Finite Element Analysis of Composite Materials Using Abaqus

Finite Element Analysis of Composite Materials Using Abaqus
اسم المؤلف
Ever J. Barbero
التاريخ
21 أغسطس 2024
المشاهدات
162
التقييم
(لا توجد تقييمات)
Loading...

Finite Element Analysis of Composite Materials Using Abaqus
Ever J. Barbero
Contents
Series Preface xiii
Preface xv
Acknowledgments xix
List of Symbols xxi
List of Examples xxix
1 Mechanics of Orthotropic Materials 1
1.1 Lamina Coordinate System . 1
1.2 Displacements . 1
1.3 Strain . 2
1.4 Stress . 3
1.5 Contracted Notation . 4
1.5.1 Alternate Contracted Notation . 5
1.6 Equilibrium and Virtual Work . 6
1.7 Boundary Conditions . 8
1.7.1 Traction Boundary Conditions . 8
1.7.2 Free Surface Boundary Conditions . 8
1.8 Continuity Conditions 8
1.8.1 Traction Continuity . 8
1.8.2 Displacement Continuity . 9
1.9 Compatibility . 9
1.10 Coordinate Transformations . 10
1.10.1 Stress Transformation 12
1.10.2 Strain Transformation 14
1.11 Transformation of Constitutive Equations . 15
1.12 3D Constitutive Equations 17
1.12.1 Anisotropic Material . 18
1.12.2 Monoclinic Material . 19
1.12.3 Orthotropic Material . 20
1.12.4 Transversely Isotropic Material . 21
1.12.5 Isotropic Material 23
viiviii Finite Element Analysis of Composite Materials
1.13 Engineering Constants 24
1.13.1 Restrictions on Engineering Constants . 27
1.14 From 3D to Plane Stress Equations . 29
1.15 Apparent Laminate Properties . 30
Suggested Problems 32
2 Introduction to Finite Element Analysis 35
2.1 Basic FEM Procedure 35
2.1.1 Discretization . 36
2.1.2 Element Equations 36
2.1.3 Approximation over an Element 37
2.1.4 Interpolation Functions . 38
2.1.5 Element Equations for a Specific Problem . 40
2.1.6 Assembly of Element Equations . 41
2.1.7 Boundary Conditions 42
2.1.8 Solution of the Equations 42
2.1.9 Solution Inside the Elements 42
2.1.10 Derived Results 43
2.2 General Finite Element Procedure . 43
2.3 Solid Modeling, Analysis, and Visualization 46
2.3.1 Model Geometry . 47
2.3.2 Material and Section Properties . 57
2.3.3 Assembly . 61
2.3.4 Solution Steps 63
2.3.5 Loads . 63
2.3.6 Boundary Conditions 65
2.3.7 Meshing and Element Type . 68
2.3.8 Solution Phase 70
2.3.9 Post-processing and Visualization 73
Suggested Problems 89
3 Elasticity and Strength of Laminates 91
3.1 Kinematic of Shells 92
3.1.1 First-Order Shear Deformation Theory . 93
3.1.2 Kirchhoff Theory . 97
3.1.3 Simply Supported Boundary Conditions 99
3.2 Finite Element Analysis of Laminates . 100
3.2.1 Element Types and Naming Convention 101
3.2.2 Thin (Kirchhoff) Shell Elements 104
3.2.3 Thick Shell Elements . 104
3.2.4 General-purpose (FSDT) Shell Elements 104
3.2.5 Continuum Shell Elements 105
3.2.6 Sandwich Shells 106
3.2.7 Nodes and Curvature 106
3.2.8 Drilling Rotation . 106Table of Contents ix
3.2.9 A, B, D, H Input Data for Laminate FEA . 107
3.2.10 Equivalent Orthotropic Input for Laminate FEA . 113
3.2.11 LSS for Multidirectional Laminate FEA 119
3.2.12 FEA of Ply Drop-Off Laminates 129
3.2.13 FEA of Sandwich Shells . 139
3.2.14 Element Coordinate System . 150
3.2.15 Constraints 159
3.3 Failure Criteria 163
3.3.1 2D Failure Criteria 163
3.3.2 3D Failure Criteria 166
3.4 Predefined Fields . 171
Suggested Problems 173
4 Buckling 177
4.1 Eigenvalue Buckling Analysis 177
4.1.1 Imperfection Sensitivity . 183
4.1.2 Asymmetric Bifurcation . 183
4.1.3 Post-critical Path . 184
4.2 Continuation Methods 187
Suggested Problems 192
5 Free Edge Stresses 195
5.1 Poisson’s Mismatch 196
5.1.1 Interlaminar Force 196
5.1.2 Interlaminar Moment 197
5.2 Coefficient of Mutual Influence . 204
5.2.1 Interlaminar Stress due to Mutual Influence 207
Suggested Problems 212
6 Computational Micromechanics 215
6.1 Analytical Homogenization . 216
6.1.1 Reuss Model . 216
6.1.2 Voigt Model 217
6.1.3 Periodic Microstructure Model . 217
6.1.4 Transversely Isotropic Averaging 218
6.2 Numerical Homogenization . 220
6.3 Local-Global Analysis 238
6.4 Laminated RVE 241
Suggested Problems 247
7 Viscoelasticity 249
7.1 Viscoelastic Models 251
7.1.1 Maxwell Model 251
7.1.2 Kelvin Model . 252
7.1.3 Standard Linear Solid 253x Finite Element Analysis of Composite Materials
7.1.4 Maxwell-Kelvin Model 253
7.1.5 Power Law 254
7.1.6 Prony Series . 254
7.1.7 Standard Nonlinear Solid 256
7.1.8 Nonlinear Power Law 256
7.2 Boltzmann Superposition 258
7.2.1 Linear Viscoelastic Material . 258
7.2.2 Unaging Viscoelastic Material 259
7.3 Correspondence Principle 260
7.4 Frequency Domain 261
7.5 Spectrum Representation 262
7.6 Micromechanics of Viscoelastic Composites 262
7.6.1 One-Dimensional Case 262
7.6.2 Three-Dimensional Case . 264
7.7 Macromechanics of Viscoelastic Composites 269
7.7.1 Balanced Symmetric Laminates . 269
7.7.2 General Laminates 269
7.8 FEA of Viscoelastic Composites . 269
Suggested Problems 280
8 Continuum Damage Mechanics 283
8.1 One-Dimensional Damage Mechanics 284
8.1.1 Damage Variable . 284
8.1.2 Damage Threshold and Activation Function 286
8.1.3 Kinetic Equation . 287
8.1.4 Statistical Interpretation of the Kinetic Equation . 288
8.1.5 One-Dimensional Random-Strength Model 289
8.1.6 Fiber-Direction, Tension Damage 294
8.1.7 Fiber-Direction, Compression Damage . 300
8.2 Multidimensional Damage and Effective Spaces 304
8.3 Thermodynamics Formulation 305
8.3.1 First Law . 306
8.3.2 Second Law 307
8.4 Kinetic Law in Three-Dimensional Space 313
8.4.1 Return-Mapping Algorithm . 316
8.5 Damage and Plasticity 322
Suggested Problems 324
9 Discrete Damage Mechanics 327
9.1 Overview . 328
9.2 Approximations 332
9.3 Lamina Constitutive Equation . 333
9.4 Displacement Field 334
9.4.1 Boundary Conditions for ΔT = 0 335
9.4.2 Boundary Conditions for ΔT ∕= 0 336Table of Contents xi
9.5 Degraded Laminate Stiffness and CTE . 337
9.6 Degraded Lamina Stiffness 338
9.7 Fracture Energy . 339
9.8 Solution Algorithm 340
9.8.1 Lamina Iterations 340
9.8.2 Laminate Iterations . 340
Suggested Problems 351
10 Delaminations 353
10.1 Cohesive Zone Method 356
10.1.1 Single Mode Cohesive Model 358
10.1.2 Mixed Mode Cohesive Model 361
10.2 Virtual Crack Closure Technique 371
Suggested Problems 375
A Tensor Algebra 377
A.1 Principal Directions of Stress and Strain 377
A.2 Tensor Symmetry . 377
A.3 Matrix Representation of a Tensor . 378
A.4 Double Contraction 379
A.5 Tensor Inversion . 379
A.6 Tensor Differentiation 380
A.6.1 Derivative of a Tensor with Respect to Itself . 380
A.6.2 Derivative of the Inverse of a Tensor with Respect to the Tensor 381
B Second-Order Diagonal Damage Models 383
B.1 Effective and Damaged Spaces . 383
B.2 Thermodynamic Force Y 384
B.3 Damage Surface 386
B.4 Unrecoverable-Strain Surface 387
C Software Used 389
C.1 Abaqus . 389
C.1.1 Abaqus Programmable Features . 391
C.2 BMI3 . 393
References 395
Index 407
References
[1] E. J. Barbero. Introduction to Composite Materials Design–Second Edition. http:
//barbero.cadec-online.com/icmd. CRC Press, Boca Raton, FL, 2010.
[2] D. Frederick and T.-S. Chang. Continuum Mechanics. Scientific Publishers, Cambridge, MA, 1972.
[3] F. P. Beer, E. R. Johnston Jr., and J. T. DeWolf. Mechanics of Materials, 3rd Edition.
McGraw-Hill, Boston, MA, 2001.
[4] J. N. Reddy. Energy and Variational Methods in Applied Mechanics. Wiley, 1984.
[5] E. J. Barbero. Web resource: http://barbero.cadec-online.com/feacm-abaqus.
[6] S. S. Sonti, E. J. Barbero, and T. Winegardner. Mechanical properties of pultruded
E-glass–vinyl ester composites. In 50th Annual Conference, Composites Institute,
Society of the Plastics Industry (February) pp. 10-C/1-7., 1995.
[7] Simulia. Abaqus documentation. The default location for the HTML documentation
is http://HOME:2080/v6.10/ where HOME is the url of the server where the documentation is stored during installation. The default location for the PDF documentation
is C:\SIMULIA\Documentation\docs\v6.10\pdf_books\index.pdf.
[8] E. J. Barbero. Finite Element Analysis of Composite Materials–First Edition. CRC
Press, Boca Raton, FL, 2007.
[9] ANSYS Inc. Ansys mechanical apdl structural analysis guide, release 140.0, http:
//www1.ansys.com/customer/content/documentation/140/ans_str.pdf, 2011.
[10] Simulia. Abaqus keywords reference manual. The default location is http://HOME:
2080/v6.10/books/key/default.htm where HOME is the url of the server where the
documentation is stored during installation.
[11] SolidWorks. http://www.solidworks.com/sw/engineering-education-software.
htm.
[12] E. J. Barbero. Computer aided design environment for composites. http://www.
cadec-online.com, 2011.
[13] R. J. Roark and W. C. Young. Roark’s Formulas for Stress and Strain, 6th Edition.
McGraw-Hill, New York, NY, 1989.
[14] J. N. Reddy. Mechanics of Laminated Composite Plates and Shells, 2nd Edition. CRC
Press, Boca Raton, FL, 2003.
[15] E. Hinton and D. R. J. Owen. An Introduction to Finite Element Computations.
Pineridge Press, Swansea, UK, 1979.
395396 Finite Element Analysis of Composite Materials
[16] NAFEMS. Test R0031/3. Technical report, National Agency for Finite Element
Methods and Standards (UK), 1995.
[17] E. J. Barbero. 3-d finite element for laminated composites with 2-d kinematic constraints. Computers and Structures, 45(2):263–271, 1992.
[18] E. J. Barbero. Cadec application program interface. http://www.cadec-online.
com/Help/API.aspx.
[19] Simulia. Abaqus benchmarks manual. The default location is http://HOME:2080/
v6.10/books/bmk/default.htm where HOME is the url of the server where the documentation is stored during installation.
[20] E. J. Barbero and J. Trovillion. Prediction and measurement of post-critical behavior
of fiber-reinforced composite columns. Composites Science and Technology, 58:1335–
1341, 1998.
[21] E. J. Barbero. Prediction of compression strength of unidirectional polymer matrix
composites. Journal of Composite Materials, 32(5)(5):483–502, 1998.
[22] A. Puck and H. Schurmann. Failure analysis of frp laminates by means of physically
based phenomenological models. Composites Science and Technology, 62:1633–1662,
2002.
[23] MIL17.org. The composite materials handbook, web resource, http://www.mil17.
org.
[24] L. A. Godoy. Theory of Stability-Analysis and Sensitivity. Taylor and Francis,
Philadelphia, PA, 2000.
[25] E. J. Barbero, L. A. Godoy, and I. G. Raftoyiannis. Finite elements for three-mode
interaction in buckling analysis. International Journal for Numerical Methods in
Engineering, 39(3):469–488, 1996.
[26] L. A. Godoy, E. J. Barbero, and I. G. Raftoyiannis. Finite elements for post-buckling
analysis. i – the w-formulation. Computers and Structures, 56(6):1009–1017, 1995.
[27] E. J. Barbero, I. G. Raftoyiannis, and L. A. Godoy. Finite elements for post-buckling
analysis. ii – application to composite plate assemblies. Computers and Structures,
56(6):1019–1028, 1995.
[28] I. G. Raftoyiannis, L. A. Godoy, and E. J. Barbero. Buckling mode interaction in
composite plate assemblies. Applied Mechanics Reviews, 48(11/2):52–60, 1995.
[29] E. J. Barbero. Prediction of buckling-mode interaction in composite columns. Mechanics of Composite Materials and Structures, 7(3):269–284, 2000.
[30] S. Yamada and J. G. A. Croll. Buckling behavior pressure loaded cylindrical panels.
ASCE Journal of Engineering Mechanics, 115(2):327–344, 1989.
[31] C. T. Herakovich. Mechanics of Fibrous Composites. Wiley, New York, 1998.
[32] J. D. Eshelby. The determination of the elastic field of an ellipsoidal inclusion and
related problems. Proceedings of the Royal Society, A241:376–396, 1957.
[33] J. D. Eshelby. The elastic field outside an ellipsoidal inclusion. Acta Metall.,
A252:561–569, 1959.
[34] T. Mori and K. Tanaka. The elastic field outside an ellipsoidal inclusion. Acta Metall.,
21:571–574, 1973.References 397
[35] R. Hill. A self-consistent mechanics of composite materials. J. Mech. Phys. Solids,
13:213–222, 1965.
[36] S. Nemat-Nasser and M. Hori. Micromechanics: Overall Properties of Heterogeneous
Materials. North-Holland, Amsterdam, 1993.
[37] R. Luciano and E. J. Barbero. Formulas for the stiffness of composites with periodic
microstructure. I. J. Solids and Structures, 31(21):2933–2944, 1995.
[38] R. Luciano and E. J. Barbero. Analytical expressions for the relaxation moduli of
linear viscoelastic composites with periodic microstructure. ASME J. Applied Mechanics, 62(3):786–793, 1995.
[39] E. J. Barbero and R. Luciano. Micromechanical formulas for the relaxation tensor
of linear viscoelastic composites with transversely isotropic fibers. I. J. Solids and
Structures, 32(13):1859–1872, 1995.
[40] J. Aboudi. Mechanics of Composite Materials : A Unified Micromechanical Approach.
Vol. 29 of Studies in Applied Mechanics. Elsevier, New York, NY, 1991.
[41] Z. Hashin and S. Shtrikman. A variational approach to the elastic behavior of multiphase materials. J. Mechanics and Physics of Solids, 11:127–140, 1963.
[42] V. Tvergaard. Model studies of fibre breakage and debonding in a metal reinforced
by short fibres. J. Mechanics and Physics of Solids, 41(8):1309–1326, 1993.
[43] J. L. Teply and G. J. Dvorak. Bound on overall instantaneous properties of elasticplastic composites. J. Mechanics and Physics of Solids, 36(1):29–58, 1988.
[44] R. Luciano and E. Sacco. Variational methods for the homogenization of periodic
media. European J. Mech. A/Solids, 17:599–617, 1998.
[45] G. J. Creus. Viscoelasticity: Basic Theory and Applications to Concrete Structures.
Springer-Verlag, Berlin, 1986.
[46] Eric W. Weisstein. Gamma function. MathWorld–A Wolfram Web Resource. http:
//mathworld.wolfram.com/GammaFunction.html.
[47] G. D. Dean, B. E. Read, and P. E. Tomlins. A model for long-term creep and the effects
of physical ageing in poly (butylene terephthalate). Plastics and Rubber Processing
and Applications, 13(1):37–46, 1990.
[48] B. F. Oliveira and G. J. Creus. An analytical-numerical framework for the study of
ageing in fibre reinforced polymer composites. Composites B, 65(3-4):443–457, 2004.
[49] K. Ogatha. Discrete-Time Control System. Prentice Hall, Englewood Cliffs, NJ, 1987.
[50] K. J. Hollenbeck. Invlap.m: A matlab function for numerical inversion of Laplace
transforms by the de Hoog algorithm (1998), http://www.mathworks.com/.
[51] R. S. Lakes. Viscoelastic Solids. Boca Raton, FL, 1998.
[52] J. D. Ferry. Viscoelastic Properties of Polymers. 3rd. Edition. Wiley, New York, 1980.
[53] R. M. Christensen. Theory of Viscoelasticity. New York, 1972.
[54] P. Qiao, E. J. Barbero, and J. F. Davalos. On the linear viscoelasticity of thin-walled
laminated composite beams. Journal of Composite Materials, 34(1):39–68, 2000.
[55] E. J. Barbero, F. A. Cosso, R. Roman, and T. L. Weadon. Determination of material parameters for Abaqus progressive damage analysis of E-Glass Epoxy laminates.
Composites Part B:Engineering, 46(3):211–220, 2012.398 Finite Element Analysis of Composite Materials
[56] J. Lemaitre and A. Plumtree. Application of damage concepts to predict creep-fatigue
failures. In American Society of Mechanical Engineers, 78-PVP-26, pages 10–26, 1978.
[57] I. N. Rabotnov. Rabotnov: Selected Works – Problems of the Mechanics of a Deformable Solid Body. Moscow Izdatel Nauka, 1991.
[58] L. M. Kachanov. On the creep fracture time. Izv. Akad. Nauk USSR, 8:26–31, 1958.
[59] N. R. Hansen and H. L. Schreyer. A thermodynamically consistent framework for
theories of elastoplasticity coupled with damage. International Journal of Solids and
Structures, 31(3):359–389, 1994.
[60] J. Janson and J. Hult. Fracture mechanics and damage mechanics – a combined
approach. J. Mec. Theor. Appl. 1, pages S18–28, 1977.
[61] E. J. Barbero and K. W. Kelly. Predicting high temperature ultimate strength of continuous fiber metal matrix composites. Journal of Composite Materials, 27(12):1214–
1235, 1993.
[62] K. W. Kelly and E. Barbero. Effect of fiber damage on the longitudinal creep of a
cfmmc. International Journal of Solids and Structures, 30(24):3417–3429, 1993.
[63] J. R. Rice. Continuum Mechanics and Thermodynamics of Plasticity in Relation to
Microscale Deformation Mechanisms, chapter 2, pages 23–79. Constitutive Equations
in Plasticity. MIT Press, Cambridge, MA, 1975.
[64] J. C. Simo and T. J. R. Hughes. Computational Inelasticity. Springer, Berlin, 1998.
[65] D. Krajcinovic, J. Trafimow, and D. Sumarac. Simple constitutive model for a cortical
bone. Journal of Biomechanics, 20(8):779–784, 1987.
[66] D. Krajcinovic and D. Fanella. Micromechanical damage model for concrete. Engineering Fracture Mechanics, 25(5-6):585–596, 1985.
[67] D. Krajcinovic. Damage mechanics. Mechanics of Materials, 8(2-3):117–197, 1989.
[68] A. M. Neville. Properties of Concrete, 2nd Edition. Wiley, New York, NY, 1973.
[69] ACI, American Concrete Institute.
[70] B. W. Rosen. The tensile failure of fibrous composites. AIAA Journal, 2(11):1985–
1911, 1964.
[71] W. Weibull. A statistical distribution function of wide applicability. Journal of Applied
Mechanics, 18:293–296, 1951.
[72] B. W. Rosen. Fiber Composite Materials, chapter 3. American Society for Metals,
Metals Park, OH, 1965.
[73] A. S. D. Wang. A non-linear microbuckling model predicting the compressive strength
of unidirectional composites. In ASME Winter Annual Meeting, volume WA/Aero-1,
1978.
[74] J. S. Tomblin, E. J. Barbero, and L. A. Godoy. Imperfection sensitivity of fiber
micro-buckling in elastic-nonlinear polymer-matrix composites. International Journal
of Solids and Structures, 34(13):1667–1679, 1997.
[75] D. C. Lagoudas and A. M. Saleh. Compressive failure due to kinking of fibrous
composites. Journal of Composite Materials, 27(1):83–106, 1993.
[76] P. Steif. A model for kinking in fiber composites. i. fiber breakage via micro-buckling.
International Journal of Solids and Structures, 26 (5-6):549–61, 1990.References 399
[77] S. W. Yurgartis and S. S. Sternstein. Experiments to Reveal the Role of Matrix Properties and Composite Microstructure in Longitudinal Compression Strength, volume
1185 of ASTM Special Technical Publication, pages 193–204. ASTM, Philadelphia,
PA, 1994.
[78] C. Sun and A. W. Jun. Effect of matrix nonlinear behavior on the compressive strength
of fiber composites. In AMD, volume 162, pages 91–101, New York, NY, 1993. ASME,
American Society of Mechanical Engineers, Applied Mechanics Division.
[79] D. Adams and E. Lewis. Current status of composite material shear test methods.
SAMPE Journal, 31(1):32–41, 1995.
[80] A. Maewal. Postbuckling behavior of a periodically laminated medium in compression.
International Journal of Solids and Structures, 17(3):335–344, 1981.
[81] L. M. Kachanov. Rupture time under creep conditions problems of continuum mechanics. SIAM, pages 202–218, 1958.
[82] E. J. Barbero and P. Lonetti. Damage model for composites defined in terms of
available data. Mechanics of Composite Materials and Structures, 8(4):299–315, 2001.
[83] E. J. Barbero and P. Lonetti. An inelastic damage model for fiber reinforced laminates.
Journal of Composite Materials, 36(8):941–962, 2002.
[84] P. Lonetti, R. Zinno, F. Greco, and E. J. Barbero. Interlaminar damage model for
polymer matrix composites. Journal of Composite Materials, 37(16):1485–1504, 2003.
[85] P. Lonetti, E. J. Barbero, R. Zinno, and F. Greco. Erratum: Interlaminar damage
model for polymer matrix composites. Journal of Composite Materials, 38(9):799–800,
2004.
[86] E. J. Barbero, F. Greco, and P. Lonetti. Continuum damage-healing mechanics with
application to self-healing composites. International Journal of Damage Mechanics,
14(1):51–81, 2005.
[87] S. Murakami. Mechanical modeling of material damage. Journal of Applied Mechanics, 55:281–286, 1988.
[88] J. M. Smith and H. C. Van Ness. Introduction to Chemical Engineering Thermodynamics, 3rd Edition. McGraw-Hill, New York, NY, 1975.
[89] E. R. Cohen, T. Cvita, J. G. Frey, B. Holmstrm, K. Kuchitsu, R. Marquardt, I. Mills,
F. Pavese, M. Quack, J. Stohner, H. L. Strauss, M. Takami, and A. J. Thor. Quantities, Units and Symbols in Physical Chemistry : The IUPAC Green Book, 3rd Edition,
http: // old. iupac. org/ publications/books/ author/ cohen. html . RSC Publishing, 2007.
[90] L. E. Malvern. Introduction to the Mechanics of a Continuous Medium. Prentice Hall,
Upper Saddle River, NJ, 1969.
[91] Y. A. Cengel and M. A. Boles. Thermodynamics: An Engineering Approach, 3rd
Edition. McGraw-Hill, New York, NY, 1998.
[92] J. Lubliner. Plasticity Theory. Collier Macmillan, New York, NY, 1990.
[93] J. A. Nairn. The strain energy release rate of composite microcracking: a variational
approach. Journal of Composite Materials, 23(11):1106–29, 11 1989.400 Finite Element Analysis of Composite Materials
[94] J. A. Nairn, S. Hu, S. Liu, and J. S. Bark. The initiation, propagation, and effect
of matrix microcracks in cross-ply and related laminates. In Proc. of the 1st NASA
Advanced Comp. Tech. Conf., pages 497–512, Oct. 29 – Nov. 1, 1990.
[95] S. Liu and J. A. Nairn. The formation and propagation of matrix microcracks in crossply laminates during static loading. Journal of Reinforced Plastics and Composites,
11(2):158–78, Feb. 1992.
[96] J. A. Nairn. Microcracking, microcrack-induced delamination, and longitudinal splitting of advanced composite structures. Technical Report NASA Contractor Report
4472, 1992.
[97] J. A. Nairn and S. Hu. Damage Mechanics of Composite Materials, volume 9 of
Composite Materials Series, chapter Matrix Microcracking, pages 187–244. Elsevier,
1994.
[98] J. A. Nairn. Applications of finite fracture mechanics for predicting fracture events
in composites. In 5th Int’l Conf. on Deform. and Fract. of Comp., 18-19 March 1999.
[99] J. A. Nairn. Polymer Matrix Composites, volume 2 of Comprehensive Composite
Materials, chapter Matrix Microcracking in Composites, pages 403–432. Elsevier
Science, 2000.
[100] J. A. Nairn. Fracture mechanics of composites with residual stresses, imperfect interfaces, and traction-loaded cracks. In Workshop ‘Recent Advances in Continuum
Damage Mechanics for Composites’, volume 61, pages 2159–67, UK, 20-22 Sept. 2000.
Elsevier.
[101] J. A. Nairn and D. A. Mendels. On the use of planar shear-lag methods for stresstransfer analysis of multilayered composites. Mechanics of Materials, 33(6):335–362,
2001.
[102] J. A. Nairn. Finite Fracture Mechanics of Matrix Microcracking in Composites, pages
207–212. Application of Fracture Mechanics to Polymers, Adhesives and Composites.
Elsevier, 2004.
[103] Y. M. Han, H. T. Hahn, and R. B. Croman. A simplified analysis of transverse ply
cracking in cross-ply laminates. Composites Science and Technology, 31(3):165–177,
1988.
[104] C. T. Herakovich, J. Aboudi, S. W. Lee, and E. A. Strauss. Damage in composite
laminates: Effects of transverse cracks. Mechanics of Materials, 7(2):91–107, 11 1988.
[105] J. Aboudi, S. W. Lee, and C. T. Herakovich. Three-dimensional analysis of laminates
with cross cracks. Journal of Applied Mechanics, Transactions ASME, 55(2):389–397,
1988.
[106] F. W. Crossman, W. J. Warren, A. S. D. Wang, and G. E. Law. Initiation and growth
of transverse cracks and edge delamination in composite laminates. ii – experimental
correlation. Journal of Composite Materials Suplement, 14(1):88–108, 1980.
[107] D. L. Flaggs and M. H. Kural. Experimental determination of the in situ transverse lamina strength in graphite/epoxy laminates. Journal of Composite Materials,
16:103–16, 03 1982.
[108] S. H. Lim and S. Li. Energy release rates for transverse cracking and delaminations induced by transverse cracks in laminated composites. Composites Part A,
36(11):1467–1476, 2005.References 401
[109] S. Li and F. Hafeez. Variation-based cracked laminate analysis revisited and fundamentally extended. International Journal of Solids and Structures, 46(20):3505–3515,
2009.
[110] J. L Rebiere and D. Gamby. A decomposition of the strain energy release rate associated with the initiation of transverse cracking, longitudinal cracking and delamination
in cross-ply laminates. Composite Structures, 84(2):186–197, 2008.
[111] S. C. Tan and R. J. Nuismer. A theory for progressive matrix cracking in composite
laminates. Journal of Composite Materials, 23:1029–1047, 1989.
[112] R. J. Nuismer and S. C. Tan. Constitutive relations of a cracked composite lamina.
Journal of Composite Materials, 22:306–321, 1988.
[113] T. Yokozeki and T. Aoki. Stress analysis of symmetric laminates with obliquelycrossed matrix cracks. Advanced Composite Materials, 13(2):121–40, 2004.
[114] T. Yokozeki and T. Aoki. Overall thermoelastic properties of symmetric laminates
containing obliquely crossed matrix cracks. Composites Science and Technology,
65(11-12):1647–54, 2005.
[115] Z. Hashin. Analysis of cracked laminates: a variational approach. Mechanics of
Materials, 4:121:136, 1985.
[116] J. Zhang, J. Fan, and C. Soutis. Analysis of multiple matrix cracking in [±θ/90n]s
composite laminates, part I, inplane stiffness properties. Composites, 23(5):291–304,
1992.
[117] P. Gudmundson and S. Ostlund. First order analysis of stiffness reduction due to
matrix cracking. Journal of Composite Materials, 26(7):1009–30, 1992.
[118] P. Gudmundson and S. Ostlund. Prediction of thermoelastic properties of composite
laminates with matrix cracks. Composites Science and Technology, 44(2):95–105,
1992.
[119] P. Gudmundson and W. Zang. An analytic model for thermoelastic properties of
composite laminates containing transverse matrix cracks. International Journal of
Solids and Structures, 30(23):3211–31, 1993.
[120] E. Adolfsson and P. Gudmundson. Thermoelastic properties in combined bending and
extension of thin composite laminates with transverse matrix cracks. International
Journal of Solids and Structures, 34(16):2035–60, 06 1997.
[121] E. Adolfsson and P. Gudmundson. Matrix crack initiation and progression in composite laminates subjected to bending and extension. International Journal of Solids
and Structures, 36(21):3131–3169, 1999.
[122] W. Zang and P. Gudmundson. Damage evolution and thermoelastic properties of
composite laminates. International Journal of Damage Mechanics, 2(3):290–308, 07
1993.
[123] E. Adolfsson and P. Gudmundson. Matrix crack induced stiffness reductions in
[(0m/90n/+p/-q)s]m composite laminates. Composites Engineering, 5(1):107–23,
1995.
[124] P. Lundmark and J. Varna. Modeling thermo-mechanical properties of damaged
laminates. In 3rd International Conference on Fracture and Damage Mechanics, FDM
2003, volume 251-252 of Advances in Fracture and Damage Mechanics, pages 381–7,
Switzerland, 2-4 Sept. 2003. Trans Tech Publications.402 Finite Element Analysis of Composite Materials
[125] M. Kachanov. Elastic solids with many cracks and related problems, volume 30 of
Advances in Applied Mechanics, chapter X, pages 260–445. Academic Press, Inc.,
1993.
[126] A. Adumitroiaie and E. J. Barbero. Intralaminar damage model for laminates subjected to membrane and flexural deformations. Mechanics of Advanced Materials and
Structures, 2013.
[127] T. Yokozeki, T. Aoki, and T. Ishikawa. Transverse crack propagation in the specimen
width direction of cfrp laminates under static tensile loadings. Journal of Composite
Materials, 36(17):2085–99, 2002.
[128] T. Yokozeki, T. Aoki, and T. Ishikawa. Consecutive matrix cracking in contiguous
plies of composite laminates. International Journal of Solids and Structures, 42(9-
10):2785–802, 05 2005.
[129] T. Yokozeki, T. Aoki, T. Ogasawara, and T. Ishikawa. Effects of layup angle and
ply thickness on matrix crack interaction in contiguous plies of composite laminates.
Composites Part A (Applied Science and Manufacturing), 36(9):1229–35, 2005.
[130] E. J. Barbero, F. A. Cosso, and F. A. Campo. Benchmark solution for degradation of elastic properties due to transverse matrix cracking in laminated composites.
Composite Structures, 98(4):242–252, 2013.
[131] S. Li, S. R. Reid, and P. D. Soden. A continuum damage model for transverse matrix
cracking in laminated fibre-reinforced composites. Philosophical Transactions of the
Royal Society London, Series A (Mathematical, Physical and Engineering Sciences),
356(1746):2379–412, 10/15 1998.
[132] Janis Varna, Roberts Joffe, and Ramesh Talreja. A synergistic damage-mechanics
analysis of transverse cracking [±θ/904]s laminates. Composites Science and Technology, 61(5):657–665, 2001.
[133] A. S. D. Wang, P. C. Chou, and S. C. Lei. A stochastic model for the growth of
matrix cracks in composite laminates. Journal of Composite Materials, 18(3):239–54,
05 1984.
[134] S. Li, S. R. Reid, and P. D. Soden. Modelling the damage due to transverse matrix
cracking in fiber-reinforced laminates. In Proc. 2nd Int. Conf. on Nonlinear Mechanics
(ICNP-2), pages 320–323. Peking University Press, 1993.
[135] D.H. Cortes and E.J. Barbero. Stiffness reduction and fracture evolution of oblique
matrix cracks in composite laminates. Annals of Solid and Structural Mechanics,
1(1):29–40, 2010.
[136] E. J. Barbero and D. H. Cortes. A mechanistic model for transverse damage initiation, evolution, and stiffness reduction in laminated composites. Composites Part B,
41:124–132, 2010.
[137] E. J. Barbero, G. Sgambitterra, A. Adumitroaie, and X. Martinez. A discrete constitutive model for transverse and shear damage of symmetric laminates with arbitrary
stacking sequence. Composite Structures, 93:1021–1030, 2011.
[138] G. Sgambitterra, A. Adumitroaie, E.J. Barbero, and A. Tessler. A robust three-node
shell element for laminated composites with matrix damage. Composites Part B:
Engineering, 42(1):41–50, 2011.References 403
[139] A. M. Abad Blazquez, M. Herraez Matesanz, Carlos Navarro Ugena, and E. J. Barbero. Acoustic emission characterization of intralaminar damage in composite laminates. In Asociaci´ on Espa˜ nola de Materiales Compuestos MATCOMP 2013, Algeciras, Spain, July 2–5, 2013.
[140] E. J. Barbero and F. A. Cosso. Determination of material parameters for discrete
damage mechanics analysis of composite laminates. Composites Part B:Engineering,
2013.
[141] H. T. Hahn. A mixed-mode fracture criterion for composite materials. Composites
Technology Review, 5:26–29, 1983.
[142] Allan F. Bower. Mechanics of Solids. CRC, 2010. Free at http://solidmechanics.org/.
[143] Simulia. Abaqus analysis user’s manual, version 6.10.
[144] J. Varna, R. Joffe, N. V. Akshantala, and R. Talreja. Damage in composite laminates
with off-axis plies. Composites Science and Technology, 59(14):2139–2147, 1999.
[145] H. Chai, C. D. Babcock, and W. G. Knauss. One dimensional modeling of failure
in laminated plates by delamination buckling. International Journal of Solids and
Structures, 17(11):1069–1083, 1981.
[146] M.-K. Yeh and L.-B. Fang. Contact analysis and experiment of delaminated cantilever
composite beam. Composites: Part B, 30(4):407–414, 1999.
[147] W. L. Yin, S. N. Sallam, and G. J. Simitses. Ultimate axial load capacity of a
delaminated beam-plate. AIAA Journal, 24(1):123–128, 1986.
[148] D. Bruno. Delamination buckling in composite laminates with interlaminar defects.
Theoretical and Applied Fracture Mechanics, 9(2):145–159, 1988.
[149] D. Bruno and A. Grimaldi. Delamination failure of layered composite plates loaded
in compression. International Journal of Solids and Structures, 26(3):313–330, 1990.
[150] G. A. Kardomateas. The initial post-buckling and growth behaviour of internal delaminations in composite plates. Journal of Applied Mechanics, 60(4):903–910, 1993.
[151] G. A. Kardomateas and A. A. Pelegri. The stability of delamination growth in compressively loaded composite plates. International Journal of Fracture, 65(3):261–276,
1994.
[152] I. Sheinman, G. A. Kardomateas, and A. A. Pelegri. Delamination growth during preand post-buckling phases of delaminated composite laminates. International Journal
of Solids and Structures, 35(1-2):19–31, 1998.
[153] D. Bruno and F. Greco. An asymptotic analysis of delamination buckling and growth
in layered plates. International Journal of Solids and Structures, 37(43):6239–6276,
2000.
[154] H.-J. Kim. Postbuckling analysis of composite laminates with a delamination. Computer and Structures, 62(6):975–983, 1997.
[155] W. G. Bottega and A. Maewal. Delamination buckling and growth in laminates–
closure. Journal of Applied Mechanics, 50(14):184–189, 1983.
[156] B. Cochelin and M. Potier-Ferry. A numerical model for buckling and growth of
delaminations in composite laminates. Computer Methods in Applied Mechanics,
89(1-3):361–380, 1991.404 Finite Element Analysis of Composite Materials
[157] P.-L. Larsson. On delamination buckling and growth in circular and annular orthotropic plates. International Journal of Solids and Structures, 27(1):15–28, 1991.
[158] W.-L. Yin. Axisymmetric buckling and growth of a circular delamination in a compressed laminate. International Journal of Solids and Structures, 21(5):503–514, 1985.
[159] K.-F. Nilsson, L. E. Asp, J. E. Alpman, and L. Nystedt. Delamination buckling and
growth for delaminations at different depths in a slender composite panel. International Journal of Solids and Structures, 38(17):3039–3071, 2001.
[160] H. Chai and C. D. Babcock. Two-dimensional modeling of compressive failure in
delaminated laminates. Journal of Composite Materials, 19(1):67–98, 1985.
[161] J. D. Withcomb and K. N. Shivakumar. Strain-energy release rate analysis of plates
with postbuckled delaminations. Journal of Composite Materials, 23(7):714–734,
1989.
[162] W. J. Bottega. A growth law for propagation of arbitrary shaped delaminations in
layered plates. International Journal of Solids and Structures, 19(11):1009–1017.
[163] B. Stor˚akers and B. Andersson. Nonlinear plate theory applied to delamination in
composites. Journal of the Mechanics and Physics of Solids, 36(6):689–718, 1988.
[164] P.-L. Larsson. On multiple delamination buckling and growth in composite plates.
International Journal of Solids and Structures, 27(13):1623–1637, 1991.
[165] M. A. Kouchakzadeh and H. Sekine. Compressive buckling analysis of rectangular composite laminates containing multiple delaminations. Composite Structures,
50(3):249–255, 2000.
[166] J. M. Comiez, A. M. Waas, and K. W. Shahwan. Delamination buckling: Experiment
and analysis. International Journal of Solids and Structures, 32(6/7):767–782, 1995.
[167] G. A. Kardomateas. Postbuckling characteristics in delaminated kevlar/epoxy laminates: An experimental study. Journal of Composites Technology and Research,
12(2):85–90, 1990.
[168] O. Allix and A. Corigliano. Modeling and simulation of crack propagation in mixedmodes interlaminar fracture specimens. International Journal of Fracture, 77(2):111–
140, 1996.
[169] D. Bruno and F. Greco. Delamination in composite plates: Influence of shear deformability on interfacial debonding. Cement and Concrete Composites, 23(1):33–45,
2001.
[170] J. W. Hutchinson and Z. Suo. Mixed mode cracking in layered materials. Advances
in Applied Mechanics, 29:63–191, 1992.
[171] N. Point and E. Sacco. Delamination of beams: An application to the dcb specimen.
International Journal of Fracture, 79(3):225–247, 1996.
[172] J. G. Williams. On the calculation of energy release rate for cracked laminates.
International Journal of Fracture, 36(2):101–119, 1988.
[173] A. Tylikowsky. Effects of piezoactuator delamination on the transfer functions of
vibration control systems. International Journal of Solids and Structures, 38(10-
13):2189–2202, 2001.
[174] C. E. Seeley and A. Chattopadhyay. Modeling of adaptive composites including
debonding. International Journal Solids and Structures, 36(12):1823–1843, 1999.References 405
[175] W. J. Bottega and A. Maewal. Dynamics of delamination buckling. International
Journal of Non-Linear Mechanics, 18(6):449–463, 1983.
[176] G. Alfano and M. A. Crisfield. Finite element interface models for the delamination
analysis of laminated composites: Mechanical and computational issues. International
Journal for Numerical Methods in Engineering, 50(7):1701–1736, 2001.
[177] P. P. Camanho, C. G. D´avila, and M. F. Moura. Numerical simulation of mixed-mode
progressive delamination in composite materials. Journal of Composite Materials,
37(16):1415–1438, 2003.
[178] Z. Zou, S. R. Reid, and S. Li. A continuum damage model for delaminations in
laminated composites. Journal of the Mechanics and Physics of Solids, 51(2):333–
356, 2003.
[179] X-P Xu and A. Needleman. Numerical simulations of fast crack growth in brittle
solids. Journal of the Mechanics and Physics of Solids, 42:1397–1434, 1994.
[180] J. R. Reeder. A bilinear failure criterion for mixed-mode delamination in composite
materials. ASTM STP 1206, pages 303–322, 1993.
[181] H. Chai. Three-dimensional fracture analysis of thin-film debonding. International
Journal of Fracture, 46(4):237–256, 1990.
[182] J. D. Withcomb. Three dimensional analysis of a post-buckled embedded delamination. Journal of Composite Materials, 23(9):862–889, 1989.
[183] D. Bruno, F. Greco, and P. Lonetti. A 3d delamination modelling technique based on
plate and interface theories for laminated structures. European Journal of Mechanics
A/Solids, 24:127–149, 2005.
[184] J. G. Williams. The fracture mechanics of delamination tests. Journal of Strain
Analysis, 24(4):207–214, 1989.
[185] W.-L. Yin and J. T. S. Wang. The energy-release rate in the growth of a onedimensional delamination. Journal of Applied Mechanics, 51(4):939–941, 1984.
[186] J. R. Rice. A path independent integral and the approximate analysis of strain
concentrations by notches and cracks. Journal of Applied Mechanics, 35:379–386,
1968.
[187] Simulia. Abaqus analysis user’s manual, version 6.10. chapter 29.5: Cohesive elements.
[188] C. G. D´avila, P. P. Camanho, and M. F. De Moura. Mixed-mode decohesion elements
for analyses of progressive delamination. In 42nd AIAA/ASME/ASCE/AHS/ASC
Structures, Structural Dynamics, and Materials Conference, April 16 – 19, 2001,
volume 3, pages 2277– 88, Seattle, WA, 2001. AIAA.
[189] Simulia. Abaqus analysis user’s manual, version 6.10. chapter 11.4.3: Crack propagation analysis.
[190] E.J. Barbero and J.N. Reddy. Jacobian derivative method for three-dimensional fracture mechanics. Communications in Applied Numerical Methods, 6(7):507–518, 1990.
[191] M. Benzeggagh and M. Kenane. Measurement of mixed-mode delamination fracture
toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus. Composite Science and Technology, 56:439, 1996.406 Finite Element Analysis of Composite Materials
[192] J. Reeder, S. Kyongchan, P. B. Chunchu, and D. R.. Ambur. Postbuckling and
growth of delaminations in composite plates subjected to axial compression. In
43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Denver, Colorado, vol. 1746, p. 10, 2002.
[193] A. Caceres. Local Damage Analysis of Fiber Reinforced Polymer Matrix Composites,
Ph.D. dissertation. PhD thesis, West Virginia University, Morgantown, WV, 1998.
[194] E. J. Barbero. Composite materials forum. http://forum.cadec-online.com/
viewforum.php?f=4.
[195] G. Puri. Python Scripts for Abaqus. abaquspython.org, Atlanta, GA, 2011.
[196] M. Metcalf. A tool to convert f77 source code to f90. ftp://ftp.numerical.rl.ac.
uk/pub/MandR/convert.f90.

كلمة سر فك الضغط : books-world.net
The Unzip Password : books-world.net

تحميل

يجب عليك التسجيل في الموقع لكي تتمكن من التحميل
تسجيل | تسجيل الدخول

التعليقات

اترك تعليقاً