Elements of Mechanical Engineering

Elements of Mechanical Engineering
اسم المؤلف
R.K. RAJPUT
التاريخ
1 مارس 2021
المشاهدات
482
التقييم
(لا توجد تقييمات)
Loading...

Elements of Mechanical Engineering
As per latest syllabus of Punjab Technical University, Jalandhar
S.I. UNITS
By
Er. R.K. RAJPUT
M.E. (Hons.), Gold Medallist; Grad. (Mech. Engg. & Elect. Engg.); M.I.E. (India);
M.S.E.S.I.; M.I.S.T.E.; C.E. (India)
Recipient of:
Best Teacher (Academic) Award’’
‘‘Distinguished Author Award’’
‘‘Jawahar Lal Nehru Memorial Gold Medal’’
for an outstanding research paper
(Institution of Engineers–India)
Principal (Formerly):
• Thapar Polytechnic College
• Punjab College of Information Technology PATIALA
CONTENTS
Chapters Pages
Syllabus (xii)—(xiv)
PART A
1. BASIC CONCEPTS OF THERMODYNAMICS 3—45
1.1. Definition of Thermodynamics . 3
1.2. Thermodynamic Systems . 3
1.2.1. System, boundary and surroundings . 3
1.2.2. Closed system . 4
1.2.3. Open system . 4
1.2.4. Isolated system . 4
1.2.5. Adiabatic system . 4
1.2.6. Homogeneous system . 5
1.2.7. Heterogeneous system . 5
1.3. Macroscopic and Microscopic Points of View . 5
1.4. Pure Substance . 6
1.5. Thermodynamic Equilibrium . 6
1.6. Properties of Systems . 6
1.7. State . 6
1.8. Process . 7
1.9. Cycle . 7
1.10. Point Function . 7
1.11. Path Function . 7
1.12. Temperature . 8
1.13. Zeroth Law of Thermodynamics . 8
1.14. The Thermometer and Thermometric Property . 8
1.14.1. Introduction . 8
1.14.2. Measurement of temperature . 9
1.14.3. The international practical temperature scale . 14
1.14.4. Ideal gas . 18
1.15. Pressure . 18
1.15.1. Definition of pressure . 18
1.15.2. Unit for pressure . 19
1.15.3. Types of pressure measurement devices . 19
1.15.4. Mechanical-type instruments . 19
1.15.5. Important types of pressure gauges . 24
1.16. Specific Volume . 25
1.17. Reversible and Irreversible Processes . 29
( v )1.18. Energy, Work and Heat . 30
1.18.1. Energy . 30
1.18.2. Work and heat . 30
1.19. Reversible Work . 32
Highlights . 41
Objective Type Questions . 42
Theoretical Questions . 44
Unsolved Examples . 44
2. FIRST LAW OF THERMODYNAMICS AND ITS APPLICATIONS 46—158
2.1. Internal Energy . 46
2.2. Law of Conservation of Energy . 46
2.3. First Law of Thermodynamics . 46
2.4. Application of First Law to a Process . 48
2.5. Energy—A Property of System . 48
2.6. Perpetual Motion Machine of the First Kind-PMM1 . 49
2.7. Energy of an Isolated System . 50
2.8. The Perfect Gas . 50
2.8.1. The characteristic equation of state . 50
2.8.2. Specific heats . 51
2.8.3. Joule’s law . 52
2.8.4. Relationship between two specific heats . 52
2.8.5. Enthalpy . 53
2.8.6. Ratio of specific heats . 53
2.9. Application of First Law of Thermodynamics to a Non-flow or
Closed System . 54
2.10. Application of First Law to Steady Flow Process . 90
2.11. Energy Relations for Flow Process . 92
2.12. Engineering Applications of Steady Flow Energy Equation . 95
2.12.1. Water turbine . 95
2.12.2. Steam or gas turbine . 96
2.12.3. Centrifugal water pump . 97
2.12.4. Centrifugal compressor . 97
2.12.5. Reciprocating compressor . 98
2.12.6. Boiler . 98
2.12.7. Condenser . 99
2.12.8. Evaporator . 100
2.12.9. Steam nozzle . 100
2.13. Throttling Process and Joule-Thomson Porous Plug Experiment . 101
2.14. Heating-Cooling and Expansion of Vapours . 121
2.15. Unsteady Flow Processes . 143
Highlights . 147
Objective Type Questions . 148
Theoretical Questions . 151
Unsolved Examples . 151
Chapters Pages
( vi )3. SECOND LAW OF THERMODYNAMICS AND ENTROPY 159—223
3.1. Limitations of First Law of Thermodynamics and Introduction to
Second Law . 159
3.2. Performance of Heat Engine and Reversed Heat Engine . 159
3.3. Reversible Processes . 160
3.4. Statements of Second Law of Thermodynamics . 161
3.4.1. Clausius statement . 161
3.4.2. Kelvin-Planck statement . 161
3.4.3. Equivalence of Clausius statement to the Kelvin-Planck
statement . 161
3.5. Perpetual Motion Machine of the Second Kind (PMM2) . 162
3.6. Thermodynamic Temperature . 162
3.7. Clausius Inequality . 163
3.8. Carnot Cycle . 165
3.9. Carnot’s Theorem . 167
3.10. Corollary of Carnot’s Theorem . 168
3.11. Efficiency of the Reversible Heat Engine . 168
3.12. Entropy . 182
3.12.1. Introduction . 182
3.12.2. Entropy–a property of system . 182
3.12.3. Change of entropy in a reversible process . 183
3.13. Entropy and Irreversibility . 184
3.14. Change in Entropy of the Universe . 185
3.15. Temperature Entropy Diagram . 186
3.16. Characteristics of Entropy . 187
3.17. Entropy Changes for a Closed System . 187
3.17.1. General case for change of entropy of a gas . 187
3.17.2. Heating a gas at constant volume . 189
3.17.3. Heating a gas at constant pressure . 189
3.17.4. Isothermal process . 190
3.17.5. Adiabatic process (reversible) . 191
3.17.6. Polytropic process . 191
3.17.7. Approximation for heat absorbed . 193
3.18. Entropy Changes for an Open System . 194
3.19. The Third Law of Thermodynamics . 196
Highlights . 217
Objective Type Questions . 218
Theoretical Questions . 220
Unsolved Examples . 221
PART B
4. GAS POWER CYCLES 227—318
4.1. Definition of a Cycle . 227
4.2. Air Standard Efficiency . 227
4.3. The Carnot Cycle . 228
4.4. Constant Volume or Otto Cycle . 235
Chapters Pages
( vii )4.5. Constant Pressure or Diesel Cycle . 250
4.6. Dual Combustion Cycle . 259
4.7. Comparison of Otto, Diesel and Dual Combustion Cycles . 274
4.7.1. Efficiency versus compression ratio . 274
4.7.2. For the same compression ratio and the same heat input . 275
4.7.3. For constant maximum pressure and heat supplied . 275
4.8. Atkinson Cycle . 276
4.9. Ericsson Cycle . 279
4.10. Gas Turbine Cycle—Brayton Cycle . 279
4.10.1. Ideal Brayton cycle . 279
4.10.2. Pressure ratio for maximum work . 281
4.10.3. Work ratio . 282
4.10.4. Open cycle gas turbine—actual brayton cycle . 282
4.10.5. Methods for improvement of thermal efficiency of open cycle
gas turbine plant . 284
4.10.6. Effect of operating variables on thermal efficiency . 287
4.10.7. Closed cycle gas turbine . 289
4.10.8. Gas turbine fuels . 291
Highlights . 312
Objective Type Questions . 313
Theoretical Questions . 315
Unsolved Examples . 315
5. INTERNAL COMBUSTION ENGINES 319—360
5.1. Heat Engines . 319
5.2. Development of I.C. Engines . 320
5.3. Classification of I.C. Engines . 320
5.4. Applications of I.C. Engines . 321
5.5. Basic Idea of I.C. Engine . 321
5.6. Different Parts of I.C. Engines . 322
5.7. Terms Connected with I.C. Engines . 346
5.8. Working Cycles . 347
5.9. Indicator Diagram . 348
5.10. Four Stroke Cycle Engines . 348
5.11. Two Stroke Cycle Engines . 354
5.12. Comparison of Four Stroke and Two Stroke Cycle Engines . 356
5.13. Comparison of Spark Ignition (S.I.) and Compression Ignition (C.I.)
Engines . 357
5.14. Comparison between a Petrol Engine and a Diesel Engine . 358
5.15. How to Tell a Two Stroke Cycle Engine from a Four Stroke Cycle
Engine ? . 359
Theoretical Questions . 359
Chapters Pages
( viii )6. ENGINEERING MATERIALS 361—419
6.1. Classification of Materials . 361
6.1.1. Classification of electrical engineering materials . 363
6.1.2. Biomaterials . 365
6.1.3. Advanced materials . 365
6.1.4. Materials of future—“Smart Materials” . 365
6.1.5. Nanotechnology and nanomaterials . 366
6.2. Mechanical Properties of Metals . 368
6.3. Ferrous Metals and Alloys . 371
6.3.1. Introduction . 371
6.3.2. Pig iron . 373
6.3.3. Cast iron . 374
6.3.4. Wrought iron . 377
6.3.5. Composition, properties and uses of carbon steels . 377
6.3.6. Comparison of cast iron, wrought iron,
mild steel and hard steel . 378
6.3.7. Alloy steels . 379
6.4. Non-Ferrous Metals and Alloys . 384
6.4.1. Aluminium . 384
6.4.2. Copper . 386
6.4.3. Copper alloys . 387
6.4.4. Aluminium alloys . 390
6.5. Polymers/Plastics . 393
6.5.1. Introduction . 393
6.5.2. Classification of plastics . 393
6.5.3. Thermoplastic materials . 394
6.5.4. Thermosetting materials . 395
6.5.5. Trade names and typical applications of some important plastics 395
6.5.6. Laminated plastics . 396
6.5.7. Fiber glass reinforced plastics . 396
6.6. Ceramic Materials . 397
6.6.1. Introduction . 397
6.6.2. Classification of ceramics . 397
6.6.3. Advantages of ceramic materials . 398
6.6.4. Applications of ceramics . 398
6.6.5. Properties of ceramic materials . 399
6.6.6. Glass . 401
6.6.7. Cements . 404
6.6.8. Advanced ceramics . 406
6.7. Composite Materials/Composites . 407
6.7.1. General aspects . 407
6.7.2. Classification . 408
6.7.3. Particle-reinforced composites . 409
6.7.4. Fiber-reinforced composites . 410
6.7.5. Structural composites . 411
Chapters Pages
( ix )Chapters Pages
6.8. Conductors, Semiconductors and Insulators . 412
6.8.1. Conductors . 412
6.8.2. Semiconductors . 413
6.8.3. Insulators (or dielectrics) . 415
6.9. Selection of Materials . 416
Theoretical Questions . 418
7. CENTRE OF GRAVITY AND CENTROID 420—456
7.1. Centre of Gravity of a Body . 420
7.2. Determination of Centre of Gravity . 421
7.3. Centroid . 421
7.4. Positions of Centroids of Plane Geometrical Figures . 422
7.5. Positions of Centre of Gravity of Regular Solids . 423
7.6. (a) Centroids of Composite Areas . 424
7.6. (b) Centre of Gravity of Simple Solids . 424
7.7. Areas and Volumes—Centroid Method . 425
7.8. Centre of Gravity in a Few Simple Cases . 426
Highlights . 450
Objective Type Questions . 450
Exercises . 451
Theoretical Questions . 451
Unsolved Examples . 451
8. MOMENT OF INERTIA 457—483
8.1. Moment of Inertia . 457
8.2. Theorem of Parallel Axes . 459
8.3. Theorem of Perpendicular Axes . 459
8.4. Radius of Gyration of the Section . 460
8.5. Moment of Inertia of Laminae of Different Shapes . 461
Highlights . 479
Objective Type Questions . 480
Exercises . 480
Theoretical Questions . 480
Unsolved Examples . 480
Additional Typical Worked Examples 485—500
Examination Pap
كلمة سر فك الضغط : books-world.net

The Unzip Password : books-world.net

تحميل

يجب عليك التسجيل في الموقع لكي تتمكن من التحميل
تسجيل | تسجيل الدخول

التعليقات

اترك تعليقاً