Bridge Aeroelasticity – Sensitivity Analysis and Optimal Design

Bridge Aeroelasticity – Sensitivity Analysis and Optimal Design
اسم المؤلف
J.A. Jurado, S. Hernandez, F. Nieto & A. Mosquera
التاريخ
3 أبريل 2018
المشاهدات
445
التقييم
(لا توجد تقييمات)
Loading...

Bridge Aeroelasticity
Sensitivity Analysis and Optimal Design
J.A. Jurado, S. Hernandez, F. Nieto & A. Mosquera
University of La Coru?a, Spain
Contents
Preface xv
Chapter 1 Aeroelastic analysis and design optimization of
cable-supported bridges .. 1
1.1 Introduction .. 1
1.2 Aeroelastic phenomena 3
1.3 Methodologies of flutter analysis .. 5
1.4 Sensitivity analysis: a design tool .. 9
1.5 Optimum design in engineering: application to bridge
aeroelasticity 12
1.6 References . 14
Chapter 2 Cable-supported bridges since 1940: The Tacoma effect 15
2.1 Collapse of the Tacoma Narrows Bridge 15
2.2 The “Tacoma effect” 22
2.3 Recent history (1966–1988) . 29
2.3.1 Decks with aerodynamic sections 29
2.3.2 Cable-stayed bridges .. 31
2.4 Recent history (1989–1999) . 33
2.4.1 Bridges of the Honshu–Shikoku route in Japan 33
2.4.2 European bridges . 42
2.4.3 Bridges in China: networks in Hong Kong . 47
2.5 The 21st century: achievements and projects .. 53
2.5.1 Stonecutters Bridge in Hong Kong . 54
2.5.2 Bridge over the Gulf of Corinth, linking Rion and
Antirion . 55
2.5.3 Sutong Bridge in China . 57
2.5.4 Xihoumen Bridge in China . 58
2.5.5 Bridge project over the Strait of Messina . 58
2.5.6 Fehmarn Strait link project .. 59
2.5.7 Projects to link Japanese islands .. 62
2.5.7.1 Bridge planned for the entrance of Tokyo Bay .. 63
2.5.7.2 Ise Bay Bridge project 64
2.5.7.3 Link over the Kitan Strait . 66
2.5.7.4 Project for Ho-Yo Strait link .. 66
2.5.7.5 Project for the Tsugaru Strait link . 672.5.8 Bridge project over the Chacao Channel .. 69
2.5.9 The R?as Altas Link in Spain . 69
2.5.9.1 Suspension bridges .. 72
2.5.9.2 Arch bridge .. 73
2.6 References . 75
Chapter 3 Methodologies of flutter analysis for cable-supported bridges 77
3.1 Introduction .. 77
3.2 Experimental aeroelasticity in long-span bridges . 78
3.2.1 Applications of wind-tunnel testing on bridge
engineering .. 78
3.2.2 Types of wind tunnel .. 81
3.2.3 Sectional tests of bridge decks . 85
3.2.3.1 Aerodynamic tests .. 85
3.2.3.2 Aeroelastic testing 86
3.3 Basic principles of analytical aeroelasticity .. 87
3.3.1 Theodorsen’s theory applied to flutter in flat plates .. 88
3.3.2 Linearization of aeroelastic loads through flutter
derivatives 90
3.3.3 Bridge flutter considering three aeroelastic forces . 92
3.4 Movement equations for bridge decks 94
3.5 Modal analysis . 97
3.6 Aeroelastic response of a bridge . 100
3.7 Wind speed and frequency at the outset of flutter . 103
3.8 Existence of simultaneous flutter frequencies 105
3.9 References . 107
Chapter 4 Flutter analysis of suspension bridges during construction .. 109
4.1 Introduction .. 109
4.2 H?ga Kusten Bridge in its construction phase . 110
4.2.1 Construction phases of the H?ga Kusten Bridge .. 111
4.2.1.1 Phase 1: 18% of the main span .. 112
4.2.1.2 Phase 2: 51% of the central span .. 115
4.2.1.3 Phase 3: 68% of the central span .. 115
4.2.1.4 Phase 4: 97% of the main span .. 116
4.2.2 Flutter parameter evolution in the construction phase of
the H?ga Kusten Bridge 119
4.3 The Great Belt Bridge in its construction phase . 120
4.3.1 Construction phases of the Great Belt Bridge 122
4.3.2 Flutter parameter evolution in the construction phase of
the Great Belt Bridge . 127
4.4 References . 129
Chapter 5 Flutter analysis of completed cable-supported bridges 131
5.1 Introduction .. 131
5.2 Great Belt Bridge 131
5.2.1 Frequencies and natural modes for the Great Belt Bridge .. 1325.2.2 Aeroelastic analysis of the Great Belt Bridge 138
5.3 Bridge over the Akashi Strait .. 145
5.3.1 Natural frequencies and modes for the Akashi Strait
Bridge . 147
5.3.2 Aeroelastic analysis of the Akashi Strait Bridge .. 151
5.4 Original Tacoma Bridge . 159
5.4.1 Frequencies and natural modes for the Tacoma Bridge 160
5.4.2 Aeroelastic analysis of the Tacoma Bridge . 163
5.5 The Vasco da Gama Bridge .. 168
5.5.1 Frequencies and natural modes for the Vasco da Gama
Bridge . 170
5.5.2 Aeroelastic analysis of the Vasco da Gama Bridge 173
5.6 References . 181
Chapter 6 Sensitivity analysis of eigenvalue problems . 183
6.1 Introduction .. 183
6.2 Approximation by finite difference . 184
6.3 Analytical sensitivity for eigenvalue problems . 185
6.3.1 Sensitivity derivatives in case of vibration and buckling . 185
6.3.2 Sensitivity derivatives for non-Hamiltonian eigenvalue
problems .. 189
6.4 References . 191
Chapter 7 Analytical sensitivity analysis of free vibration problems .. 193
7.1 Introduction .. 193
7.1.1 Matrix calculation for bar structures in linear,
second-order theory . 193
7.1.2 Frequencies and natural vibration modes in linear
and second-order theories 198
7.2 Sensitivity analysis of frequencies and vibration eigen modes
in linear and second-order theories 199
7.2.1 Sensitivity analysis in linear theory 201
7.2.2 Sensitivity analysis in second-order theory 202
7.3. Description of the “ADISNOL3D” code . 204
7.4 Practical examples with ADISNOL3D . 209
7.4.1 Example 1: main cable of the Golden Gate Bridge . 209
7.4.2 Example 2: suspension bridge over the Great Belt . 210
7.4.2.1 Caracteristics of the Great Belt
suspension bridge .. 210
7.4.2.2 Free vibration analysis of the
Great Belt Bridge .. 212
7.4.2.3 Free vibration sensitivity analysis of the
suspension bridge over the Great Belt 213
7.5 References . 231Chapter 8 Sensitivity analysis of flutter response for
cable-supported bridges .. 235
8.1 Introduction .. 235
8.2 Obtaining flutter speed 235
8.3 Sensitivity analysis of the flutter parameters in a bridge 236
8.3.1 Design variables x 240
8.3.2 Calculating ?A /?x 240
8.3.3 Calculating ?A/?Uf . 242
8.3.4 Calculating ?A/?Kf .. 243
8.4 Solving the eigenvalue problem . 244
8.5 FLAS Code 248
8.6 References . 250
Chapter 9 Sensitivity of flutter response for suspension bridges under
construction . 251
9.1 Introduction .. 251
9.2 Example 1: H?ga Kusten Bridge at the construction phase .. 252
9.3 Example 2. Great Belt suspension bridge under construction . 260
9.4 References . 265
Chapter 10 Flutter response sensitivity of completed cable-supported
bridges 267
10.1 Example 1. Great Belt Bridge .. 267
10.1.1 Sensitivity of the aeroelastic analysis with 2 modes
for the Great Belt . 269
10.1.2 Sensitivity of the aeroelastic analysis of the Great Belt
using 18 modes . 271
10.1.3 Comparison of the sensitivity analyses for the Great Belt .. 273
10.1.4 Flutter speed in modified designs for the Great
Belt Bridge .. 273
10.2 Example 2. Akashi Strait Bridge 275
10.2.1 Sensitivity of aeroelastic analysis using two modes
for the Akashi Strait Bridge 277
10.2.2 Sensitivities from the 17-mode aeroelastic analysis
of the Akashi Strait Bridge .. 279
10.2.3 Comparing the sensitivity analyses for the Akashi Strait
Bridge . 282
10.2.4 Flutter speed in modified designs of the Akashi Strait
Bridge . 283
10.3 Example 3. Original Tacoma Bridge 284
10.3.1 Sensitivity from bimodal aeroelastic analysis of the
Tacoma Bridge .. 285
10.3.2 Sensitivity from the aeroelastic analysis using 10 modes
for the Tacoma Bridge .. 287
10.3.3 Comparing sensitivity analyses for the Tacoma Bridge 289
10.3.4 Flutter speed within modified designs of the
Tacoma Bridge .. 29010.4 Example 4. Vasco Da Gama Bridge . 291
10.4.1 Sensitivity from the bimodal aeroelastic analysis of the
Vasco da Gama Bridge . 292
10.4.2 11-mode sensitivity aeroelastic analysis for the
Vasco da Gama Bridge . 294
10.4.3 Comparing the sensitivity analyses for the
Vasco da Gama Bridge . 295
10.4.4 Flutter speed in the modified design of the
Vasco da Gama Bridge . 297
10.5 References . 298
Chapter 11 A formulation of optimization in bridge aeroelasticity 299
11.1 Introduction .. 299
11.2 Conventional design method 299
11.3 Sensitivity analysis 300
11.4 Optimum design . 301
11.5 Suspension bridges optimum design 302
11.5.1 Formulation of the optimum design problem . 304
11.5.2 Extensions of the sensitivity analysis formulation
due to the assumption of variable mass . 307
11.5.3 Solving the optimum design problem: description
of the DIOPTICA code .. 308
11.5.4 Symmetric box cross section: geometric properties
and analytical derivatives with regard to thicknesses . 313
11.6 References . 316
Chapter 12 Optimization of suspension bridges with aeroelastic and
kinematic constraints 319
12.1 Introduction .. 319
12.2 Messina Strait Bridge general description . 319
12.3 Messina Strait Bridge optimum design formulation . 325
12.4 Messina Strait Bridge sensitivities results . 326
12.5 Messina Strait Bridge optimum design results. Problem C .. 327
12.6 Messina Strait Bridge optimum design results. Problem L .. 330
12.7 Messina Strait Bridge optimum design results. Problem CL 333
12.8 Conclusions
كلمة سر فك الضغط : books-world.net
The Unzip Password : books-world.net

تحميل

يجب عليك التسجيل في الموقع لكي تتمكن من التحميل
تسجيل | تسجيل الدخول

التعليقات

اترك تعليقاً