Elements of Mechanical Engineering
As per latest syllabus of Punjab Technical University, Jalandhar
S.I. UNITS
By
Er. R.K. RAJPUT
M.E. (Hons.), Gold Medallist; Grad. (Mech. Engg. & Elect. Engg.); M.I.E. (India);
M.S.E.S.I.; M.I.S.T.E.; C.E. (India)
Recipient of:
Best Teacher (Academic) Award’’
‘‘Distinguished Author Award’’
‘‘Jawahar Lal Nehru Memorial Gold Medal’’
for an outstanding research paper
(Institution of Engineers–India)
Principal (Formerly):
• Thapar Polytechnic College
• Punjab College of Information Technology PATIALA
CONTENTS
Chapters Pages
Syllabus (xii)—(xiv)
PART A
1. BASIC CONCEPTS OF THERMODYNAMICS 3—45
1.1. Definition of Thermodynamics . 3
1.2. Thermodynamic Systems . 3
1.2.1. System, boundary and surroundings . 3
1.2.2. Closed system . 4
1.2.3. Open system . 4
1.2.4. Isolated system . 4
1.2.5. Adiabatic system . 4
1.2.6. Homogeneous system . 5
1.2.7. Heterogeneous system . 5
1.3. Macroscopic and Microscopic Points of View . 5
1.4. Pure Substance . 6
1.5. Thermodynamic Equilibrium . 6
1.6. Properties of Systems . 6
1.7. State . 6
1.8. Process . 7
1.9. Cycle . 7
1.10. Point Function . 7
1.11. Path Function . 7
1.12. Temperature . 8
1.13. Zeroth Law of Thermodynamics . 8
1.14. The Thermometer and Thermometric Property . 8
1.14.1. Introduction . 8
1.14.2. Measurement of temperature . 9
1.14.3. The international practical temperature scale . 14
1.14.4. Ideal gas . 18
1.15. Pressure . 18
1.15.1. Definition of pressure . 18
1.15.2. Unit for pressure . 19
1.15.3. Types of pressure measurement devices . 19
1.15.4. Mechanical-type instruments . 19
1.15.5. Important types of pressure gauges . 24
1.16. Specific Volume . 25
1.17. Reversible and Irreversible Processes . 29
( v )1.18. Energy, Work and Heat . 30
1.18.1. Energy . 30
1.18.2. Work and heat . 30
1.19. Reversible Work . 32
Highlights . 41
Objective Type Questions . 42
Theoretical Questions . 44
Unsolved Examples . 44
2. FIRST LAW OF THERMODYNAMICS AND ITS APPLICATIONS 46—158
2.1. Internal Energy . 46
2.2. Law of Conservation of Energy . 46
2.3. First Law of Thermodynamics . 46
2.4. Application of First Law to a Process . 48
2.5. Energy—A Property of System . 48
2.6. Perpetual Motion Machine of the First Kind-PMM1 . 49
2.7. Energy of an Isolated System . 50
2.8. The Perfect Gas . 50
2.8.1. The characteristic equation of state . 50
2.8.2. Specific heats . 51
2.8.3. Joule’s law . 52
2.8.4. Relationship between two specific heats . 52
2.8.5. Enthalpy . 53
2.8.6. Ratio of specific heats . 53
2.9. Application of First Law of Thermodynamics to a Non-flow or
Closed System . 54
2.10. Application of First Law to Steady Flow Process . 90
2.11. Energy Relations for Flow Process . 92
2.12. Engineering Applications of Steady Flow Energy Equation . 95
2.12.1. Water turbine . 95
2.12.2. Steam or gas turbine . 96
2.12.3. Centrifugal water pump . 97
2.12.4. Centrifugal compressor . 97
2.12.5. Reciprocating compressor . 98
2.12.6. Boiler . 98
2.12.7. Condenser . 99
2.12.8. Evaporator . 100
2.12.9. Steam nozzle . 100
2.13. Throttling Process and Joule-Thomson Porous Plug Experiment . 101
2.14. Heating-Cooling and Expansion of Vapours . 121
2.15. Unsteady Flow Processes . 143
Highlights . 147
Objective Type Questions . 148
Theoretical Questions . 151
Unsolved Examples . 151
Chapters Pages
( vi )3. SECOND LAW OF THERMODYNAMICS AND ENTROPY 159—223
3.1. Limitations of First Law of Thermodynamics and Introduction to
Second Law . 159
3.2. Performance of Heat Engine and Reversed Heat Engine . 159
3.3. Reversible Processes . 160
3.4. Statements of Second Law of Thermodynamics . 161
3.4.1. Clausius statement . 161
3.4.2. Kelvin-Planck statement . 161
3.4.3. Equivalence of Clausius statement to the Kelvin-Planck
statement . 161
3.5. Perpetual Motion Machine of the Second Kind (PMM2) . 162
3.6. Thermodynamic Temperature . 162
3.7. Clausius Inequality . 163
3.8. Carnot Cycle . 165
3.9. Carnot’s Theorem . 167
3.10. Corollary of Carnot’s Theorem . 168
3.11. Efficiency of the Reversible Heat Engine . 168
3.12. Entropy . 182
3.12.1. Introduction . 182
3.12.2. Entropy–a property of system . 182
3.12.3. Change of entropy in a reversible process . 183
3.13. Entropy and Irreversibility . 184
3.14. Change in Entropy of the Universe . 185
3.15. Temperature Entropy Diagram . 186
3.16. Characteristics of Entropy . 187
3.17. Entropy Changes for a Closed System . 187
3.17.1. General case for change of entropy of a gas . 187
3.17.2. Heating a gas at constant volume . 189
3.17.3. Heating a gas at constant pressure . 189
3.17.4. Isothermal process . 190
3.17.5. Adiabatic process (reversible) . 191
3.17.6. Polytropic process . 191
3.17.7. Approximation for heat absorbed . 193
3.18. Entropy Changes for an Open System . 194
3.19. The Third Law of Thermodynamics . 196
Highlights . 217
Objective Type Questions . 218
Theoretical Questions . 220
Unsolved Examples . 221
PART B
4. GAS POWER CYCLES 227—318
4.1. Definition of a Cycle . 227
4.2. Air Standard Efficiency . 227
4.3. The Carnot Cycle . 228
4.4. Constant Volume or Otto Cycle . 235
Chapters Pages
( vii )4.5. Constant Pressure or Diesel Cycle . 250
4.6. Dual Combustion Cycle . 259
4.7. Comparison of Otto, Diesel and Dual Combustion Cycles . 274
4.7.1. Efficiency versus compression ratio . 274
4.7.2. For the same compression ratio and the same heat input . 275
4.7.3. For constant maximum pressure and heat supplied . 275
4.8. Atkinson Cycle . 276
4.9. Ericsson Cycle . 279
4.10. Gas Turbine Cycle—Brayton Cycle . 279
4.10.1. Ideal Brayton cycle . 279
4.10.2. Pressure ratio for maximum work . 281
4.10.3. Work ratio . 282
4.10.4. Open cycle gas turbine—actual brayton cycle . 282
4.10.5. Methods for improvement of thermal efficiency of open cycle
gas turbine plant . 284
4.10.6. Effect of operating variables on thermal efficiency . 287
4.10.7. Closed cycle gas turbine . 289
4.10.8. Gas turbine fuels . 291
Highlights . 312
Objective Type Questions . 313
Theoretical Questions . 315
Unsolved Examples . 315
5. INTERNAL COMBUSTION ENGINES 319—360
5.1. Heat Engines . 319
5.2. Development of I.C. Engines . 320
5.3. Classification of I.C. Engines . 320
5.4. Applications of I.C. Engines . 321
5.5. Basic Idea of I.C. Engine . 321
5.6. Different Parts of I.C. Engines . 322
5.7. Terms Connected with I.C. Engines . 346
5.8. Working Cycles . 347
5.9. Indicator Diagram . 348
5.10. Four Stroke Cycle Engines . 348
5.11. Two Stroke Cycle Engines . 354
5.12. Comparison of Four Stroke and Two Stroke Cycle Engines . 356
5.13. Comparison of Spark Ignition (S.I.) and Compression Ignition (C.I.)
Engines . 357
5.14. Comparison between a Petrol Engine and a Diesel Engine . 358
5.15. How to Tell a Two Stroke Cycle Engine from a Four Stroke Cycle
Engine ? . 359
Theoretical Questions . 359
Chapters Pages
( viii )6. ENGINEERING MATERIALS 361—419
6.1. Classification of Materials . 361
6.1.1. Classification of electrical engineering materials . 363
6.1.2. Biomaterials . 365
6.1.3. Advanced materials . 365
6.1.4. Materials of future—“Smart Materials” . 365
6.1.5. Nanotechnology and nanomaterials . 366
6.2. Mechanical Properties of Metals . 368
6.3. Ferrous Metals and Alloys . 371
6.3.1. Introduction . 371
6.3.2. Pig iron . 373
6.3.3. Cast iron . 374
6.3.4. Wrought iron . 377
6.3.5. Composition, properties and uses of carbon steels . 377
6.3.6. Comparison of cast iron, wrought iron,
mild steel and hard steel . 378
6.3.7. Alloy steels . 379
6.4. Non-Ferrous Metals and Alloys . 384
6.4.1. Aluminium . 384
6.4.2. Copper . 386
6.4.3. Copper alloys . 387
6.4.4. Aluminium alloys . 390
6.5. Polymers/Plastics . 393
6.5.1. Introduction . 393
6.5.2. Classification of plastics . 393
6.5.3. Thermoplastic materials . 394
6.5.4. Thermosetting materials . 395
6.5.5. Trade names and typical applications of some important plastics 395
6.5.6. Laminated plastics . 396
6.5.7. Fiber glass reinforced plastics . 396
6.6. Ceramic Materials . 397
6.6.1. Introduction . 397
6.6.2. Classification of ceramics . 397
6.6.3. Advantages of ceramic materials . 398
6.6.4. Applications of ceramics . 398
6.6.5. Properties of ceramic materials . 399
6.6.6. Glass . 401
6.6.7. Cements . 404
6.6.8. Advanced ceramics . 406
6.7. Composite Materials/Composites . 407
6.7.1. General aspects . 407
6.7.2. Classification . 408
6.7.3. Particle-reinforced composites . 409
6.7.4. Fiber-reinforced composites . 410
6.7.5. Structural composites . 411
Chapters Pages
( ix )Chapters Pages
6.8. Conductors, Semiconductors and Insulators . 412
6.8.1. Conductors . 412
6.8.2. Semiconductors . 413
6.8.3. Insulators (or dielectrics) . 415
6.9. Selection of Materials . 416
Theoretical Questions . 418
7. CENTRE OF GRAVITY AND CENTROID 420—456
7.1. Centre of Gravity of a Body . 420
7.2. Determination of Centre of Gravity . 421
7.3. Centroid . 421
7.4. Positions of Centroids of Plane Geometrical Figures . 422
7.5. Positions of Centre of Gravity of Regular Solids . 423
7.6. (a) Centroids of Composite Areas . 424
7.6. (b) Centre of Gravity of Simple Solids . 424
7.7. Areas and Volumes—Centroid Method . 425
7.8. Centre of Gravity in a Few Simple Cases . 426
Highlights . 450
Objective Type Questions . 450
Exercises . 451
Theoretical Questions . 451
Unsolved Examples . 451
8. MOMENT OF INERTIA 457—483
8.1. Moment of Inertia . 457
8.2. Theorem of Parallel Axes . 459
8.3. Theorem of Perpendicular Axes . 459
8.4. Radius of Gyration of the Section . 460
8.5. Moment of Inertia of Laminae of Different Shapes . 461
Highlights . 479
Objective Type Questions . 480
Exercises . 480
Theoretical Questions . 480
Unsolved Examples . 480
Additional Typical Worked Examples 485—500
Examination Pap
كلمة سر فك الضغط : books-world.net
The Unzip Password : books-world.net
تحميل
يجب عليك التسجيل في الموقع لكي تتمكن من التحميل
تسجيل | تسجيل الدخول