Carbon Nanotube Reinforced Composites

Carbon Nanotube Reinforced Composites
اسم المؤلف
Marcio Loos
التاريخ
13 ديسمبر 2023
المشاهدات
247
التقييم
(لا توجد تقييمات)
Loading...

Carbon Nanotube Reinforced Composites
Marcio Loos
Table of contents
Series page
Dedication
Foreword
Preface
Chapter 1. Nanoscience and Nanotechnology
1.1. Introduction to the nanoscale
1.2. What makes the nanoscale important?
1.3. Properties of nanoparticles and effect of size
1.4. N&N history
1.5. Nano in history
1.6. Moore’s Law
1.7. Applications of nanotechnology
1.8. Nanoscience and nanotechnology: A look to the future
To learn more…
Chapter 2. Composites
2.1. Conventional engineering materials
2.2. The concept of composites
2.3. Raw material for manufacture of composites
2.4. Advantages and disadvantages of composites
2.5. Influence of fiber length in fiber composites
2.6. Applications of composites
To learn more…
Chapter 3. Allotropes of Carbon and Carbon Nanotubes
3.1. Allotropes of carbon
3.2. Carbon nanotubes
3.3. Treatment of CNTs
To learn more…
Chapter 4. Production of CNTs and Risks to Health
4.1. Production methods of carbon nanotubes
4.2. Cost and production capacity of CNTs
4.3. CNTs: risks to health, safe disposal, and environmental concerns
4.4. Commercially available CNTs
To learn more…
Chapter 5. Fundamentals of Polymer Matrix Composites Containing CNTs
5.1. Use of CNTs for improvement of polymer properties
5.2. Mechanical properties of composites containing CNTs
5.3. Thermal conductivity of composites containing CNTs
5.4. Electrical conductivity of composites containing CNTs
To learn more…
Chapter 6. Processing of Polymer Matrix Composites Containing CNTs
6.1. Processing of polymer matrix composites containing CNTs
6.2. Technologies applied for the preparation of polymeric matrix nanocomposites
To learn more…
Chapter 7. Applications of CNTs
7.1. Carbon nanotubes: present and future applications
To learn more…
Chapter 8. Is It Worth the Effort to Reinforce Polymers with Carbon Nanotubes?
8.1. Introduction
8.2. Theories
8.3. Conclusion
Chapter 9. Reinforcement Efficiency of Carbon Nanotubes—Myth and Reality
9.1. Introduction
9.2. Models development
9.3. Application
9.4. Conclusion
Appendix A. Richard Feynman’s Talk
Appendix B. Periodic Table of Elements
Appendix C. Graphene Sheet
Appendix D. Simulations Using Matlab®
Appendix E. Questions and Exercises
Index
Index
Note: Page numbers followed by “b”, “f”, and “t” indicate boxes, figures, and tables respectively.
A
American Physical Society, 10
Aramid fibers
Kevlar, 59
properties, 58e59, 61t
sleeve and tapes, 58e59, 59f
stressestrain curves, 59, 60f
Twaron, 59
Arc discharge, 104, 104fe105f
Armchair nanotube, 81, 81f
B
Bismaleimides, 57
C
Carbon allotropes, 74e75, 74f
Carbon fibers, 58, 59f, 61t
Carbon nanotubes (CNTs)
advantages, 209e213
applications, 119
Adidas adizero shoes, 192, 192f
antibody functionalized single-walled carbon
nanotubes, 196e197, 196f
artificial muscles, 194, 194f
bicycle with frame, 190, 192f
catalytic materials, 199, 199f
CNT-based organic solar cells, 197e198, 198f
drug delivery systems, 196e197
Easton baseball bat, 190, 191f
electrochemical supercapacitor electrodes,
197, 197f
electromagnetic interference shielding, 201,
201f
electrophoretic display (EPD) e-paper,
194e195
hard tissue engineering, 194e195
hockey sticks, 190, 191f
hydrophilic microbiosensor, 192e194, 193f
hydroxylapatite formation, collagen
composite, 195, 196f
lithium-ion battery, 199e201, 200f
paper-thin cylinder, 199, 200f
printed CNT transistors, 201e202, 202f
sail boat, 190, 191f
Samsung display, 194e195, 195f
sound frequency electric currents, 199
synthetic gecko tape, 194, 195f
tennis racket, 190, 190f
thermo-acoustic effect, 199
water molecules, 198, 198f
wind turbine blades, 192, 193f
chemical fibers and yarns, 228
cost, 213, 214t
and production capacity, 106e107
vs. property analysis, 220e221
covalent functionalization, 94, 97f
double-walled carbon nanotube, 75e76, 76f
electrical conductivity, 88, 88t
fiber composites, micromechanics modeling
critical length, 218e219
effective fiber, 218e219
fiber volume fraction, 218
HalpineTsai equations, 217
hybrid composites, 219e220
materials cost, 219e220
nanotube reinforced composites, 217
single reinforcing phase, 218
strength efficiency factor, 219
tensile strength, 218e219
fitting experimental data, 241e244, 242fe243f
graphene sheet, 75e76
hallow carbon fibers, 77, 78f
HalpineTsai model, 217
health risk and safe disposal
asbestos fibers, 109
electrolyte imbalance, water consumption, 109
environmental precaution, 110e111
glove box, 110, 111f
granulomas, 109e110, 110f
MSDS, 111e119, 111b
toxicological effects, 110
hybrid composites, 222
impurities, 89
material selection process, 220
mechanical properties, 85t
arc discharge, 84
covalent bond, 83
density and price, 223, 224t
nanocomposite materials, 208, 210t
SEM, 84, 84f
single-walled carbon nanotubes, 86e87, 86f
specific resistance value, 83e84
models development, 235e240, 236f
multi-walled carbon nanotube, 75e77, 76f, 79f
285Carbon nanotubes (CNTs) (Continued)
non-covalent functionalization
adsorption models, 94, 96f
block copolymers, 94, 96f
single-walled carbon nanotube, polyethylene
polymer chain, 94, 95f
patents and published articles, 77, 80f
polymer matrix composites (see Polymer matrix
composites)
production methods
adaptations and improvements, 103e104
arc discharge, 104, 104fe105f
carbon monoxide conversion, 106, 108f
CVD, 105e106, 106fe108f
laser ablation, 104e105, 105f
properties, 213, 214t, 222, 222t
published articles and patents, 208, 209f
purification and oxidation
characteristics, 89e90, 92
hydrochloric acid, 90, 90f
metal oxides, 90
oxidation temperature, MWCNTs, 92f, 92b
oxidation time, MWCNTs, 93f, 93b
single-walled carbon nanotube defects, 90, 91f
solvents and polymer matrices, 93
reinforcement efficiency
applications, 234
3D network, 234
epoxy system, elastic modulus, 234, 235f
percolation threshold, 234
properties, 234
semiconductor carbon nanotubes, 87, 87f
series and parallel
composite modulus, 237
filler volume fractions, 237e238
large-diameter CNT bundles, 236
nano-fillers, 236
percolation threshold, 238
switching function, 237e238
three-phase composite system, 236, 237f
single-phase reinforced epoxy composites, 222
single-walled carbon nanotube, 75e76, 76fe77f
stiffness, 223e226, 226fe227f
structure
armchair nanotube, 81, 81f
CeC bond length, 79
chiral vector, 78, 80f
graphene sheet, 74f, 77e78
SWCNT, 82b
van der Waals attractions, 82
zigzag hexagonal lattice, 78
surface modification, 213
Takayanagi model, 238e240
elastic modulus, 240e241, 240f
tensile strength, 209e213, 213f, 223, 226fe227f
thermal conductivity, 88e89, 89t
tight-binding, superposition energy, 88
types, 75e76
Young’s modulus and break up elongation,
209e213, 213f
Ceramic matrix composites (CMC), 50
Ceramics, 61
Chemical vapor deposition (CVD)
apparatus, 105, 106f
nanotube synthesis, 105e106, 108f
structures growth, 105e106, 107f
Composites
advantages and disadvantages, 61, 62t
applications, 69
Boeing aircraft structure, 64
Boeing 787 Dreamliner, 65, 66f
Bulletproof vest, 65e68, 67f
concrete columns, 68, 68f
Enertia, electric bike, 65, 67f
F-22A Raptor fighter aircraft, 63, 64f
Mercedes CLK Cabriolet, body components,
65, 66f
plastic bridge, 68, 69f
polymer composite biomaterials, 68e69, 70f
Super Jumbo Airbus A380, 65, 65f
wind generator with blades, 68, 69f
bamboo and timber, 46, 47f
classification, 50f
CMC, 50
fiber composites, 51, 52f
MMC, 50
particulate composites, 51, 51f
PMC, 51
structural composites, 52, 53f
criteria for, 45
definitions, 45e46
engineering materials
advantages, 45
ceramics, 41
characteristics, 38
metals, 38e41
per capita usage, 41e45, 46t
polymer-based composites, 41e45
polymers, 41, 42t
properties, 38, 39t
fiber length, fiber composites, 62e63, 63f
matrix phase, 46, 47f
function, 48
performance characteristics, 48
286 Indexproperties, 46, 53
reinforcements, 48e49, 49f
aramid fibers, 58e59, 59fe60f, 61t
carbon fibers, 58, 59f, 61t
ceramics, 61
functions, 49, 50f
glass fibers, 57e58, 58f, 61t
phase, 46, 47f
polyester fibers, 60
polyethylene, 60
quartz, 60
types, 57
resins, 53
bismaleimides, 57
epoxy, 55, 55f, 56t
ester cyanates, 57
phenolic resins, 56e57
polyamides, 57
polyester, 54, 54f, 56t
polyurethanes, 57
silicones, 57
thermoplastics and thermosets, 53e54
vinyl ester, 55e56, 56f, 56t
snail shell, 46, 47f
teeth, 46, 47f
CVD. See Chemical vapor deposition (CVD)
D
Double-walled carbon nanotubes (DWCNTs),
75e76, 76f
modified HalpineTsai model, 149e150
Dual asymmetric centrifuge (DAC), 182e183,
184fe185f
E
Einstein equation
aspect ratio, 134, 135f
vs. Guth model, 134, 135f
reinforced elastomers, 133e134
suspension viscosity, 133e134
Young’s modulus, 134
Epoxy resins, 55, 55f, 56t
Ester cyanates, 57
F
Fiber composites, 51, 52f
fiber length, 62e63, 63f
micromechanics modeling
critical length, 218e219
effective fiber, 218e219
fiber volume fraction, 218
HalpineTsai equations, 217
hybrid composites, 219e220
materials cost, 219e220
nanotube reinforced composites, 217
single reinforcing phase, 218
strength efficiency factor, 219
tensile strength, 218e219
G
Glass fibers, 57e58, 58f, 61t
Gold and silver nanoparticles, 13e14, 16f
H
HalpineTsai model, 139e142, 140f, 142f
Hatta model, 158, 159f
Health risk and safe disposal
asbestos fibers, 109
electrolyte imbalance, water consumption, 109
environmental precaution, 110e111
glove box, 110, 111f
granulomas, 109e110, 110f
MSDS, 111e119, 111b
toxicological effects, 110
High-shear mixer
applications, 178e180
oil emulsions, 177e178
PU matrix composites, 178b, 179f
rotor types, 177e178, 178f
K
Kelly-Tyson approximation, 129e130
L
Laser ablation, 104e105, 105f
Lycurgus cup, 13, 15f
M
Material Safety Data Sheets (MSDS), 111e119,
111b
Matlab simulation
HalpineTsai code, 104
mixtures, code rule, 103e106
Metal matrix composites (MMC), 50
Modified HalpineTsai model
DWCNTs and MWCNTs, 149e150
effective fiber modulus, 149
fibrous composites, 147
vs. HalpineTsai model, 151, 151f
mechanical properties, 150, 150t
micromechanics-based models, 147e148
nanotube-matrix interface, 147
tensile strength, 149
Young’s modulus, 148, 148f
Index 287Molecular nanotechnology, 11
Moore’s law
chip development, 15
computing power evolution, 17e18, 21f
integrated circuit transistors, 18, 21f
transistor, 15, 20f
transistor investors, 15, 20f
MSDS. See Material Safety Data Sheets (MSDS)
Multi-walled carbon nanotubes (MWCNTs),
75e77, 76f, 79f
modified HalpineTsai model, 149e150
oxidation temperature, 92f, 92b
oxidation time, 93f, 93b
N
Nan model, 157, 158f
Nanoscience and nanotechnology
applications
air pollution and water, 28e29, 29f
aviation and space, 22, 23f
broken bone, healing process, 23e24
energy, 27e28, 28f
flexible color display monitor, 26, 26f
in food industry, 25e26, 25f
integrated circuit fabrication, 27
magnetic random access memory (MRAM), 27
micro and nano robots, 24e25, 24f
nanocapsules, 22e23, 24f
nano-silver crystals, 22e23
quantum dots, 22e23
sports, 30, 32f
textiles, 29e30, 31f
history, 1e2, 4e10, 12f, 14, 18f
American Physical Society, 10
atom rearrangement, 13
biological system, 9
computing machines, 11
electron microscopes, 8e9
gold and silver nanoparticles, 13e14, 16f
high school competition, 15e18
lubrication problems, 10
Lycurgus cup, 13, 15f
molecular nanotechnology, 11
NNI, 12
scanning tunneling microscope, 11, 11f
small scale atoms, 13e15
timeline with events, 15, 19t
tiny factories, 17e18
Moore’s law
chip development, 15
computing power evolution, 17e18, 21f
integrated circuit transistors, 18, 21f
transistor, 15, 20f
transistor investors, 15, 20f
nano-abacus, 30, 32f
nanofabrication, 33
nanoparticles
electromagnetic properties, 9e10
mechanical properties, 10
optical properties, 10
sinterization, 8e9
size effect, 8
thermal properties, 9, 9f
nanoscale
area/volume ratio, 6
atom density, 7
atoms alignment, 1e2, 2f
copper atom mass, 8
definition, 1e2
gold cube, specific surface area, 5e6, 5f
International System of Units, prefixes, 1e2, 2t
material outer surface, 7, 7f
number of atoms, 4
objects vs. natural organisms size, 2, 3f
properties, 6, 6t
specific surface area, 8
SWCNTs, 31
types, 13, 14f
National Nanotechnology Initiative (NNI), 12
Nielsen model, 142e145, 143t, 144f, 144t,
159e161, 160f
P
Particulate composites, 51, 51f
Periodic table, 47f
Phenolic resins, 56e57
Polyamides, 57
Polyester fibers, 60
Polyester resins, 54, 54f, 56t
Polyethylene, 60
Polymer matrix composites (PMC), 51
DAC, 182e183, 184fe185f
electrical conductivity
advantages, 161
composite filler, 162
conduction path, 164, 165f
conductive fillers, 161
contact resistance, 162
factors, 164e167
percolation threshold, 161e162, 162fe163f
high-shear mixer, 177e180, 178f, 178b, 179f
magnetic stirring, 175e177, 176f
manufacture of, 172, 173f
mechanical properties
288 Indexaspect ratio, 130
constituents density, 131
Cox model, 137e138, 138fe139f
critical length, 128e129
Einstein equation, 133e134, 135f
elastic modulus, nanocomposites, 133
elastic properties, 151
fractions and concentrations, 131, 131t
HalpineTsai model, 139e142, 140f, 142f
Kelly-Tyson approximation, 129e130
modified HalpineTsai model, 147e151, 148f,
150t
Nielsen model, 142e145, 143t, 144f, 144t
polymers and density, 128, 129t
series and parallel models, 136e137,
136fe137f
SWCNTs, 130, 130f
tensile strength, nanocomposites, 145e147,
146f
mechanical stirring, 177, 177f
melt processing, 172e174, 174f
nanosized reinforcements, 172
preparation methods, 172
properties
chemical modification, 127
molecular chemical bonds, 127, 128f
nano-fillers aggregation, 126, 127f
van der Waals interactions, 126
reaction processing/in situ polymerization,
174e175, 175f
single-screw extruder, 185e187, 186fe187f
solution processing, 172, 174f
sonication, 180e182, 181fe183f
thermal conductivity
geometric model, 154e157, 155f
glass and organic fibers, 152, 153t
Hatta model, 158, 159f
Nan model, 157, 158f
Nielsen model, 159e161, 160f
parallel model, 152e154, 154f
series model, 153e154, 154f
two-phase composites, 152
three-roll mill (calender), 184e185, 186f
Polyurethanes, 57
Q
Quartz, 60
S
Silicones, 57
Single-walled carbon nanotubes (SWCNTs), 31,
75e76, 76fe77f, 130, 130f
defects of, 90, 91f
mechanical properties, 86e87, 86f
polyethylene polymer chain, 94, 95f
Sonication
advantages, 181
cavitation, 180, 182f
industrial sonicators, 182
sodium carbonate, milling process, 180e181,
183f
ultrasonic bath and probe, 180, 181f
Structural composites, 52, 53f
T
Takayanagi model, 238e240
elastic modulus, 240e241, 240f
V
Vinyl ester, 55e56, 56f, 56t

كلمة سر فك الضغط : books-world.net
The Unzip Password : books-world.net

تحميل

يجب عليك التسجيل في الموقع لكي تتمكن من التحميل
تسجيل | تسجيل الدخول

التعليقات

اترك تعليقاً