Fundamentals of Electric Machines – A Primer with MATLAB

Fundamentals of Electric Machines – A Primer with MATLAB
اسم المؤلف
Warsame Hassan Ali , Samir Ibrahim Abood , Matthew N. O. Sadiku
التاريخ
25 مارس 2021
المشاهدات
596
التقييم
(لا توجد تقييمات)
Loading...

Fundamentals of Electric Machines – A Primer with MATLAB
Warsame Hassan Ali , Samir Ibrahim Abood , Matthew N. O. Sadiku
Contents
Preface .xv
Acknowledgments . xvii
Authors . xix
1. Basic Concepts of Magnetism 1
1.1 History of Magnetism 1
1.2 The Cause of Magnetism .2
1.3 Types of Magnets 3
1.4 Applications of Magnet 4
1.5 Magnetic Materials .4
1.6 Lines of Magnetic Forces .6
1.7 Magnetic Force 8
1.8 The Direction of Magnetic Field Lines .8
1.9 Magnetic Field and Its Polarity . 11
1.10 Magnetism of Magnetic Materials 12
1.11 Force Generated in the Field 13
1.12 Hysteresis Loop . 16
Problems 17
2. Magnetic Circuit . 19
2.1 Magnetic Quantities . 19
2.1.1 Flux Density . 19
2.1.2 Permeability . 19
2.1.3 Magnetic Reluctance .20
2.2 Electromagnetic Induction 27
2.3 Induced Electric Motive Force (EMF) .30
2.4 Types of Inductance 32
2.4.1 Self-Inductance 32
2.4.2 Mutual Inductance 33
2.5 Stored Energy 36
Problems 37
3. Alternating Current Power 39
3.1 Sinusoidal Wave Cycle and Frequency 39
3.2 Electric Power Generation . 41
3.3 Terms and Concepts .42
3.4 AC Current Values 43
3.4.1 The Maximum Value of the Alternating Current 44
3.4.2 Average Value of Alternating Current (Mean Value) .44
3.4.3 Actual AC Value 44
3.4.4 The Instantaneous Value of Alternating Current .44viii Contents
3.5 AC Circuits .45
3.5.1 AC Circuit Containing Pure Resistance 45
3.5.2 AC Circuit with Inductive Reactance .46
3.5.3 AC Circuit with Capacitive Reactance .47
3.6 Series Impedance Connection to the AC Circuit 49
3.6.1 R-L Series Circuit .49
3.6.2 R-C Series Circuit 50
3.6.3 R-L-C Series Circuit 52
3.7 Parallel Connection .54
3.7.1 Parallel R-L Circuit 54
3.7.2 Parallel R-C Circuit .55
Problems 62
4. Transformers 65
4.1 Installation of the Transformer .65
4.2 Core Shape . 67
4.3 Principle of Operation 69
4.4 Ideal Transformer 69
4.5 Transformer Rating .72
4.6 Transformer Operation 73
4.6.1 The Transformer Operation at No-Load 73
4.6.2 The Operation Transformer at Load 74
4.7 Non-ideal Transformer Equivalent Circuits 76
4.8 Determination of Equivalent Circuit Parameters .79
4.8.1 No-Load Test (Determine Rc and Xm) .79
4.8.2 Short-Circuit Test (Determine Req.H and Xeq.H) 80
4.9 Transformer Voltage Regulation . 81
4.10 Three-Phase Transformers .85
4.10.1 Three-Phase Transformer Configuration 85
4.10.2 Three-Phase Transformer Connections .85
4.10.2.1 Three-Phase Transformer Star and Delta Configurations .86
4.10.2.2 Transformer Star and Delta Configurations 87
4.10.2.3 Transformer Winding Identification .87
4.10.2.4 Transformer Delta and Delta Connections 88
4.10.2.5 Transformer Star and Star Connections .88
4.10.3 Three-Phase Voltage and Current 89
4.10.3.1 Star-Delta Turns Ratio .89
4.10.3.2 Delta-Star Turns Ratio .90
4.10.4 Three-Phase Transformer Construction 91
Problems 92
5. Transformer Design .93
5.1 The Output Equations 93
5.1.1 Single-Phase Core Type Transformer .94
5.1.2 Single-Phase Shell Type Transformer 95
5.1.3 Three-Phase Shell Type Transformer .96
5.2 Choice of Magnetic Loading (Bm) .97
5.3 Choice of Electric Loading (Δ) .97
5.4 Core Construction .98Contents ix
5.5 Electric Motive Force (EMF) per Turn .99
5.6 Estimation of Core X-Sectional Area Ai 100
5.7 Graphical Method to Calculate Dimensions of the Core . 101
5.8 Estimation of Main Dimensions 102
5.9 Estimation of Core Loss and Core Loss Component of No-Load Current Ic . 103
5.10 Estimation of Magnetizing Current of No-Load Current Im 104
5.11 Estimation of No-Load Current and Phasor Diagram . 105
5.12 Estimation of Number of Turns on LV and HV Windings 105
5.13 Estimation of Sectional Area of Primary and Secondary Windings 105
5.14 Determination of R1, R2, and Copper Losses 106
5.15 Determination of Efficiency 107
5.16 Estimation of Leakage Reactance 107
5.17 Calculation of Voltage Regulation of Transformer 109
5.18 Transformer Tank Design . 110
5.19 Calculation of Temperature Rise . 111
5.20 Calculation Cooling Tubes Numbers 111
5.21 The Weight of Transformer . 112
5.22 MATLAB Programs . 113
5.22.1 Single-Phase Transformer Design Using MATLAB Program . 113
5.22.2 Three-Phase Transformer Design Using MATLAB Program 116
5.22.3 Three-Phase Transformer Design Using MATLAB Program 119
Problems 122
6. Direct Current Machines 125
6.1 DC Machines .125
6.2 DC Machine Parts 125
6.2.1 Stator 125
6.2.2 Rotor . 128
6.2.3 Commutator 128
6.2.4 Armature Coils . 129
6.2.4.1 Lap Winding . 129
6.2.4.2 Wave Winding 129
6.3 DC Generator 130
6.3.1 Calculate the Motive Force Generated by the Generator (E.M.F) . 130
6.3.2 Method of Excitation of DC Machines 131
6.3.2.1 Separately Excited Generator 131
6.3.2.2 Self-Excited Generator . 131
6.3.3 Losses in DC Generator . 144
6.3.4 Efficiency Calculation 146
6.4 DC Motors . 148
6.4.1 Types of DC Motors . 150
6.4.1.1 Series Motor . 150
6.4.1.2 Shunt Motor . 154
6.4.1.3 Compound DC Motor 158
6.4.2 DC Motor Speed Control . 161
6.4.2.1 Speed Control of the Shunt Motor . 161
6.4.2.2 Speed Control of the Series Motor . 162
6.4.3 Starting Methods 163
Problems 163x Contents
7. AC Motors 165
7.1 Single-Phase Motor . 165
7.1.1 Induction Motors . 165
7.1.1.1 Motor Construction 166
7.1.1.2 The Speed 169
7.1.1.3 The Theory of Work . 170
7.1.1.4 Starting Methods of the Motor . 170
7.1.2 Synchronous Motors . 174
7.1.2.1 Synchronous Motor Construction . 175
7.1.2.2 Synchronous Motor Operation Theory . 175
7.1.2.3 Synchronous Motor Features . 175
7.1.3 Universal Motor . 175
7.1.3.1 Universal Motor Construction . 176
7.1.4 Centrifuge Switches . 176
7.2 Three-Phase Induction Motor . 178
7.2.1 Construction of Induction Machines 178
7.2.1.1 Squirrel Cage Motor . 179
7.2.1.2 Slip Ring Motors . 179
7.2.2 Operation 181
7.2.3 Speed-Torque Characteristics of Induction Motor 182
7.2.4 Speed-Torque Characteristics of Induction Motors Using
MATLAB Program . 183
7.2.5 Basic Equations and Equivalent Circuit Diagram . 183
7.2.6 No-Load Test and Blocked Rotor Test . 187
7.2.6.1 No-Load Test . 187
7.2.6.2 Blocked Rotor Test 189
Problems 191
8. Power Electronics 193
8.1 Rectifiers (AC-DC Converters) . 193
8.1.1 Rectifier Types 193
8.1.2 Performance Parameters . 194
8.1.3 Uncontrolled Rectifiers . 196
8.1.3.1 Half-Wave Uncontrolled Rectifiers 196
8.1.3.2 Full-Wave Rectifiers .203
8.1.4 Rectifiers with Filter Circuits . 212
8.1.5 Controlled Rectifiers 213
8.1.5.1 Thyristor Firing Circuits . 213
8.1.5.2 The Use of a Thyristor in the Controlled Rectifier Circuits . 214
8.1.5.3 Single-Phase Half-Wave Controlled Rectifier with
Resistive Load . 215
8.1.5.4 Single-Phase Half-Wave Control Rectifier with R-L Load . 216
8.1.5.5 Single-Phase Full-Wave Control Rectifier with R-L Load 220
8.1.5.6 Single-Phase Full-Wave Half Control Rectifier with R-L
Load 223
8.2 Power Electronics Circuits with MATLAB Program .226
8.2.1 MATLAB Simulation of Single-Phase Half-Wave Uncontrolled
Rectifier .226Contents xi
8.2.2 MATLAB Simulation of Single-Phase Half-Wave Controlled Rectifier 228
8.2.3 MATLAB Simulation of Single-Phase Half-Wave Controlled
Rectifier with an Inductive Load .230
8.3 DC-DC Converter Basics 237
8.3.1 Step-Down (Buck) Converter . 237
8.3.1.1 Transition between Continuous and Discontinuous 238
8.3.1.2 Voltage Ratio of Buck Converter (Discontinuous Mode) 239
8.3.2 Step-Up (Boost) Converter 240
8.3.3 Buck-Boost Converter 242
8.3.4 Converter Comparison 243
Problems 246
9. Concept of DC Drive 251
9.1 DC Motors Drive . 251
9.1.1 Advantages . 251
9.1.1.1 Easy to Understand the Design 251
9.1.1.2 Easy to Control the Speed . 252
9.1.1.3 Easy to Control Torque 252
9.1.1.4 Simple, Cheap Drive Design . 252
9.1.2 Disadvantages 252
9.2 Torque-Speed Characteristics 257
9.3 DC Motors Parametric Methods .260
9.3.1 Separate Excited and Shunt Motor 260
9.3.1.1 Adding Resistance to the Armature 262
9.3.1.2 Changing the Armature Supply Voltage 265
9.3.1.3 Changing the Field Flux 265
9.3.2 Series Motor 269
9.4 DC Drive Circuits 272
9.4.1 DC Drive Rectifier Circuits 272
9.4.1.1 Single-Phase Half-Wave Converter Drives a Separately
Excited DC Motor .272
9.4.1.2 Single-Phase Full-Wave Converter Drives a Separately
Excited DC Motor . 276
9.5 DC Chopper Drive 280
9.6 Electrical Braking of Separate Excited DC Motor .284
9.6.1 Generator Braking 284
9.6.2 Supply Reversing Braking 286
9.6.3 Dynamic Braking .289
Problems 296
10. AC Drives .299
10.1 Advantages of AC Drives .299
10.2 Disadvantages of AC Drives 299
10.3 Speed Control of Three-Phase Induction Motor 300
10.4 Methods of Control Techniques 303
10.4.1 Speed Control of Three-Phase Induction Motors .303
10.4.1.1 Stator Voltage Control 305
10.4.1.2 Stator Frequency Control 307xii Contents
10.4.1.3 Stator Voltage and Frequency Control 310
10.4.1.4 V/f Control Theory . 311
10.4.1.5 Static Rotor-Resistance Control 312
10.4.1.6 Slip-Energy Recovery Control 317
Problems 318
11. Special Machines 321
11.1 Stepper Motors 321
11.1.1 Step Angle 322
11.1.2 How Stepper Motors Work 323
11.1.3 DC Motors versus Stepper Motors 326
11.1.4 Advantages of Stepper Motors 327
11.1.5 Disadvantages of Stepper Motors . 327
11.1.6 Specification of Stepping Motor Characteristics . 327
11.1.6.1 Static Characteristics 327
11.1.6.2 Dynamic Characteristics . 329
11.1.7 Steady State Phasor Analysis .330
11.1.7.1 Phasor Expression of Variable Reluctance Stepping Motor 330
11.1.7.2 Phasor Expression of PM and Hybrid Stepping Motors 331
11.1.7.3 Equivalent Circuit in Frequency Domain . 331
11.1.7.4 Pull-Out Torque Expression . 332
11.1.8 Applications .333
11.2 Permanent-Magnet DC Motor .333
11.2.1 Construction .333
11.2.2 Working 334
11.2.3 Performance .335
11.2.4 Speed Control .335
11.2.5 Advantages .335
11.2.6 Disadvantages 335
11.2.7 Applications .335
11.3 Low-Inertia DC Motors 336
11.3.1 Shell-Type Low-Inertia DC Motor . 337
11.3.2 Printed-Circuit (Disc) DC Motor . 337
11.4 Servo Motors 338
11.4.1 Mathematical Model of Servo Motor 340
11.4.2 The Difference between Stepper Motors and Servos Motor .342
11.5 Brushed DC Motors 343
11.5.1 Stator 343
11.5.2 Rotor 344
11.5.3 Brushless Motor Basics .344
11.5.4 Advantage and Disadvantage of the Brushless DC Motor .344
Problems 345Contents xiii
Appendix A: Mathematical Formula .347
Appendix B: Complex Numbers 357
Appendix C: Introduction to MATLAB® 365
Appendix D: Answer to Odd-Numbered Problems . 379
Selected Bibliography .383
Index .
Index
Note: Page numbers in italic and bold refer to figures and tables, respectively.
AC circuits: capacitive reactance 47–8, 48;
inductive reactance 46–7, 47; pure
resistance 45–6, 46; series impedance
connection 49–54
AC current values 43; actual 44; average 44;
instantaneous 44; maximum 44–5
AC-DC converters see rectifiers (AC-DC
converters)
AC drives: advantages 299; disadvantages 299;
three-phase IM, speed control
300–3, 301
AC motors: single-phase motor 165–78; threephase induction motor 178–91
AC power see alternating current (AC) power
active load 253
air gap 22
air-gap flux 300, 302, 307, 309–10
alternating current (AC) power: advantages 39;
circuits 45–54; definition 39; electric
power generation 41, 41–2; parallel
connection 54–62; series impedance
connection to 49–54; sinusoidal wave
39–40, 40; terms and concepts 42–3;
values 43–5
approximations 356
armature 344; adding resistance to 262–5; coils
128–9; supply voltage 265, 266
artificial magnets 3
BDC see brushed DC (BDC) motors
BLDC (brushless DC) motor 344, 344–5
blocked rotor test 189–91
block parameters: of AC voltage source 232;
of diode 232; mean value 234; pulse
generator 234; of RLC branch 233; RMS
234; of SCR 233
breakdown torque 182
brushed DC (BDC) motors: brushless
motor basics 344–5, 344;
rotor 344; stator 343
brushless DC (BLDC) motor 344, 344–5
buck-boost converter 242, 242–3
buck converter see step-down (buck) converter
capacitive reactance 47–8, 48
capacitor run motor 172, 172, 173
capacitor start method 171, 171–2
centrifuge switches 176, 178, 178
coercive force 17
commutation 344
commutator 128, 128, 252
complex numbers: Euler’s formula 360–3;
mathematical operations 359;
representation of 357–8, 358
compound DC generator 139–44
compound DC motors 158–61
constant loads 254
controlled rectifiers: with resistive load 215–16;
SCRs 214, 214; thyristor firing circuits
213–14; thyristors, use of 214
cooling method 76, 97–8
core-shaped transformer 67, 67, 68
core type transformer: single-phase 94, 94–5;
three-phase 102, 102–3
Curie temperature 4–5
DC chopper drive 280–4
DC-DC converter: buck-boost 242, 242–3;
comparison 243, 243–5; step-down
(buck) 237–40; step-up (boost) 240–2, 241
DC drive: advantages 251–2; chopper drive
280–4; circuits 272–80; DC motors
parametric methods 260–71;
disadvantages 252–7; electrical braking
284–95; torque-speed characteristics
257–60
DC drive rectifier circuits: single-phase fullwave converter drives 276–80; singlephase half-wave converter drives 272,
272–6, 273
DC generator: defined 125; efficiency
calculation 146–8; EMF 130–1;
Fleming’s hand rule for 149, 149; iron
losses 144–5; losses in 144–6; vs. motor
150; self-excited 131–44; separately
excited 131, 131
DC machines see direct current (DC) machines386 Index
DC motors: advantages 251–2; compound
158–61; defined 125; disadvantages
252–7; Fleming’s hand rule for 149,
149; vs. generator 150; operation 148;
parametric methods 260–71; series
150–3; shunt 154–7; speed control
161–3; starting methods 163
definite integrals 352–3
delta and delta connections, transformer 88, 88
delta-star turns ratio 90–1
derivatives 349–50
DF (displacement factor) 196
diamagnetism 5–6
direct current (DC) machines 126; armature
coils 129; commutator 128, 128; parts of
126; rotor 128; stator 125–7, 127
displacement factor (DF) 196
dry transformers 76
dynamic braking 289–95, 290, 292
dynamic characteristics 329–30
eddy current 31, 145
effective current 73
electrical braking: dynamic 289–95, 290, 292;
generator 284–5, 285; supply reversing
286, 286–9
electrical drive 253; continuous mode 254,
254; interruptive operation 254, 255;
quadrants operation of 256; short time
operation 255, 255
electrical vs. magnetic circuit 24
electric motive force (EMF) 28; DC generator
130–1; generation in conductor 42; IM
300; per turn 99
electric motor 165, 321
electric power generation 41, 41–2
electromagnetic induction 27–30
EMF see electric motive force (EMF)
Euler’s formula 360–3
exponential identities 356
Faraday, M. 27
Faraday experiment 27
Faraday’s theory 130
ferromagnetism 4–5
FF (form factor) 195
field flux 265–7, 266, 267
filter circuits, rectifiers with 212, 213
filtration process 213
Fleming’s hand rule 149, 149
flux density 10, 19
forced cooling method 97
form factor (FF) 195
frequency 39
frequency control 304
frictional load 254
full-wave rectifier 194, 203, 203; bridge rectifier
with inductive load 210–12, 211; bridge
rectifier with resistive load 206–10, 208;
center tapped rectifier with resistive
load 204–6; stages in 205
generator braking 284–5, 285
halfstepping 324
half-wave uncontrolled rectifiers 197; circuit
diagram 200; with inductive load
200–3, 201; with resistive load 196–200
harmonic factor (HF) 196
holding torque 342
hyperbolic functions 349
hysteresis loop 16–17
ideal transformer 69–71, 70
IM see induction motor (IM)
indefinite integrals 350–2
induced EMF 30–2
inductance: mutual 33–6, 34; self 32–3
induction motor (IM) 166, 300; construction
166–9; speed 169–70; starting methods
170–4; theory of work 170
induction motors construction: iron core of 167,
168; outer shape of 167; rotor 167, 168;
side cover of 169, 169; stator 166–7, 168;
ventilation fan 169
inductive load: single-phase full-wave (bridge)
rectifier 210–12, 211; single-phase halfwave rectifier 200–3, 201, 231
inductive reactance 46–7, 47
instantaneous value 42, 44–5
Insulated Gate Bi-polar Transistor (IGBT) 280
internal efficiency, induction machine 187
lap winding coil 129, 129
L’Hopital’s rule 353
linear varying loads 254
lines of magnetic forces 7; closed rings 7;
distribution 6, 6; horse’s suit, shape of
6–7, 7; north (N) pole 6; properties 7–8;
south (S) pole 6
line-voltage 88
load current 74–6, 75
loads: active 253; constant 254; electrical
method 260; frictional 254; linear
varying 254; passive 253
locked rotor torque (LRT) 182Index 387
logarithmic identities 355
long compound DC generator 139, 140, 142
low-inertia DC motors: PC 337–8; shell-type 337
LRT (locked rotor torque) 182
magnetic circuits 21, 25; vs. electrical circuit
24; electromagnetic induction 27–30;
EMF 30–2; inductance, types of 32–6;
magnetic quantities 19–26; stored
energy 36
magnetic current 13
magnetic field 1: field-density (B-H) curve 16,
16–17; force generated 13–15, 14; lines,
direction of 8–11; and polarity 11–12
magnetic flux 10, 19
magnetic forces: electric field 8; lines of 6–8;
magnetic field see magnetic field;
principle 8
magnetic loading 97
magnetic loss 144–5
magnetic materials: diamagnetism 5–6;
ferromagnetism 4–5; field lines,
magnet bar 12–13, 13; paramagnets 5;
permeability 4; residual 4
magnetic motive force (MMF) 13, 335
magnetic path 22
magnetic quantities: vs. electrical quantities 24;
flux density 19; magnetic resistance/
reluctance 20–2; permeability 19–20
magnetic resistance/reluctance 20–2
magnetic susceptibility 5
magnetism: cause 2; current 73; history of 1–2;
magnetic materials 4–6, 12–13
magnetization curves 20
magnets: applications 4, 5; types 3–4
mathematical formula: approximations 356;
definite integrals 352–3; derivatives
349–50; exponential identities 356;
hyperbolic functions 349; indefinite
integrals 350–2; L’Hopital’s rule 353;
logarithmic identities 355; power
series 354; quadratic formulas 347;
sums 355; Taylor/Maclaurin series 354;
trigonometric identities 347–8
mathematical operations 359
MATLAB: commands 378, 378; fundamentals
365–9, 366, 367, 368; plot using 369–71,
371, 372; programming hints 377;
programming with 372, 372–4, 373;
solving equations 374–7
MATLAB program: DC shunt generator 138–9;
IM, speed-torque characteristics of 183,
184; power electronics circuits 226–37;
series DC generator 135; single-phase
transformer design 113–15; threephase transformer design 116–22
MATLAB simulation: single-phase half-wave
controlled rectifier 228–30, 229; singlephase half-wave controlled rectifier
with inductive load 230–7, 231; singlephase half-wave uncontrolled rectifier
226–8, 227
maximum pull-in torque 330
maximum slewing frequency 330
measurement transformers 75
mechanical loss 145–6, 146
M-file 372
micro-stepping 322
MMF (magnetic motive force) 13, 335
mutual inductance 33–6, 34
natural cooling method 97
natural magnets 3
no-load current 73–4, 103–5
no-load test 79, 80, 187–8, 189
non-ideal transformer equivalent circuit
76–9, 78
open-delta 85
parallel R-C circuit 55–62, 56
parallel R-L circuit 54, 54–5
paramagnets 5
parameter step angle 322
passive loads 253
PC (printed circuit) motor 337–8
period 39
peripheral interface controller (PIC) 311, 343
permanent magnet (PM) 3–4; and
hybrid stepping motors 331; in
loudspeakers 5
permanent-magnet DC (PMDC) motor 251;
advantages/disadvantages 335;
construction 333–4, 334; MATLAB
program 336; speed control 335;
working 334
permeability 4, 19–20
permeance 21
PF (power factor) 49, 196
phase angle control method 306
phase pattern 342
phase voltage 88
PM see permanent magnet (PM)
PMDC see permanent-magnet DC (PMDC)
motor
polar form 357388 Index
power electronics: DC-DC converters 237–45;
with MATLAB program 226–37;
rectifiers 193–226
power factor (PF) 49, 196
power series 354
power transformers 75, 76
primary winding 65
printed circuit (PC) motor 337–8
pull-in torque characteristics 329
pull-out torque characteristic 329
pulse width modulation (PWM) 280
pure resistance 45–6, 46
quadratic formulas 347
R-C series circuit 50–2, 51
rectification efficiency 195
rectifiers (AC-DC converters): controlled 213–26;
with filter circuits 212–13; performance
parameters 194–6; types 193–4, 194;
uncontrolled 196–212
regulation transformers 75
residual magnetism 17
resistance-inductance (R-L) load: single-phase
full-wave control rectifier 220, 220–3;
single-phase full-wave half control
rectifier 223–6; single-phase half-wave
control rectifier 216, 216–20
resistive load: full-wave center tapped rectifier
204, 204–6; single-phase full-wave
(bridge) rectifier 206–10; single-phase
half-wave controlled rectifier 215, 215–16;
single-phase half-wave rectifier 196–200
RF (ripple factor) 195
right-hand rule 8, 12, 29, 69
ripple factor (RF) 195
R-L-C series circuit 52–4, 53
R-L load see resistance-inductance (R-L) load
R-L series circuit 49, 49–50
root mean square (RMS) 105, 305
rotor; see also armature: capacitor run motor
172; for DC machine 128; single-phase
induction motor 167, 168; stepping
motor 323; synchronous motors 175,
176; universal motor 176, 177
SCIMs (squirrel-cage induction motors) 303
screwdriver method 9, 10
SCRs (silicon controlled rectifiers) 214, 214
secondary winding 65, 105–6
secondary windings current 74
self-excited generator: compound 139–44; series
131–5; shunt 135–9
self-inductance 32–3
separately excited DC motor: electrical braking
284–95; equivalent circuit for 257;
and shunt motor 260–9; Simulink
276; single-phase full-wave converter
drives 276–80; single-phase half-wave
converter drive 272–6
separately excited generator 131, 131
series DC generator 131–5, 132
series DC motors 150–3
series motor 162–3, 269–71
servo motors 338–40; mathematical model
340–2; vs. stepper motors 342–3
shaded pole motor 172–4, 173
shell-type low-inertia DC motor 337
shell type transformers: single-phase 95, 95–6;
three-phase 96, 96–7
short-circuit test: equivalent circuit 80, 80–1;
IM 190
short compound DC generator 139, 140, 142
shunt DC generator 135–9
shunt DC motors 154–7
shunt wound DC motor (SWDC) 251
silicon controlled rectifiers (SCRs) 214, 214
single-phase full-wave control rectifier 220,
220–3
single-phase full-wave half control rectifier
223–6
single-phase full-wave (bridge) rectifier:
inductive load 210–12, 211; resistive
load 206–10
single-phase half-wave control rectifier: circuit
228; with inductive load, MATLAB
simulation 230–7, 231; with inductive
load Simulink 231; MATLAB
simulation 228–30, 229; output and
SCR voltages 228; resistive load 215,
215–16; R-L load 216, 216–20
single-phase half-wave uncontrolled rectifier:
with inductive load 200–3, 201;
MATLAB simulation 226–8, 227; with
resistive load 196–200; Simulink 229
single-phase motor 165; centrifuge switches 176,
178, 178; IM 165–74, 166; synchronous
motors 174, 174–5; types of 166;
universal motor 175–6, 177
single-phase rectifiers 193
single-phase transformer design: core type 94,
94–5; MATLAB programs 113–15
sinusoidal wave 39–40, 40
slewing 323
slewing characteristic 329
slip-energy recovery control 317, 317–18Index 389
slip-ring induction motors (SRIMs) 303
slip ring motors 179
slip speed 181
solid-state fan regulators 306
speed control 304, 306, 335
speed control methods: of series motor 162–3; of
shunt motor 161–2
speed-torque characteristics: of IM 182–3; using
MATLAB program 183, 184
speed-torque curve 335
squirrel-cage induction motors (SCIMs) 303
squirrel cage motors 167, 179, 180, 190
SRIMs (slip-ring induction motors) 303
star and delta configurations 86–7, 87
star and star connections, transformer 88, 89
star-delta turns ratio 89
starting windings method 170–1
static rotor-resistance control 312–16,
313, 314
stator 125–7, 127, 323, 343; capacitor run motor
172; single-phase induction motor
166–7, 168; synchronous motor 175, 176;
universal motor 176, 177
stator frequency control 307–10, 308, 310
stator voltage and frequency (V/f) control
310–11
stator voltage control 305–6, 306
step angle 322
step-down (buck) converter 237, 283; at
boundary 239; continuous and
discontinuous transition 238–9;
MATLAB/Simulink 283; voltage and
current changes 238; voltage ratio of
239–40
step-down transformers 76
stepper motors: advantages 327; applications
333; DC motors vs. 326; disadvantages
327; specification 327–30; steady state
phasor analysis 330, 330–3, 332, 333;
step angle 322–3; working 323–6,
324, 325
step-up (boost) converter 240–2, 241
step-up transformers 66, 76
stored energy 36
supply reversing braking 286, 286–9
SWDC (shunt wound DC motor) 251
synchronous frequency 181
synchronous motors 174, 174–5, 176
synchronous speed 181
synthetic magnets 3
Taylor/Maclaurin series 354
temporary magnets 3–4
three-phase induction motor: blocked rotor
test 189–91; construction of 178–9,
180; equations and equivalent circuit
diagram 183–7, 188; no-load test 187–8,
189; operation 181, 181; speed-torque
characteristics 182, 182–3
three-phase induction motors, speed control:
slip-energy recovery control 317,
317–18; static rotor-resistance control
312–16, 313, 314; stator frequency
control 307–10, 308, 310; stator V/f
control 310–11; stator voltage control
305–6, 306; V/f control theory 311–12
three-phase transformer 85; configuration 85;
connections 85–9, 86; construction
91, 91–2; voltage and current
89–91, 90
three-phase transformer connections 85–6, 86;
delta and delta 88, 88; star and delta
86–7, 87; star and star 88, 89; winding
identification 87
three-phase transformer design: core type
transformer 102, 102–3; MATLAB
programs 116–22
three-phase voltage and current 89, 90; deltastar turns ratio 90–1; star-delta turns
ratio 89
thyristor firing circuits 213–14
thyristors 214, 220
torque 328
torque-speed characteristics 261; adding
resistance to armature 262, 263, 264;
DC drive 257–60; dynamic braking
291; field flux 266, 267; generator
braking 285; series motor 269; supply
reversing braking 287
transformation ratio 71
transformer design: cooling tubes 111–12; core
construction 98; core loss estimation
103–4; core type transformer, singlephase 94, 94–5; core X-sectional
area Ai 100; efficiency of 107; electric
loading 97–8; electric motive force
99; graphical method 101; leakage
reactance 107, 107–9; magnetic
loading 97; magnetizing current
estimation 104, 104–5; MATLAB
programs 113–22; no-load current
103–5; output equations 93; phasor
diagram 105; shell type transformers
95–7; temperature rise 111; voltage
regulation of 109; weight of 112;
windings 105–6390 Index
transformer operation: at load 74–6; at no-load
73–4
transformer(s) 65; to change phase currents 75;
core shape 67–8; design see transformer
design; equivalent circuit parameters
79–81; ideal transformer 69–71, 70;
immersed in oil 76; installation of
65–7; non-ideal transformer equivalent
circuit 76–9, 78; operation 73–6;
principle of operation 69, 69; ratings
72–3; refrigeration with SF6 76; sizes
and shapes 66; tank design 110, 110–11,
111; three-phase 85–92; types of 77;
voltage regulation 81–4; windings
65–7, 66
transformer utilization factor (TUF) 195–6
trigonometric identities 347–8
TUF (transformer utilization factor) 195–6
two windings transformer 66
uncontrolled rectifiers 196; full-wave 203,
203–12; half-wave 196–203, 197
universal motor 175–6, 177
variable voltage variable frequency (VVVF) 311
vector 367
vector control 305
V/f control 311–12
voltage control 304
water cooling method 98
wave winding coil 129
كلمة سر فك الضغط : books-world.net

The Unzip Password : books-world.net

تحميل

يجب عليك التسجيل في الموقع لكي تتمكن من التحميل
تسجيل | تسجيل الدخول

التعليقات

اترك تعليقاً