants, 631, 873
Flash memory, 483, 513
Flash memory cards, 483
Flexural deflection, equation for, 256
Flexural strength, 223–224, 873
influence of porosity on,
ceramics, 224–226
values for selected ceramics,
217, 841–842
Float process (sheet glass), 618
Fluorescence, 801, 873
Fluorite structure, 57
Fluorocarbons, 108
trade names, characteristics, and
applications, 578
Flux (clay products), 620, 623
Foams, 584, 873
Forces:
bonding, 26–28
coulombic, 29, 871
Forging, 597, 598, 873
Formaldehyde, 106
Forming operations (metals),
597–598
Forsterite, 61
Forward bias, 510, 511, 873
Fractographic investigations:
ceramics, 324–326
metals, 312
Fractographs:
cup-and-cone fracture surfaces,
312
fatigue striations, 338
glass rod, 326
intergranular fracture, 315
transgranular fracture, 314
Fracture, see also Brittle fracture;
Ductile fracture; Impact
fracture testing
delayed, 323
fundamentals of, 310
polymers, 326–327
types, 215–216, 310–314
Fracture mechanics, 314, 873
applied to ceramics, 322–323
polymers, 328
use in design, 320–322
Fracture profiles, 311
Fracture strength, 214. See also
Flexural strength
ceramics, 223–224
distribution of, 323
influence of porosity, 224–226
influence of specimen size,
323, 663–664
Fracture surface, ceramics, 325–326
Fracture toughness, 218,
317–319, 873
ceramic-matrix composites,
673–674
ranges for material types
(bar chart), 7
testing, 319
values for selected materials,
319, 843–844
Free electrons, 489, 873
contributions to heat capacity,
736
role in heat conduction, 741
Free energy, 362, 424–426, 873
activation, 425, 430
volume, 424
Freeze-out region, 502–503
Frenkel defects, 137, 138, 873
equilibrium number, 139
Full annealing, 446, 603, 873
Fullerenes, 63, 65
Functionality (polymers), 109
Furnace heating elements, 494
Fused silica, 92
characteristics, 567, 616
dielectric properties, 519
electrical conductivity, 515
flexural strength, 217
index of refraction, 793
modulus of elasticity, 206
thermal properties, 737
G
Gadolinium, 758, 761
Gallium arsenide:
cost, 861
electrical characteristics, 497, 498
for lasers, 807
for light-emitting diodes, 802, 815
Gallium phosphide:
electrical characteristics, 497
for light-emitting diodes, 815
Galvanic corrosion, 707–708, 873
Galvanic couples, 693
Galvanic series, 697, 698, 873
Galvanized steel, 566, 716
Garnets, 761
Garnet single crystal, 85
Gas constant, 136, 873
Gating system, 599
Gauge length, 202
Gaussian error function, 176
Gears (transmission), 170
Gecko lizard, 17
Geometrical isomerism, 118–119
Germanium:
crystal structure, 63
electrical characteristics,
497, 503, 537
Gibbs phase rule, 396–397, 873
Gilding metal, 556
Glass:
as amorphous material, 92–93
annealing, 604, 618, 869
blowing, 617
classification, 567
color, 799
commercial, compositions and
characteristics, 567
corrosion resistance, 720
cost, 861–862
dielectric properties, 519
electrical conductivity, 515
flexural strength, 206, 841
forming techniques, 617–618
fracture surface
(photomicrograph), 326
hardness, 239
heat treatment, 618–619
melting point, 616
modulus of elasticity, 206, 835
optical flint, 567
plane strain fracture toughness,
319, 844
refractive index, 793
sheet forming (float process), 618
soda-lime, composition, 567
894 • IndexGlass (Continued)
softening point, 616
strain point, 616
stress-strain behavior, 225
structure, 93
surface crack propagation, 323
tempering, 618–619, 643
thermal properties, 737
viscous properties, 616
working point, 616, 881
Glass-ceramics, 567–568, 873
composition (Pyroceram), 567
continuous-cooling
transformation diagram, 568
fabricating and heat treating,
619–620
flexural strength, 217, 841
modulus of elasticity, 206, 835
optical transparency, conditions
for, 800
properties and applications, 568
Glass fibers, 666
fiberglass-reinforced composites,
665–666, 668
forming, 618
properties as fiber, 664
Glass transition, polymers, 466
Glass transition temperature,
466, 615, 873
factors that affect, polymers,
468–469
values for selected polymers,
467, 868
Gold, 562
atomic radius and crystal
structure, 47
electrical conductivity, 491
slip systems, 266
thermal properties, 737
Graft copolymers, 121, 122, 873
Grain boundaries, 85, 150–151, 873
Grain boundary energy, 151
Grain growth, 284–285, 873
Grains, 873
definition, 85
distortion during plastic
deformation, 270–271
Grain size, 873
dependence on time, 284–285
determination of, 159–160
mechanical properties and, 285
reduction, and strengthening of
metals, 273–274
refinement by annealing, 603
Grain size number (ASTM), 160
Graphite, 63
in cast irons, 550
compared to carbon, 664,
666–667
cost, 862
from decomposition of
cementite, 550
electrical conductivity, 515
properties/applications, 576–577
properties as whisker, 664
as a refractory, 571
structure of, 63
Gray cast iron, 550–553, 873
compositions, mechanical
properties, and applications,
552
Green ceramic bodies, 622, 873
Green design, 821
Ground state, 22, 791, 873
Growth, phase particle, 423,
430–432, 873
rate, 431
temperature dependence of rate,
432
Gutta percha, 119
H
Hackle region, 325–326
Half-cells, standard, 694
Half-reactions, 692
Hall coefficient, 508
Hall effect, 507–509, 873
Hall-Petch equation, 274
Hall voltage, 507
Halogens, 25
Hard disk drives, 773–775
Hardenability, 604–608, 873
Hardenability band, 607, 608
Hardenability curves, 605–608
Hard magnetic materials,
770–773, 873
properties, 772
Hardness, 873
bainite, pearlite vs.
transformation temperature,
451
ceramics, 238–239
comparison of scales, 237
conversion diagram, 237
correlation with tensile strength,
238
fine and coarse pearlite,
spheroidite, 450
pearlite, martensite, tempered
martensite, 452
polymers, 239
tempered martensite, 452, 454
Hardness tests, 233–237
summary of tests, 234
Hard sphere model, 46
Head-to-head configuration, 117
Head-to-tail configuration, 117
Heat affected zone, 600
Heat capacity, 734–737, 873
temperature dependence, 736
vibrational contribution, 735
Heat flux, 741
Heat of fusion, latent, 425
Heat transfer:
mechanism, 735, 741
nonsteady-state, 749
Heat treatable, definition of, 556
Heat treatments, 170. See also
Annealing; Phase
transformations
dislocation reduction, 264
glass, 618–619
hydrogen embrittlement, 714
intergranular corrosion and,
711
polymer morphology, 290
polymer properties, 292
for precipitation hardening,
459–461
recovery, recrystallization, and
grain growth during, 279–285
steel, 604–613
Hertz, 789
Heterogeneous nucleation, 423,
429–430
Hexagonal close-packed structure,
49–50, 873
anion stacking (ceramics), 82
Burgers vector for, 267
close-packed planes (metals),
81–83
slip systems, 266
twinning in, 272
Hexagonal crystal system, 65, 66
direction indices, 72–76
planar indices, 79–80
Hexagonal ferrites, 761
Hexane, 104
High carbon steels, 547
High-cycle fatigue, 336–337
High polymers, 113, 874
High-strength, low-alloy (HSLA)
steels, 546, 874
High-temperature superconductors,
778
Index • 895Holes, 489, 497, 874
role, diffusion in ionic materials,
188
mobility:
influence of dopant
concentration on, 504
influence of temperature on,
504–505
values for selected
semiconductors, 497
temperature dependence of
concentration (Si, Ge), 503
Homogeneous nucleation, 424–429
Homopolymers, 108, 874
Honeycomb structure, 678–679
Hooke’s law, 205, 229
Hot pressing, 626
Hot working, 282, 597, 874. See
also Heat treatments
HSLA (high-strength, low-alloy)
steels, 546, 874
Hybrid composites, 674–675, 874
Hydration, of cement, 572
Hydrocarbons, 103–105
Hydrogen:
diffusive purification,
174–175, 195
reduction, 699
Hydrogen bonding, 30, 32, 33, 874
water expansion upon freezing, 34
Hydrogen chloride, 33, 39
Hydrogen electrode, 694
Hydrogen embrittlement,
713–714, 874
Hydrogen fluoride, 33, 39
Hydrogen induced cracking, 713
Hydrogen stress cracking, 713
Hydroplastic forming, 621, 874
Hydroplasticity, 620
Hydrostatic powder pressing, 625
Hypereutectoid alloys, 405–407, 874
Hypoeutectoid alloys, 403–405, 874
Hysteresis, 765
Hysteresis, ferromagnetic, 874
soft and hard magnetic materials,
768, 770–771
I
Ice, 34, 359, 364, 419
Iceberg, 359
Impact energy, 328, 874
fine pearlite, 449
temperature dependence:
high-strength materials, 331
low-strength FCC and HCP
metals, 331
low-strength steels, 330, 331
Impact fracture testing, 328–332
Impact strength, polymers, 332
Imperfections. See Defects;
Dislocations
Impurities:
in ceramics, 142
diffusion, 172
electrical resistivity, 493
in metals, 140–141
thermal conductivity, 742
Incongruent phase transformation,
391
Index of refraction, 792–793, 874
selected materials, 793
Indices, Miller, 76, 875
Indium antimonide, electrical
characteristics, 497
Induced dipoles, 32–33
Inert gases, 23, 25
Inhibitors, 715, 874
Initial permeability, 765
Injection molding, 663
Ink-jet printer heads, 575
Insulators (electrical), 874. See also
Dielectric materials
ceramics and polymers as, 515, 525
color, 799
defined, 486
electron band structure,
488, 489–490
translucency and opacity,
800–801
Integrated circuits, 514–515, 874
interconnects, 187–188
scanning electron micrograph,
483, 514
Interatomic bonding, 28–32
Interatomic separation, 27
Interconnects, integrated circuits,
187–188
Interdiffusion, 172, 874
Interfacial defects, 150–153
Interfacial energies, 153
for heterogeneous nucleation, 429
Intergranular corrosion, 710, 874
Intergranular fracture, 314, 315, 874
Intermediate solid solutions,
387, 391, 874
Intermetallic compounds,
389, 461, 874
International Organization for
Standardization (ISO), 821
Interplanar spacing, cubic crystals,
89
Interstitial diffusion, 172, 874
Interstitial impurity defects, 141
Interstitials:
in ceramics, 142
in polymers, 143
self-, 136, 878
Interstitial solid solutions, 141, 874
Intrinsic carrier concentration, 498
temperature dependence for Si
and Ge, 503
Intrinsic conductivity, 497
Intrinsic semiconductors,
496–498, 874
Invar, Material of Importance, 740
thermal properties, 737
Invariant point, 364, 376, 874
Inverse lever rule, 368. See also
Lever rule
Inverse spinel structure, 759
Ion cores, 31
Ionic bonding, 28–29, 874
in ceramics, 52
Ionic character (percent), 31, 52
Ionic conduction, 189, 486, 516
Ionic polarization, 523, 877
Ionic radii, 53–54, 55
Iridium, 562
Iron, see also Ferrous alloys; Steels
atomic radius and crystal
structure, 47
bonding energy and melting
temperature, 30
Curie temperature, 763
diffraction pattern, 90
electrical conductivity, 491
ferrite (), 398, 400, 404, 873
as ferromagnetic material, 758
magnetic properties, 770
magnetization curves
(single crystal), 767
polymorphism, 65
recrystallization temperature, 283
rolling texture, 769
slip systems, 266
stress-strain behavior (at three
temperatures), 218
thermal properties, 737
yield and tensile strengths,
ductility, 217
Iron age, 2
Iron-carbon alloys, see Ferrous
alloys
Iron-iron carbide alloys, 398–401
896 • IndexIron-silicon alloys, magnetic
properties, 770
Material of Importance (use in
transformer cores), 769
ISO (International Organization
for Standardization), 821
Isobutane, 105
Isobutylene, 122
Isomerism, 105, 874
geometrical, 118–119, 120
stereoisomerism, 117–118, 120
Isomorphous systems, 365, 874
binary, see Binary isomorphous
alloys
Isoprene, 118
Isostatic powder pressing, 625
Isostrain, in fiber-reinforced
composites, 657
Isostress, in fiber-reinforced
composites, 659
Isotactic configuration, 117, 120, 874
Isothermal, 874
Isothermal transformation
diagrams, 434–444, 874
4340 alloy steel, 443
0.76 wt% C steel, 442
0.45 wt% C steel, 477
Isotopes, 19, 874
Isotropic materials, 86, 663, 874
Izod impact test, 328–329, 874
J
Jominy end-quench test, 604–605,
874
Junction depth, diffusion, 185
Junction transistors, 511–512, 874
K
Kaolinite clay, 61–62, 620
Kevlar, see Aramid
Kinetics, 432–433, 874
crystallization of polymers,
464–465
oxidation, 719–720
phase transformations, 432–433
Knoop hardness, 234, 236
Kovar:
as low-expansion alloy, 740
thermal properties, 737
L
Ladder polymer, 724
Lamellae, 126
Laminar composites, 677–678, 874
Large-particle composites,
649–653, 875
Larson-Miller parameter, 346
plots of, 346, 357
Lasers, 804–808, 875
semiconductor, 805–807, 808
types, characteristics, and
applications, 807
Laser beam welding, 601
Latent heat of fusion, 425
Latex, 583
Lattice parameters, 65, 66, 875
Lattices, 46, 875
Lattice strains, 264–265, 275–276,
463, 875
Lattice waves, 735
Laue photograph, 44, 91
Layered silicates, 61–62
Lay-up, in prepreg processing, 676
Lead, 564
atomic radius and crystal
structure, 47
recrystallization temperature, 283
superconducting critical
temperature, 778
Lead-free solders, 381
Lead-tin phase diagram, 377,
380–387
Lead titanate, 575
Lead zirconate, 527
Lead-zirconate-titanate, 526
Leak-before-break design, 321
Leathery region, polymers, 230–231
LEDs, see Light-emitting diodes
Lever rule, 368–369, 875
Life cycle analysis/assessment, 821
Light:
absorption, 794–797
reflection, 794
refraction, 792–793
scattering, 800
transmission, 798
Light-emitting diodes, 875
organic, 802
polymer, 802
semiconductor, 802
Lime, 573
Linear atomic density, 80–81
Linear coefficient of thermal
expansion, 342, 738–740, 744,
745, 875
values for selected materials,
737, 845–848
Linear defects, 147–150
Linear polymers, 115, 875
Liquid crystal polymers,
585–586, 875
Liquidus line, 365, 366, 376, 875
Liquidus temperatures, Ge-Si
system, 414
Lodestone (magnetite), 752, 759
Longitudinal direction, 655, 875
Longitudinal loading, composites,
655–658, 660–661
Lost-foam casting, 597, 599
Lost-wax casting, 599
Low-angle grain boundaries,
see Small-angle grain
boundaries
Low-carbon steels, 544–546
Low-cycle fatigue, 336
Lower critical temperature
(ferrous alloys), 602–603, 875
Low-expansion alloys, 740
in wristwatches, 740
Lower yield point, 212, 213
Low-expansion alloys, 740
Luminescence, 801, 875
M
Macromolecules, 105, 875
Magnesia, see Magnesium oxide
Magnesium:
automobile wheel, 44
diffraction pattern, 44
elastic and shear moduli, 206
Poisson’s ratio, 206
single crystal (cleaved), 44
slip systems, 266
Magnesium alloys, 560, 561
Magnesium fluoride, optical
properties, 794
Magnesium-lead phase diagram,
389
Magnesium oxide:
bonding energy and melting
temperature, 30
flexural strength, 217
index of refraction, 793
modulus of elasticity, 206
thermal properties, 737
Magnesium oxide-aluminum oxide
phase diagram, 393
Magnetic anisotropy, 767–768
Magnetic ceramics, 759–762
Magnetic dipoles, 752–753
Magnetic domains, see Domains
Magnetic energy product, 770–771
Index • 897Magnetic field strength,
753–755, 875
Magnetic field vectors, 753–755
Magnetic flux density, 753, 755, 875
critical values for
superconductors, 778
Magnetic hard disk drives, 773–775
Magnetic hysteresis, 764–766
factors that affect, 767
soft and hard magnetic materials,
768–773
Magnetic induction, see Magnetic
flux density
Magnetic materials:
hard, 770–773
low thermal expansion
characteristics, 740
neodymium-iron-boron alloys,
772–773
samarium-cobalt alloys, 772
soft, 768–770
Magnetic moments, 755–756
cations, 761
Magnetic permeability, 754, 788,
792–793
Magnetic recording, 773
Magnetic storage, 773–776
Magnetic susceptibility, 754, 875
selected diamagnetic and
paramagnetic materials, 757
various units for, 755
Magnetic tapes, 775–776
Magnetic texture, 87, 769
Magnetic units, conversion factors,
755
Magnetism:
basic concepts, 752–756
electron spin and, 756
Magnetite (lodestone), 752, 759
Magnetization, 754, 755, 875
easy and hard directions, 767
saturation, 758, 761–762, 878
Magnetocrystalline anisotropy, 767
Magnetostrictive materials, 11
Magnetorheological fluids, 11
Majority charge carriers, 500
Malleability, see Ductility
Malleable cast iron, 551, 552,
554, 875
compositions, mechanical
properties, and applications, 552
Manganese oxide, as antiferromagnetic material, 759
Manufacturing techniques,
economics, 818–819
Martensite, 440–442, 446–447,
455–456, 875
alloying to favor formation of, 447
crystal structure, 441
hardness, 452
hardness vs. carbon content, 452
shape-memory phase
transformations, 457–458
tempering of, 452–455
Martensitic stainless steels, 548, 549
Materials:
advanced, 10–12
by design, 12
classification of, 5–10
costs, 859–863
current and future needs, 12–13
disposal of, 820–821
economic considerations, 817–819
engineered, 819, 820
of the future, 11–12
historical development of, 2
nanoengineered, 11–12
nonrenewable sources of, 13, 820
smart, 11
total cycle, 819–820
Materials engineering, 2–3, 202
Materials of Importance:
aluminum electrical wires,
494–496
aluminum for integrated circuit
interconnects, 187–188
biodegradable and biorenewable
polymers/plastics, 824–825
carbon nanotubes, 64
carbonated beverage containers, 9
catalysts (and surface defects),
154
Invar and other low-expansion
alloys, 740
an iron silicon alloy that is used
in transformer cores, 769
lead-free solders, 381
light-emitting diodes, 802–803
metal alloys used for euro coins,
565
nanocomposites in tennis balls,
679–680
phenolic billiard balls, 580
piezoelectric ceramics, 575
shape-memory alloys, 456–459
shrink-wrap polymer films, 292
tin (its allotropic
transformation), 67
water (its volume expansion
upon freezing), 34
Materials science, 2–4
Matrix phase, 875
definition, 648
fiber-reinforced composites, 665
Matthiessen’s rule, 492, 875
Mean stress (fatigue), 333–334, 339
Mechanical properties, see also
specific mechanical properties
grain size and, 274
variability, 239–241
Mechanical twins, 152, 272. See
also Twinning
Mechanics of materials, 205
Medium carbon steels, 544, 546–547
Meissner effect, 777
Melamine-formaldehyde, repeat
unit structure, 864
Melting (polymers), 465–466
Melting point (temperature):
and bonding energy for selected
materials, 30
ceramics, 616
factors that affect (polymers),
467–468
glasses, 875
polymers, 466, 467, 868
Melt spinning, 634
Memory, flash, 513
Mercury:
bonding energy and melting
temperature, 30
superconducting critical
temperature, 778
Mer unit, 106
Metal alloys, see Alloys
Metallic bonding, 31–32, 875
Metallic glasses, 491
Metallographic examination, 156
Metal-matrix composites,
671–672, 875
Metals, see also Alloys; Crystalline
materials
corrosion, see Corrosion
costs, 859–861
crystal structures, see Crystal
structures
defined, 5–6, 875
density values, 830–832
elastic modulus values,
206, 833–835
as electrical conductors, 486
electrical resistivity values,
854–855
electron band structure, 488
fabrication, 596–604
898 • IndexMetals (Continued)
fracture toughness for selected,
319, 843–844
linear coefficient of thermal
expansion values, 737, 845–846
optical properties, 791–792
oxidation, 717–720
Poisson’s ratio for selected, 206,
837–838
shear moduli, 206
specific heat values, 737, 851–852
strengthening, see Strengthening
of metals
thermal conductivity values,
737, 848–849
Metastability, 875
of microstructures, 433–434
Metastable states, 363
Methane, 30–31, 104
Methyl alcohol, 106
Methyl group, 108
Mica, 62
dielectric constant and dielectric
strength, 519
Microconstituents, see also specific
microconstituent phases:
definition, 386, 875
in eutectic alloys, 385–387
in steel alloys, 401–408
Microcracks, 315–317
in ceramics, 322–323
Microelectromechanical systems
(MEMS), 11, 573–574, 875
Microelectronics, 514–515
Microindentation hardness tests, 236
Micron, 155
Microscopic techniques, useful
resolution ranges, 159
Microscopy, 155–159, 875
Microstructure, 155, 875
austenite, 400
bainite, 438
bonded ceramic abrasive, 572
brass during recrystallization and
grain growth, 281
carbon-black-reinforced rubber,
651
carbon nanotube, 64
cast irons, 551, 554
cemented carbide, 651
coarse and fine pearlite, 437
compacted graphite iron, 551
cored structure, brass, 374
craze in poly(phenylene oxide),
327
development in eutectic alloys,
380–387
development in iron-carbon
alloys, 401–408
development in isomorphous
alloys:
equilibrium cooling, 371–372
nonequilibrium cooling, 372–374
eutectic (lead-tin), 384
ferrite (), 400
glass-ceramic, 568
glass fracture surface, 326
gray cast iron, 551
hard disk drive, 775
hypereutectoid steel alloy, 406
hypoeutectoid steel alloy, 404
influence of cooling rate, 606
integrated circuit, 483, 514
magnetic tape storage, 775
martensite, 441
metastable, 363
microscopic examination,
153–159
pearlite, 402, 437
pearlite partially transformed to
spheroidite, 440
polycrystalline metal before and
after deformation, 271
porcelain, 624
precipitation-hardened
aluminum alloy, 462
reversible-matrix, Al-Cu eutectic,
385
single-phase iron-chromium
alloy, 157
sintered ceramic, 626
size ranges, various structural
features, 159
spheroidite, 440
spherulite (natural rubber), 102
stress corrosion in brass, 713
TEM (high resolution)—single
crystals of (Ce0.5Zr0.5)O2,
134, 154
tempered martensite, 453
Microvoids, 310–311, 327
Miller-Bravais index system, 72–73
Miller indices, 76–78, 875
Minority charge carriers, 500
Mirror region (ceramics), 325–326
Mist region (ceramics), 325–326
Mixed dislocations, 147, 149, 262,
875. See also Dislocations
Mobility, of charge carriers,
490–491, 875
influence of dopant content, 504
influence of temperature, 504–505
ionic, 516
values for selected
semiconductors, 497
Modulus of elasticity, 205–208, 875
anisotropy, 86
atomic bonding and,
207–208, 251–252
carbon nanotubes, 64
copper reinforced with tungsten,
650
influence of porosity on, in
ceramics, 224–226
ranges for material types
(bar chart), 6
relation to shear modulus, 210
selected ceramics, 206, 835–836
selected fiber-reinforcement
materials, 664, 836
selected metals, 206, 833–835
selected polymers, 206, 836
temperature dependence:
elastomers, 293
metals, 208
and thermal fatigue, 342
and thermal stresses, 744
values for various materials,
833–837
Modulus of resilience, 216, 218
Modulus of rupture, 224. See also
Flexural strength
Mohs hardness scale, 233, 236, 237
Molarity, 693, 875
Molding, plastics, 632–634, 875
Mole, 19, 875
Molecular chemistry, polymers,
106–110, 875
Molecular configurations,
polymers, 116–120
Molecular mass, 111
Molecular materials, 35
Molecular shape, polymers, 113–115
Molecular structure, polymers,
115–116, 876
Molecular weight, 876
influence on polymer
melting/glass transition
temperatures, 468
influence on mechanical
behavior, polymers, 290, 291
number-average, 111–113
weight-average, 111–113
Molecular weight distribution,
111–112
Index • 899Molecules, polar, 33, 877
Molybdenum, 562
atomic radius and crystal
structure, 47
density, 831
modulus of elasticity, 835
Poisson’s ratio, 837
properties as wire, 664
slip systems, 266
thermal properties, 846, 849, 852
yield and tensile strengths,
ductility, 217
Moment of inertia, 223, 256, 670
Monel, 564
Monoclinic crystal system, 66
Monomers, 106, 876
MOSFET transistors,
511, 512–513, 876
Mullite, 365, 570, 571
flexural strength, 217
modulus of elasticity, 206
Muntz metal, 556
Muscovite (mica), 62
N
Nanocomposite barrier coatings,
679–680
Nanomaterials, 11–12
Nanotechnology, 12
Nanotubes, carbon, 12, 64
Natural aging, 464, 876
Natural rubber (polyisoprene),
118–119, 580, 581
degradation resistance, 722
melting and glass transition
temperatures, 868
stress-strain behavior, 295
thermal properties, 737
NBR, see Nitrile rubber (NBR)
Necking, 213
complex stress state in, 220
criterion for, 255
in ductile fracture, 310–311
polymers, 228
Néel temperature, 763
Neodymium-iron-boron magnets,
772–773
Neoprene rubber, 581, 722
Nernst equation, 696
Network formers (glass), 93
Network modifiers (glass), 93
Network polymers, 115, 116, 876
Network solids, 65
Neutrons, 18
Nichrome, 494
Nickel, 564
atomic radius and crystal
structure, 47
Curie temperature, 763
elastic and shear moduli, 206
as ferromagnetic material,
758–759
magnetization curves (single
crystal), 767
Poisson’s ratio, 206
recrystallization temperature,
283
slip systems, 266
thermal properties, 737
thoria-dispersed (TD), 653
yield and tensile strengths,
ductility, 217
Nickel ferrite, 761
Niobium, 562
Niobium alloys, as superconductors,
778
Nitinol, 456–457
Nitrile rubber (NBR), 122
characteristics and applications,
581
degradation resistance, 722
Noble metals, 562
Nodular iron, see Ductile iron
Noncrystalline materials,
46, 91–93, 876
Nondestructive evaluation, see
Nondestructive testing
Nondestructive inspection, see
Nondestructive testing
Nondestructive testing, 320
Nonequilibrium cooling, 408
Nonequilibrium phases, 432
Nonequilibrium solidification,
372–374
Nonferrous alloys, 556–566, 876.
See also specific nonferrous
alloys
Nonsteady-state diffusion,
175–179, 876
Nonstoichiometry, 138
Normalizing, 446, 603, 876
Notches, effect of, 316
Notch toughness, 219, 328
n-p-n Junction transistors, 511–512
n-Type semiconductors,
499–500, 876
Nucleation, 423–430, 876
heterogeneous, 429–430
homogeneous, 424–429
Nucleation rate, 427
temperature dependence, 427
homogeneous vs.
heterogeneous, 431
Nucleus, phase particle, 424
Number-average molecular weight,
111–113
Nylon, fatigue behavior, 337
Nylon 6,6: 110
degradation resistance, 721
density, 133, 833
dielectric constant and dielectric
strength, 519
electrical conductivity, 515
mechanical properties, 206, 217
melting and glass transition
temperatures, 467, 868
repeat unit structure, 110, 865
thermal properties, 737
Nylons, trade names, characteristics, and applications, 578
O
Octahedral position, 83, 760, 876
Ohm’s law, 484–485, 876
Oil, as quenching medium, 609
Opacity, 790, 876
in insulators, 800
in semiconductors, 794–795
Optical fibers, 574, 808–810, 876
Optical flint glass, composition and
properties, 567, 793
Optical microscopy, 155–157
Optical properties, 787
of metals, 791–792
of nonmetals, 792–800
Ordered solid solution, 387, 556
Organic light-emitting diodes, 802
Orientation polarization, 523, 877
Orthorhombic crystal system, 65, 66
Osmium, 562
Overaging, 461, 876
Overvoltage, 699–702
Oxidation, 691–692, 876
kinetics, 719–720
metals, 717–720
Ozone, degradation of polymers,
722, 723
P
Palladium, 174–175, 562
Paraffins, 104
Paramagnetism, 756–757, 876
900 • IndexParisons, 617, 634
Particle-reinforced composites,
649–653, 876
Pascal-second, 286
Passivity, 705–706, 876
Pauli exclusion principle, 22, 876
Pearlite, 401–402, 876
coarse, 436–437, 870
colonies, 401
as composite, 648
fine, 436–437, 449, 873
formation of, 401–402, 434–436,
446, 455
hardness vs. transformation
temperature, 451
mechanical properties, 448–452
Pentane, 104
Performance (materials), 3
Periclase, 569, 570, see also
Magnesium oxide
Periodic table, 25–26, 876
Peritectic reaction, 390, 876
Permalloy (45), magnetic
properties, 770
Permanent dipoles, 33, 523
Permeability (in polymers),
189–191
Permeability coefficient, 189
Permeability, magnetic, 754–755,
788, 792–793, 876
Permittivity, 299, 517–518, 788,
792–793, 876
Perovskite structure, 57, 526, 778
Perpendicular magnetic recording
media, 751, 774–775
PET, see Polyester(s)
Phase boundaries, 151–152
Phase diagrams, 876
binary eutectic systems, 374–387
binary isomorphous systems,
365–374
ceramic systems, 391–395
congruent phase transformations,
391
definitions/basic concepts,
360–363
eutectoid and peritectic
reactions, 390
intermediate phases in, 387, 389
interpretation of, 367–371
pressure-temperature (unary),
363–364
specific:
aluminum-copper, 418, 462
aluminum-neodymium, 417
aluminum oxide-chromium
oxide, 392
carbon dioxide (pressuretemperature), 421
cast iron, 550
copper-beryllium, 481
copper-nickel, 366
copper-silver, 375, 397
copper-zinc, 388, 390
halfnium-vanadium, 391
iron-carbon (graphite), 550
iron-iron carbide, 399
lead-tin, 377, 380–387
magnesium-lead, 389
magnesium oxide-aluminum
oxide, 393
nickel-titanium, 392
silica-alumina, 395
sugar-water, 361
tin-bismuth, 381
titanium-copper, 418
water (pressure-temperature),
359, 364, 419, 421
water-sodium chloride, 378
zirconia-calcia, 394
ternary, 395
Phase equilibria, 362–363, 876
Phases, 362, 876
Phase transformation diagrams:
continuous-cooling, 871
metals, 445–448, 478
glass-ceramics, 568
isothermal, 434–444, 874
Phase transformation rate, 433
martensitic transformation, 441
temperature dependence, 431
Phase transformations, 876
athermal, 441
classification, 423
shape-memory effect, 457–458
Phenol, 106
Phenol-formaldehyde (Bakelite):
in billiard balls, 542, 580
dielectric constant and dielectric
strength, 519
electrical conductivity, 515
mechanical properties, 206, 217
repeat unit structure, 110, 864
thermal properties, 737
Phenolics, trade names, characteristics, and applications, 579
Phenyl group, 105, 106
Phonons, 735, 741, 742, 876
Phosphorescence, 801, 876
Photoconductivity, 801, 876
Photomicrographs, 155, 876
Photonic signal, 808
Photons, 735, 789, 876
Photovoltaic solar cell, 786
Pickling, of steels, 714
Piezoelectricity, 575, 876
Piezoelectric ceramics, 527
in ink-jet printer head, 575
as Materials of Importance, 575
properties and applications, 575
in smart materials/systems, 11
Pilling-Bedworth ratio, 718, 876
selected metals, 718
Pitting corrosion, 709–710, 876
Plain carbon steels, 442, 544, 876
Planar atomic density, 80–81
Planck’s constant, 789, 876
Planes, see Crystallographic planes
Plane strain, 317, 876
Plane strain fracture toughness,
318, 876
ceramic-matrix composites,
673–674
selected materials, 319, 843–844
Plaster of Paris, 571, 599, 621
Plastic deformation, 211–222, 877
ceramics, 286
dislocation motion and, 261–272
in fracture, 310
influence on electrical
conductivity, 492–493
polycrystalline materials, 270–271
semicrystalline polymers, 287,
289–290
twinning, 272
Plasticizers, 630, 877
Plastics, 876
characteristics and applications,
577–579
in composites, 651
forming techniques, 631–634
Platinum, 652
atomic radius and crystal
structure, 47
electrical conductivity, 491
Plexiglass, see Poly(methyl
methacrylate)
Plywood, 678
p-n-p Junction transistors, 511–512
p-n Junctions:
for light-emitting diodes, 802
for rectification, 509–510
Point coordinates, 68–70
Point defects, 136–146, 877
Poise, 286
Index • 901Poisson’s ratio, 209–211, 877
values for various materials, 206,
837–838
Polarization, 519–520, 877. See also
Electronic polarization; Ionic
polarization; Orientation
polarization
Polarization (corrosion),
699–702, 877
corrosion rates from, 703–705
Polar molecules, 33, 877
Polyacetylene, repeat unit
structure, 516
Polyacrylonitrile (PAN):
carbon fibers, 667
repeat unit structure, 122, 864
Poly(alkylene glycol), as a
quenching agent, 609
Poly(amide-imide) (PAI), repeat
unit structure, 864
Polybutadiene, see Butadiene
Poly(butylene terephthalate) (PBT),
repeat unit structure, 865
Polycarbonate:
density, 833
degradation resistance, 721
mechanical properties, 206, 217,
836, 838, 842
melting and glass transition
temperatures, 467, 868
plane strain fracture toughness,
319
reinforced vs. unreinforced
properties, 662
repeat unit structure, 110, 865
trade names, characteristics, and
applications, 578
Polychloroprene, see Chloroprene;
Chloroprene rubber
Polychlorotrifluoroethylene, repeat
unit structure, 865
Polycrystalline materials, 85, 86, 877
plastic deformation, 270–271
Poly(dimethyl siloxane), 582
degradation resistance, 722
repeat unit structure, 582, 865
Polyester(s):
degradation resistance (PET), 721
density (PET), 833
fatigue behavior (PET), 337
magnetic storage tape, 776
mechanical properties (PET),
206, 217, 836, 842
melting and glass transition
temperatures (PET), 467, 868
in polymer-matrix composites,
668
recycle code and products
(PET), 823
repeat unit structure (PET),
110, 865
trade names, characteristics, and
applications, 579
Polyetheretherketone (PEEK), 669
degradation resistance, 721
melting and glass transition
temperatures, 868
repeat unit structure, 865
Polyetherimide (PEI), 669
Polyethylene, 107, 109
crystal structure of, 123
degradation resistance, 721
density, 833
dielectric constant and dielectric
strength, 519
electrical conductivity, 515
fatigue behavior, 337
index of refraction, 793
mechanical properties, 206, 217,
836, 838, 842
melting and glass transition
temperatures, 467, 868
recycle codes and products, 823
single crystals, 126
thermal properties, 737, 847,
850, 853
trade names, characteristics, and
applications, 578
ultra-high-molecular-weight, see
Ultra-high-molecular-weight
polyethylene
Poly(ethylene naphthalate), as
magnetic storage tape, 776
Poly(ethylene terephthalate)
(PET), see Polyester(s)
Poly(hexamethylene adipamide),
see Nylon 6,6
Polyimides:
glass transition temperature, 868
polymer-matrix composites,
666, 669
repeat unit structure, 866
Polyisobutylene:
melting and glass transition
temperatures, 868
relaxation modulus, 257
repeat unit structure, 118, 836
Polyisoprene, see Natural rubber
(polyisoprene)
Poly(lactic acid), 825
Polymer-matrix composites,
665–671, 877
Polymerization, 106–108, 627–629
degree of, 112
Polymer light-emitting diodes,
802–803
Polymers, 7–8, 106, 877. See also
Plastics
additives, 630–631
classification (molecular
characteristics), 120
coefficient of thermal expansion
values, 737, 847
conducting, 516–517
costs, 862–863
crosslinking, see Crosslinking
crystallinity, 122–127, 871
crystallization, 464–465
crystals, 125–127
defined, 7–8, 106
defects in, 143
deformation (semicrystalline):
elastic, 287, 288
plastic, 287, 289–290
degradation of, 720–724
density, 123
density values, 832–833
diffusion in, 189–191
ductility values, 217, 842
elastic modulus values, 206, 836
elastomers, 293–295, 580–582
electrical properties, 515,
516–517, 519, 856
fibers, 582–583
fracture mechanics, 328
fracture toughness values, 319, 844
glass transition, 466–467
glass transition temperatures,
466, 467, 868
as insulators, 515, 525
ladder, 724
as light-emitting diodes, 802–803
liquid crystal, 585–586
mechanical properties,
226–228, 239
factors that affect, 290–292
values of, 206, 217, 836, 838,
842, 844
melting of, 465–466
melting temperatures, 467, 868
miscellaneous applications, 583–584
molecular chemistry, 106–110
molecular configuration, 116–119
molecular shape, 113–115
molecular structure, 115–116
902 • IndexPolymers (Continued)
molecular weight, 111–113
natural, 103
opacity and translucency, 800–801
Poisson’s ratio values, 206, 838
radiation effects, 722–723
refraction indices, 793
semicrystalline, 123, 125–127,
287–292
specific heat values, 737, 853
spherulites in, 102, 126–127,
287, 292
stereoisomerism, 117–118
stress-strain behavior, 226–228
swelling and dissolution, 720–721
tensile strength values, 217, 842
thermal conductivity values, 737,
850–851
thermal properties, 737, 739,
743–744
thermoplastic, see Thermoplastic
polymers
thermosetting, see Thermosetting
polymers
types of, 103
viscoelasticity, 229–232
weathering, 724
yield strength values, 217, 842
Poly(methyl methacrylate):
density, 833
electrical conductivity, 515
fatigue behavior, 337
index of refraction, 793
mechanical properties, 206, 217,
836, 838, 842
melting and glass transition
temperatures, 868
plane strain fracture toughness,
319, 844
repeat unit structure, 110, 866
stress-strain behavior as function
of temperature, 228
trade names, characteristics, and
applications, 578
Polymorphic transformations, in
iron, 398–399
Polymorphism, 65, 877
Poly(paraphenylene terephthalamide), see Aramid
Poly(phenylene oxide) (PPO),
repeat unit structure, 866
Poly(phenylene sulfide) (PPS), 669
melting and glass transition
temperatures, 868
repeat unit structure, 866
Polypropylene, 108
degradation resistance, 721
density, 133, 833
fatigue behavior, 337
index of refraction, 793
kinetics of crystallization, 465
mechanical properties, 206, 217,
836, 838, 842
melting and glass transition
temperatures, 467, 868
plane strain fracture toughness,
844
recycle code and products,
823
repeat unit structure, 109, 866
thermal properties, 737, 847,
850, 853
trade names, characteristics, and
applications, 579
Polystyrene:
degradation resistance, 721
density, 833
dielectric properties, 519
electrical conductivity, 515
fatigue behavior, 337
index of refraction, 793
mechanical properties, 206, 217,
836, 838, 842
melting and glass transition
temperatures, 467, 868
plane strain fracture toughness,
319, 844
repeat unit structure, 110, 867
thermal properties, 737, 847,
850, 853
trade names, characteristics, and
applications, 579
viscoelastic behavior, 231–232
Polytetrafluoroethylene, 108
degradation resistance, 721
density, 133, 833
dielectric constant and dielectric
strength, 519
electrical conductivity, 515
fatigue behavior, 337
index of refraction, 793
mechanical properties, 206, 217,
836, 838, 842
melting and glass transition
temperatures, 467, 868
repeat unit structure, 109, 867
thermal properties, 737, 847,
851, 853
Poly(vinyl acetate), repeat unit
structure, 867
Poly(vinyl alcohol), repeat unit
structure, 867
Poly(vinyl chloride):
density, 833
mechanical properties, 206, 217,
836, 838, 842
melting and glass transition
temperatures, 467, 868
recycle code and products,
823
repeat unit structure,
109, 867
Poly(vinyl fluoride):
melting and glass transition
temperatures, 868
repeat unit structure, 867
Poly(vinylidene chloride):
melting and glass transition
temperatures, 868
repeat unit structure, 867
Poly(vinylidene fluoride):
glass transition temperature,
868
repeat unit structure, 867
Porcelain, 621
dielectric constant and dielectric
strength, 519
electrical conductivity, 515
microstructure, 624
Porosity:
ceramics, 224–226
formation during sintering,
625–626
influence on flexural strength,
ceramics, 224–226
influence on modulus of
elasticity, ceramics, 225
influence on thermal
conductivity, 743
optical translucency and opacity,
800
refractory ceramics, 570
Portland cement, 572
Portland cement concrete, 652
Posttensioned concrete, 653
Potassium chloride, bonding
energy, determination of, 38
Potassium niobate, 575
Powder metallurgy, 600, 877
Powder pressing, ceramics,
624–625
Powder x-ray diffraction
techniques, 89–91
Precipitation-hardenable stainless
steels, 548, 549
Index • 903Precipitation hardening,
459–464, 877
heat treatments, 459–461
mechanism, 461–464
Prepreg production processes,
676, 877
Pressing:
ceramics, powdered, 624–626
glass, 616
Prestressed concrete,
652–653, 877
Primary bonds, 28–32, 877
Primary creep, 343
Primary phase, 385, 77
Principal quantum number, 21
Principle of combined action,
648, 877
Process annealing, 602, 877
Processing, materials, 3
Processing/structure/properties/
performance correlations:
glass-ceramics, 97, 300, 590,
591, 640
summary, 641
introduction, 13–15
polymer fibers, 37, 130, 249,
301, 475
summary, 641
silicon semiconductors, 36, 164,
193, 194, 531, 532, 533, 534
summary, 534
steels (iron-carbon alloys), 164,
165, 194, 248, 299, 300, 413,
473, 474
summary, 638, 639
topic timelines, 14–15
Proeutectoid cementite, 405, 877
Proeutectoid ferrite, 404, 877
Propane, 104
Properties, 877. See also
Processing/structure/
properties/performance
categories of, 3
Proportional limit, 212, 877
Protons, 18
PTFE, see Polytetrafluoroethylene
p-Type semiconductors, 500–501,
877
Pultrusion, 675
Pyrex glass:
composition, 567
density, 832
fracture of soda-lime imitation,
746
electrical resistivity, 856
index of refraction, 793
mechanical properties, 835,
838, 841
plane strain fracture toughness,
844
thermal properties, 737, 846,
850, 853
thermal shock, 745
Pyroceram:
composition, 567
density, 832
electrical resistivity, 856
flexural strength, 217
modulus of elasticity, 206
plane strain fracture toughness,
844
Poisson’s ratio, 838
thermal properties, 846, 850, 853
Q
Quantum mechanics, 19, 877
Quantum numbers, 20–22, 877
magnetic, 22, 756
Quartz, 60, 620–621, 624
index of refraction, 793
as piezoelectric material, 527
Quenching media, 608–610
R
Radiation effects, polymers,
722–723
Random copolymers, 122, 877
Range of stress, 333, 334
Recombination, electron-hole,
510, 796, 802
in light-emitting diodes, 802
Recovery, 279, 877
Recrystallization, 280–284, 602, 877
effect on properties, 282
kinetics for copper, 433
Recrystallization temperature,
280, 282–283, 877
dependence on alloy content,
280
dependence on percent cold
work, 280, 282
selected metals and alloys, 283
Rectification, 509–510
Rectifying junctions, 509, 877
Recycling:
issues in materials science and
engineering, 821–824, 826
of beverage cans, 816
of composite materials, 826
of glass, 822
of metals, 822
of plastics and rubber, 822–823,
826
Recycling codes and products,
823
Reduction (electrochemical),
691, 877
Reduction in area, percent, 216
Reflection, 794, 877
Reflectivity, 790, 798
Refraction, 792–794, 877
index of, 792, 874
Refractories (ceramics), 566,
569–571, 877
corrosion, 720
Refractory metals, 562
Reinforced concrete, 652–653, 877
Reinforcement efficiency, table of,
663
Relative permeability, 754, 755, 877
Relative permittivity, see Dielectric
constant
Relaxation frequency, 524, 877
Relaxation modulus, 229–231, 877
Relaxation time, 257
Remanence (remanent induction),
765, 878
Repeated stress cycle, 333
Repeat units,
bifunctional and trifunctional,
109
table of, 109–110
Residual stresses, 602, 878. See also
Thermal stresses
glass, 618
martensitic steels, 452
Resilience, 216, 218, 878
Resin, polymer, 665
Resistance (electrical), 484
Resistivity, 878. See also Electrical
resistivity
Resolved shear stresses, 267, 878
Retained austenite, 441
Reverse bias, 510, 878
Reversed stress cycle, 333
Rhodium, 562
Rhombohedral crystal system,
65, 66
Rochelle salt, 526
Rock salt structure, 56, 58
Rockwell hardness tests, 233–235
Rolling, of metals, 597–598, 878
Rouge, 571
Rovings, 675
904 • IndexRubbers, 115, 122
natural, see Natural rubber
(polyisoprene)
synthetic, 122, 580–581, 582
trade names, characteristics, and
applications, 581
Rubbery region, polymers, 230. 231
Ruby, see also Aluminum oxide
lasers, 804–805
optical characteristics, 799
Rule of mixtures, 878
composites, 650, 657–658, 660,
661, 662, 670
electrical resistivity, 493
Rupture, 343, 878
Rupture lifetime, 343, 344
extrapolation of, 346–347
Rust, 692
Ruthenium, 562
S
Sacrificial anodes, 716, 878
Safe stress, 242, 878
Safety factors, 242, 321
Samarium-cobalt magnets, 772
Sand casting, 599
Sandwich panels, 649, 678–679, 878
Sapphire, see also Aluminum oxide
optical transmittance, 799
Saturated hydrocarbons, 104, 878
Saturation, extrinsic
semiconductors, 502
Saturation magnetization, 758,
761–762, 764–765, 878
temperature dependence, 763
SBR, see Styrene-butadiene rubber
Scaling, 717
Scanning electron microscopy,
158, 878
Scanning probe microscopy,
12, 136, 158–159, 878
Scanning tunneling microscope, 64
Schmid factor, 303
Schottky defect, 137–138, 188, 878
equilibrium number, 139–140
Scission, 722, 878
Scleroscope hardness, 236
Screw dislocations, 147, 149, 262,
263, 878. See also Dislocations
in polymers, 143
Seawater, as corrosion
environment, 714
Secant modulus, 207
Secondary bonds, 32–33, 878
Secondary creep, 343–344
Segregation, 374
Selective leaching, 711, 878
Self-diffusion, 172, 878
Self-interstitials, 136, 878
SEM, see Scanning electron
microscopy
Semiconductor devices, 509–515
Semiconductor lasers, 805–807
Semiconductors:
band structure, 48, 489–490
carbon nanotubes as, 64
in computers, 513
costs, 861, 862
defined, 10, 486, 878
diffusion in, 184–187
extrinsic, 499–502, 872
fullerenes as, 65
intrinsic, 496–498, 874
intrinsic carrier concentration,
498, 502
light absorption, 795–797
n-Type, 499–501, 876
p-Type, 500–501, 877
temperature dependence:
electron concentration,
n-type Si, 503
electron mobility, Si, 504
hole mobility, Si, 504
intrinsic carrier concentration
of Ge, 503
intrinsic carrier concentration
of Si, 503
Semicrystalline polymers, 123
deformation mechanisms:
elastic, 287, 288
plastic, 287, 289
Sensors, 11, 573
Severity of quench, 609
Shape-memory:
alloys, 11
phase transformations, 456–459
thermoelastic behavior, 459
Shear deformation, 203, 222
Shear modulus, 208
relationship to elastic modulus,
210
selected metals, 206
Shear strain, 203, 878
Shear stress, 205, 878
resolved, 267
resolved from tensile stress, 205
Shear tests, 204–205
Sheet glass forming (float process),
618
Shot peening, 341
Shrinkage, clay products, 622–623
Shrink-wrap polymer films, 292
Silica, 60
crystalline and noncrystalline
structures, 92
fibers for optical
communications, 574, 808–810
fused, see Fused silica
as refractory, 570
Silica-alumina phase diagram, 395
Silica glasses, 92–93
viscosity, 616
Silicates:
glasses, 92–93
layered, 61–62
tetrahedral structure, 60
types and structures, 59–62, 93
Silicon:
bonding energy and melting
temperature, 30
conduction in, 498
cost, 862
electrical characteristics, 497
electron concentration vs.
temperature, n-type, 503
electron/hole mobility vs.
impurity concentration, 504
electron/hole mobility vs.
temperature, 504
fracture toughness, 574
intrinsic carrier concentration vs.
temperature, 503
in MEMS, 574
vacancy (surface), 136
Silicon carbide:
as abrasive, 571
flexural strength, 217, 842
hardness, 239
modulus of elasticity, 206, 835
properties as whiskers and fibers,
664
as refractory, 571
Silicon dioxide, see Silica
Silicone rubber, 581, 582
characteristics and applications,
581
degradation resistance, 722
Silicon nitride:
ceramic ball bearings, 574, 576
compressive strength, 576
flexural strength, 217, 842
fracture strength distribution, 323
hardness, 239
modulus of elasticity, 206, 836
properties as a whisker, 664
Index • 905Silly putty, 229
Silver, 562
atomic radius and crystal
structure, 47
electrical conductivity, 491, 494
slip systems, 266
thermal properties, 737
Simple cubic crystal structure, 98
Single crystals, 85, 878
slip in, 267–270
Sintered aluminum powder (SAP),
653
Sintering, 625, 878
SI units, 828–829
Ski, cross-section, 646
Slip, 212, 263, 878
compared to twinning, 273
polycrystalline metals, 270–271
single crystals, 267–270
Slip casting, 621–622, 878
Slip direction, 265
Slip lines, 268, 270
Slip plane, 262, 263, 265
Slip systems, 265–267, 878
selected metals, 266
Small-angle grain boundaries,
151, 275
Smart materials, 11
Societal considerations, materials
science, 819–826
Soda-lime glasses:
composition, 567
dielectric properties, 519
electrical conductivity, 515
hardness, 239
thermal properties, 737
thermal shock, 745
viscosity, 616
Sodium chloride:
bonding energy and melting
temperature, 30
ionic bonding, 29
structure, 56, 84
Sodium-silicate glass, 93
Softening point (glass), 616, 878
Soft magnetic materials,
768–770, 878
properties, 770
Soils, as corrosion environments,
715
Solar panels, 786
Soldering, 381, 600, 878
Solders, lead-free, 381
Solid-solution strengthening,
275–276, 374, 878
Solid solutions, 140–141, 878
in ceramics, 142
intermediate, 387, 390, 874
interstitial, 141, 874
in metals, 140–141
ordered, 387, 556
terminal, 387, 879
Solidus line, 366, 376, 878
Solubility limit, 361, 878
factors that influence for solid
phases, 141
Solutes, 879
defined, 140
Solution heat treatment, 460, 879
Solvents, 879
defined, 140
Solvus line, 376, 879
Sonar, use of piezoelectric
ceramics in, 575
Specific heat, 734, 879
values for selected materials,
737, 851–854
Specific modulus, 654, 879
selected fiber-reinforcement
materials, 664
Specific strength, 558, 654, 879
selected fiber-reinforcement
materials, 664
Sphalerite structure, 56, 58
Spheroidite, 439–440, 879
hardness and ductility, 450
Spheroidization, 603, 879
Spherulites, in polymers,
102, 126–127, 879
alteration during deformation,
287–290
photomicrograph of
polyethylene, 127
transmission electron
micrograph, 102, 126
Spinel, 58, 84, 393
flexural strength, 217
index of refraction, 793
modulus of elasticity, 206
structure, 84
thermal properties, 737
Spin magnetic moment, 22, 756
Spinnerets, 634
Spinning, polymer fibers,
634–635, 879
Stabilized zirconia, 394, 673
Stabilizers, 631, 879
Stacking faults, 153
Stainless steels, 548–549, 879. See also
Ferrous alloys; specific steels
compositions, properties, and
applications for selected, 549
creep resistance, 347
electrical conductivity, 491
passivity, 705
thermal properties, 737
weld decay, 711
Standard deviation, 240–241
Standard emf series, 694–695
Standard half-cells, 694, 879
Static fatigue, 323
Steady-state creep rate, 343
Steady-state diffusion, 879
Steatite, dielectric properties, 519
Steels, 401. See also Alloy steels;
Stainless steels
AISI/SAE designation scheme,
547
classification, 442, 544
costs, 859–860
elastic and shear moduli, 206
electrical conductivity, 491
fatigue behavior (1045), 355
heat treatments, 604–613
impact energy, 328
magnetic properties, 772
overview of types, 543–549
plane strain fracture toughness,
319, 843
Poisson’s ratio, 206
properties as wires (fiber
reinforcement), 664
thermal properties, 737
yield and tensile strengths,
ductility (1020), 217
Step reaction polymerization,
see Condensation
polymerization
Stereoisomerism, 879
polymers, 117–118
Sterling silver, 140, 562
Stiffness, see Modulus of elasticity
Stoichiometry, 138, 879
Stone age, 2
Strain, 204. See also Stress-strain
behavior
engineering, 204, 879
lattice, 264–265, 276, 463–464, 875
shear, 205, 878
true, 220, 880
Strain hardening, 222, 223,
276–279, 597, 879
corrosion and, 707
influence on electrical resistivity,
492, 493
906 • IndexStrain hardening (Continued)
influence on mechanical
properties, 277, 278
recrystallization after, 280–282
Strain-hardening exponent, 220, 278
determination of, 255
selected metal alloys, 221
Strain point (glass), 616, 879
Strength, 212
flexural, 223–224, 873
fracture, 214
ranges for material types
(bar chart), 6
Strengthening of metals:
grain size reduction, 273–275
mechanism, 273
solid-solution strengthening,
275–276
strain hardening, see Strain
hardening
Stress, see also Stress-strain
behavior
critical (for fracture), 316
effect on creep, 344–345
engineering, 203, 879
mean (fatigue), 333, 334, 339, 340
normal (resolved from pure
tensile), 205
range (fatigue), 333, 334
residual, see Residual stresses
safe, 242, 878
shear, 205, 267, 878
shear (resolved from pure
tensile), 205
thermal, see Thermal stresses
true, 219, 880
working, 242
Stress amplitude, 333, 334
Stress concentration, 314–317,
328, 339, 879
polymers, 326
Stress concentration factor, 316
Stress corrosion cracking,
712–713, 879
in ceramics, 323
Stress raisers, 315, 339, 879
in ceramics, 225, 322
Stress ratio, 334
Stress relaxation measurements, 230
Stress relief annealing, 602, 879
Stress state, geometric
considerations, 205
Stress-strain behavior:
brass, 214
cast iron, gray, 251
ceramics, 225
composite, fibrous (longitudinal),
656
elastic deformation, 205–207
natural rubber, vulcanized and
unvulcanized, 295
nonlinear (elastic), 207
plastic deformation, 212–215
polymers, 226–228
shape-memory alloys, 459
steel alloy, 251
for steel, variation with percent
cold work, 278
true, 220
Striations (fatigue), 338–339
Structural clay products, 569, 879
Structural composites, 677–679, 879
Structure, 3. See also Processing/
structure/properties/
performance correlations
atomic, 18–25
definition, 879
Structures, crystal, see Crystal
structures
Styrene, 122
Styrene-butadiene rubber (SBR),
122
characteristics and applications,
579
degradation resistance, 722
Styrenic block copolymers, 584,
587–588
Substitutional impurity defects, 141
Substitutional solid solutions,
141, 879
Superalloys, 562
compositions of selected, 564
creep resistance, 347
fiber reinforcement, 671
Superconductivity, 776–779, 879
applications, 778–779
Superconductors, 776
critical properties, 778
high-temperature, 778
types I and II, 777
Supercooling, 428, 434, 879
degrees for homogeneous
nucleation, 428
Superficial Rockwell hardness
tests, 233–235
Superheating, 434, 879
Super Invar, 737, 740
as low-expansion alloy, 740
Supermalloy, magnetic properties,
770
Surface energy, 150, 424
Susceptibility, magnetic, 754
Sustainability, 821
Symbols, list, xxiii–xxv
Syndiotactic configuration, 118, 879
Synthetic rubbers, 122, 581, 722
Systems:
definition, 361, 879
homogeneous vs. heterogeneous,
362
T
Talc, 62
Tangent modulus, 207
Tantalum, 562
Tape casting, 615, 626–627
Tarnishing, 717
Tear strength, polymers, 239
Teflon, see Polytetrafluoroethylene
TEM, see Transmission electron
microscopy
Temperature gradient, 741
thermal stresses, 745
Temper designation, 558, 879
Tempered martensite, 452–455, 879
hardness vs. carbon content, 452
mechanical properties vs.
tempering temperature, 454
dependence on cylinder
diameter, 612–613, 614
Temper embrittlement, 455
Tempering:
glass, 324, 618–619, 643
steels, 452–454
Tennis balls (nanocomposites in),
679–680
Tensile strength, 213–214, 879
carbon nanotubes, 64
correlation with hardness, 237–238
fibrous composites, 660–661
fine pearlite, 449
influence of recrystallization on,
282
precipitation hardened
aluminum alloy, 463
ranges for material types
(bar chart), 6
selected fiber-reinforcement
materials, 664
selected metals, 838–841
selected polymers, 842
tempered martensite, 454
values for various materials,
217, 838–843
Index • 907Tensile test apparatus,
200, 202–204
Tensile tests, 202–204. See also
Stress-strain behavior
Terephthalic acid (structure), 629
Terminal solid solutions,
387, 879
Ternary phase diagrams, 395
Tertiary creep, 343, 344
Tetragonal crystal system, 65, 66
Tetrahedral position,
83, 760, 879
Textile fibers, 582–583
Texture:
magnetic, 87, 769
rolling (sheet, BCC iron), 769
Thermal conduction, 735, 741
Thermal conductivity,
741, 742–744
influence of impurities, 742
selected materials, 737, 848–851
Thermal diffusivity, 749
Thermal expansion, 738–740
linear coefficient of, 342, 738,
744–746, 880
relation to bonding, 738
selected materials, 737, 845–848
volume coefficient of, 738
Thermal fatigue, 342, 880
Thermally activated processes,
431, 880
Thermal properties, 734. See also
specific thermal properties
selected materials, 737, 845–854
Thermal shock, 618, 739, 880
brittle materials, 745–746
maximum temperature change
without, 750
Thermal shock resistance,
745–746
Thermal stresses, 341–342,
744–746, 880
avoidance at metal-to-glass
junctions, 740
glass, 618
Thermal tempering (glass),
618–619, 880
Thermoelastic phenomenon, 459
Thermoplastic elastomers,
587–588, 880
Thermoplastic polymers, 120, 880
characteristics and applications,
578–579
degradation resistance, 721
forming techniques, 631–634
Thermosetting polymers, 120, 880
characteristics and applications,
579
degradation resistance, 721
forming techniques, 631–634
Thermostat (operation of), 733
Thoria-dispersed (TD)
nickel, 653
Tie lines, 367, 880
Tilt boundaries, 151, 152
Time-temperature-transformation
diagrams, see Isothermal
transformation diagrams
Tin, 564
allotropic transformation for, 67
crystal structures, 67
density, 832
electrical resistivity, 855
mechanical properties,
835, 838, 841
recrystallization temperature,
283
superconducting critical
temperature, 778
thermal properties,
846, 849, 852
Tin cans, 716
Titanium:
atomic radius and crystal
structure, 47
density, 831
elastic and shear moduli, 206
electrical resistivity, 855
Poisson’s ratio, 206, 837
slip systems, 266
superconducting critical
temperature, 778
thermal properties,
845, 849, 852
yield and tensile strengths,
ductility, 217, 840
Titanium alloys, 560–562, 563
compositions, 858
densities, 831
electrical resistivities, 855
mechanical properties,
834, 837, 840
plane strain fracture toughness,
319, 844
properties and applications of,
563
thermal properties,
845, 849, 852
Titanium dioxide, crystal structure,
100
Tool steels, 547–548
Top-down science, 11
Torque, 203
Torsion, 204–205
Torsional deformation, 203, 222
Torsional tests, 204–205
Toughness, 218–219, 880
Tows, 675
Trade names:
selected elastomers, 581
selected plastics, 578–579
Trans, 119, 880
Transducers, 526, 575
Transfer molding, plastics, 632
Transformation rate,
431–433, 880
temperature dependence,
432
Transformation toughening,
673
Transformer cores, 769
Transgranular fracture,
313–314, 880
Transient creep, 343
Transistors, 511–513
Transition metals, 25
Transition temperature, ductilebrittle, see Ductile-to-brittle
transition
Translucency, 790, 880
insulators, 800–801
Transmission (of light), 798
Transmission electron microscopy,
150, 157–158, 880
Transmissivity, 790
Transparency, 790, 880
Transverse bending test,
223–224
equation for maximum
deflection, 256, 670
Transverse direction, 656, 880
Transverse loading, composites,
659–660
Triclinic crystal system, 66
anisotropy in, 86
Tridymite, 60
Trifunctional (polymers),
109, 880
Trigonal crystal system, see
Rhombohedral crystal
system
Triple point, 364
True stress/strain, 219–221, 880
T-T-T diagrams, see Isothermal
transformation diagrams
908 • IndexTungsten, 562
atomic radius and crystal
structure, 47
bonding energy and melting
temperature, 30
density, 831
elastic and shear moduli, 206
electrical resistivity, 855
Poisson’s ratio, 206, 837
properties as wire, 664
recrystallization temperature,
283
slip systems, 266
superconducting critical
temperature, 778
thermal properties, 737, 846,
849, 852
yield and tensile strengths,
ductility, 841
Tungsten carbide:
as abrasive, 571
hardness, 239
Turbine blades, 347
Twin boundaries, 152
Twinning, 272
compared to slip, 273
role in shape-memory effect,
457–458
Twins, 152
U
Undercooling, see Supercooling
UHMWPE (Ultra-highmolecular-weight
polyethylene), 585, 880
properties as a fiber, 664
Unary phase diagrams, 363–364
Uniaxial powder pressing, 625
Unidirectional solidification, 347
Uniform corrosion, 707
Unit cells, 46–47, 880. See also
Crystal structures
crystal systems, 65, 66
Units:
electrical and dielectric
parameters, 521
magnetic parameters, 755
SI, 828–829
Unsaturated hydrocarbons,
104, 880
UNS designation scheme, 547
Upper critical temperature,
603, 880
Upper yield point, 212, 213
V
Vacancies, 136, 880
in ceramics, 137
diffusion, 172, 173, 178, 880
equilibrium number, 136
in polymers, 143
Valence band, 488, 880
Valence electrons, 22, 880
van der Waals bonding, 32–33,
35, 880
in clays, 61
gecko lizards, 17
hydrocarbons, 104
in polymers, 116, 290
Vermiculite, 679
Vibrational heat capacity, 735
Vibrations, atomic, 153, 735
Vickers hardness tests, 234, 236
Vinyl esters, polymer-matrix
composites, 668
Vinyls, 579
Viscoelastic creep, 232
Viscoelasticity, 209, 229–232, 880
Viscoelastic relaxation modulus,
229–231, 877
Viscosity, 286, 643, 880
temperature dependence for
glasses, 616
Viscous flow:
in ceramics, 286
in polymers, 230
Visible spectrum, 788
Vision (glass ceramic), 568
Vitreous silica, see Fused silica
Vitrification, 623, 880
Volatile organic compound (VOC)
emissions, 583, 680
Volume defects, 153
Volume expansion coefficient,
738
Volume fraction (phase), 370
Vulcanization, 116, 294, 880
Vycor, 567
W
Wallner line, 325
Water:
as corrosion environment, 714
bonding energy and melting
temperature, 30
desalination of, 190
hydrogen bonding in, 33, 34
phase diagram (pressuretemperature), 359, 364, 419
as quenching medium, 609
volume expansion upon freezing,
34
Wave-mechanical atomic model,
20, 880
Weathering, of polymers, 724
Weight-average molecular weight,
111–112
Weight percent, 143–145, 880
Weld decay, 711, 881
Welding, 600–601, 881
Wetting, 429
Whiskers, 317, 664, 881
White cast iron, 551, 553–554, 881
Whitewares, 566, 569, 620, 881
Wiedemann-Franz constant, 742
values of, for metals, 737
Wiedemann-Franz law, 742
Wires, 664
Wood:
as composite, 648
cost, 863
density, 833
electrical resistivity, 857
modulus of elasticity, 837
specific heat, 854
tensile strength, 843
thermal conductivity, 851
thermal expansion coefficient,
848
Work hardening, see Strain
hardening
Working point (glass), 616, 881
Working range (glass), 616
Working stress, 242
Wristwatches, low-expansion alloys
in, 740
Wrought alloys, 556, 881
Wüstite, 138, 538
X
X-ray diffraction, 44, 87–91
X-rays, 787, 788
Y
Yielding, 212, 881
Yield point phenomenon,
212, 213
Yield strength, 212, 214, 227, 881
dependence on grain size
(brass), 274
fine pearlite, 449
selected metals, 838–841
Index • 909Yield strength (Continued)
selected polymers, 842
tempered martensite, 454
values for various materials, 217,
319, 838–843
Young’s modulus, see Modulus of
elasticity
Yttrium barium copper oxide, 778
Yttrium iron garnet (YIG), 761
Z
Zinc:
atomic radius and crystal
structure, 47
density, 832
electrical resistivity, 855
mechanical properties,
835, 838, 841
recrystallization temperature, 283
slip systems, 266
thermal properties, 846, 849, 852
Zinc alloys, 556
Zinc blende structure, 56, 58
Zinc telluride, electrical
characteristics, 497
Zirconia, 571
density, 832
electrical resistivity, 856
flexural strength, 217, 842
hardness, 239
modulus of elasticity, 206, 836
plane strain fracture toughness,
844
Poisson’s ratio, 838
as refractory, 571
stabilized, 394
transformation toughening, 673
Zirconia-calcia phase diagram,
394
Zirconium:
alloys, 566
density, 832
electrical resistivity, 855
mechanical properties,
835, 838, 841
slip systems, 266
thermal properties, 846, 849, 852
910 • Index
كلمة سر فك الضغط : books-world.net
The Unzip Password : books-world.net

تحميل

يجب عليك التسجيل في الموقع لكي تتمكن من التحميل
تسجيل | تسجيل الدخول

التعليقات

اترك تعليقاً