Advanced Design and Manufacturing Based on STEP

Advanced Design and Manufacturing Based on STEP
اسم المؤلف
Xun Xu · Andrew Y.C. Nee
التاريخ
9 سبتمبر 2020
المشاهدات
592
التقييم
Loading...

Advanced Design and Manufacturing Based on STEP
Xun Xu · Andrew Y.C. Nee
Contents
List of Contributors . xxi
1 STEP in a Nutshell 1
T. Kramer and X. Xu
1.1 Introduction 1
1.2 History of STEP . 2
1.3 Objectives of STEP 3
1.4 Overview of STEP Parts . 4
1.5 Information Modelling Using EXPRESS and EXPRESS-G 5
1.6 Data Representation 7
1.6.1 Part 21 Files 7
1.6.2 XML Files . 9
1.6.3 STEP Data Access Interface (SDAI) . 10
1.7 STEP Integrated Resources 11
1.8 Application Protocol (AP) 12
1.8.1 AAM (Application Activity Model) 13
1.8.2 ARM (Application Reference Model) . 13
1.8.3 AIM (Application Interpreted Model) . 14
1.8.4 UOF (Unit of Functionality) . 14
1.8.5 AIC (Application Interpreted Construct) . 14
1.8.6 AM (Application Module) 15
1.8.7 Conformance Classes 15
1.9 Conformance Testing . 15
1.10 STEP-NC 16
1.11 STEP into the Future 17
Appendix Sources of Information about STEP . 18
References . 19
2 Feature-based Process Planning Based on STEP . 23
T. Kramer and F. Proctor
2.1 Introduction 23
2.2 Process Plans 24
2.2.1 Definition and Desiderata 24
2.2.2 ISO 14649 and AP 238 Process Planning Languages . 28
2.2.3 AP 240 Process Planning Language 31
2.2.4 FBICS-ALPS Process Planning Languages 33
2.2.5 Summary Table . 36xii Contents
2.3 Features 36
2.4 Feature-based Process Planning . 38
2.4.1 Overview of Feature-based Process Planning . 38
2.4.2 Features and Process Planning 39
2.4.3 Feature-based Process Planning in FBICS 39
2.5 FBICS to ISO 14649 45
2.6 Conclusion 46
References . 47
3 A Heuristic STEP-NC Based Process Planning Tool for Sequencing
NC Machining Operations . 49
U. Berger, R. Kretzschmann and K. P. Arnold
3.1 Introduction 49
3.2 State of the Art and Related Work 51
3.2.1 NC Process Chain . 51
3.2.2 Challenge and Problems in the Process Chain 52
3.2.3 STEP-NC – STEP Compliant Numerical Control . 53
3.2.4 Process Planning in the STEP-NC Process Chain . 55
3.2.5 Mathematical Formulizing of the Statement of Problem 58
3.3 Objectives and Requirements for Sequencing of Machining
Operations 59
3.3.1 Reasoning for a New Solution . 59
3.3.2 Objectives and Requirements of a New Solution 60
3.4 Approach for STEP-NC Machining Operations Sequencing . 60
3.4.1 Methodology and Keynote 60
3.4.2 Functional Principle and Application Scope . 61
3.4.3 Architecture and Modules . 63
3.4.4 Model for Workplan Representation and Processing 63
3.4.5 Workflow for the Knowledge-based NC Programming
System . 68
3.4.6 Approach for Sequencing Algorithm 70
3.5 Technical Realization and Evaluation 72
3.5.1 Technical Realization 72
3.5.2 Evaluation of the Approach . 72
3.6 Conclusion and Outlook . 74
References . 75
4 STEPNC++ – An Effective Tool for Feature-based CAM/CNC . 79
J. Michaloski, T. Kramer, F. Proctor, X. Xu, S. Venkatesh, and
D. Odendahl
4.1 Introduction 79
4.2 Feature-based CAM to Feature-based CNC . 81
4.3 Feed-forward Tolerancing 85
4.4 Smarter Machining Process Parameterization 89
4.5 STEPNC++ Implementation 91
4.6 Validation and Analysis . 95Contents xiii
4.7 Discussion 101
Disclaimer . 102
References . 102
5 A STEP-Compliant Approach to Turning Operations 105
Y.Yusof and K.Case
5.1 Introduction 105
5.1.1 Standard Product Data Exchange 106
5.1.2 STEP-NC Environment for Manufacturing . 107
5.2 Related Work 108
5.3 Design of a STEP Compliant System for Turning Operations
(SCSTO) . 110
5.4 Case Study Component 118
5.5 Conclusion 120
References . 121
6 Circular Sawblade Stone Cutting Technology Based on STEP-NC . 125
J. Garrido Campos
6.1 Introduction 125
6.2 Stone Cutting Process Needs 128
6.3 Understanding and Modelling Stone Cutting Processes . 129
6.3.1 Stone Cutting Processes 129
6.3.2 Automatic Stone Cutting Machines 130
6.3.3 An Example . 132
6.4 STEP-NC Data Model for Sawblade Stone Cutting . 133
6.4.1 Disc Sawblade Cutting Features 134
6.4.2 Sawblade Cutting Operation Data . 136
6.4.3 Data Model Implementation 139
6.5 Conclusions 140
Acknowledgments 141
References . 14
7 Open Platform Development for STEP-compliant CNC . 145
T. Hu, C. Zhang, R. Liu and L. Yang
7.1 Introduction 145
7.2 Requirement Analysis 146
7.2.1 Function Level Requirement Analysis 146
7.2.2 Implementing Level Requirement Analysis 149
7.3 System Structure . 150
7.4 Design Specification of Engine Based System . 152
7.4.1 Design of Decision Unit (DU) . 153
7.4.2 Generation of Function Description Data (FDD) 153
7.4.3 Design of EMI . 157
7.4.4 Design of SE . 157
7.4.5 Design of EtherMC Hardware Platform 159
1xiv Contents
7.4.6 Secondary Development Scenario . 161
7.5 Prototype Development 161
7.5.1 Design of DU 161
7.5.2 Design of FDD 162
7.5.3 Hooking up FDD with SE and HMI 166
7.6 Conclusion 167
Acknowledgment 167
References . 168
8 STEP-NC in Support of Machining Process Optimization . 169
L. Xu
8.1 Introduction 169
8.2 Cutting Force in Machining Processes . 172
8.3 Tool Path Cross-section in Milling . 174
8.4 Parameterization of the Tool Path Cross-section 176
8.5 Force-based Feed Optimization 179
8.5.1 Feed Derivation . 180
8.5.2 Multiple Machine System Constraints 181
8.5.3 Downward Feed Optimization 181
8.6 Other Optimization Methods 182
8.6.1 Tool Life-based Optimization . 182
8.6.2 Volume-based Optimization . 184
8.6.3 Constant-Chip Optimization . 185
8.6.4 Machine System Dynamics . 187
8.6.5 Feed Lag 188
8.7 Optimization Implementation Plans . 188
8.7.1 Implementation at CAM 189
8.7.2 Implementation on CNC . 189
8.7.3 Implementation with an Independent System . 190
8.7.4 Example of Optimization with an Independent System 191
8.8 Conclusions 192
References . 194
9 Achieving a STEP-NC Enabled Advanced NC Programming
Environment 197
M. Rauch, R. Laguionie and J.Y. Hascoet
9.1 Introduction 197
9.2 A New Role for the NC Controller into the Numerical Chain . 198
9.2.1 Advanced CNC Programming and Machining 199
9.2.2 High-level Tool-path Generation 203
9.3 STEP-NC Platform for Advanced and Intelligent Manufacturing
(SPAIM) . 204
9.3.1 Machining a Part from a STEP-NC File 205
9.3.2 A STEP-NC Platform for Industrial Machine Tools . 206
9.3.3 Benefits of a STEP-NC Enabled Controller 209
9.3.4 Toward Advanced CNC Programming . 211Contents xv
9.4 Conclusions 212
References . 213
10 STEP-compliant CNC Systems, Present and Future Directions . 215
V. K. Nguyen and J. Stark
10.1 The Traditional Numerical Control Environment 215
10.2 The STEP-NC Standard . 217
10.2.1 Details of the STEP-NC Standard . 219
10.2.2 Characteristics of STEP-NC 219
10.3 Limitations of STEP-NC 221
10.4 The Current State of STEP-NC Practice and Research 222
10.5 The Current Problem Statement . 223
10.6 The Next Steps Beyond the State of the Art . 224
10.6.1 Data and Information in the PLM Environment 225
10.6.2 Next Generation Controller . 227
10.7 Conclusions 228
Acknowledgment 230
References . 230
11 Standardised Process Control System for CNC Manufacturing 233
S. Kumar and S. T. Newman
11.1 Introduction 233
11.2 Process Control . 234
11.2.1 Definitions . 237
11.2.2 Requirements for Developing Process Control Systems . 237
11.2.3 Process Control Solutions for CNC Machine Tools 238
11.3 Review of Process Control Systems . 242
11.4 A Standardised Process Control Framework 243
11.5 Process Control Information Model . 245
11.5.1 STEP-NC Compliant Product and Manufacturing
Information Model 245
11.6 A Computational Prototype of Standardised Process Control System
(SProCS) . 248
11.7 Realisation of SProCS 252
11.8 Conclusions 255
Acknowledgment 257
References . 257
12 A STEP-NC Compliant Methodology for Modelling Manufacturing
Resources . 261
A. Nassehi and P. Vichare
12.1 Introduction 261
12.2 Manufacturing Resource Modelling . 262
12.2.1 Manufacturing Resource Representation Methodologies 263xvi Contents
12.2.2 Perspectives for Resource Modelling in the Context of
Manufacturing . 265
12.2.3 Modelling Approaches in the Context of Modelling
Perspectives . 267
12.3 A Modelling Framework for Technological Manufacturing
Resources . 268
12.3.1 CNC Machine Tools and Auxiliary Devices . 269
12.3.2 Mechanical Elements, Electro-mechanical Elements and
Electronic Elements 269
12.3.3 Kinematic Chains 270
12.4 The STEP-NC Compliant Schema for Representation of Machine
Tools and Auxiliary Devices 270
12.4.1 Mechanical Machine Element . 271
12.4.2 Kinematic Joint . 271
12.4.3 Axes of Movement 273
12.4.4 Additional Entities Required for Resource Representation . 273
12.5 Example Models . 274
12.5.1 2-Axis Lathe 274
12.5.2 3-Axis Milling Centre . 276
12.5.3 5-Axis Milling Centre . 277
12.5.4 Parallel Kinematics Machine . 278
12.6 Future Developments 279
12.7 Conclusion 280
Acknowledgment 280
References . 280
13 Development of Digital Semantic Machining Models for STEP-NC
Based on STEP Technology . 283
F. Tanaka, M. Yamada, S. Mitsui, T. Kishinami, K. Akama, T. Kondo and
M. Onosato
13.1 Introduction 283
13.2 Digital Semantic Machining Model . 285
13.2.1 Basic Concepts of the Digital Semantic Machining Model . 285
13.2.2 Modelling and Implementation of Digital Semantic
Machining Models 286
13.3 Product Data Quality Assurance Method . 287
13.3.1 Current Problems of Checking the Quality of Product Data . 288
13.3.2 A Software for Checking the Quality of Product Data 289
13.3.3 Constituents of Proposed Method . 290
13.3.4 Example of Checking Quality of Product Data . 291
13.4 Machining Features for 3+2 Axis Machining . 292
13.4.1 Concepts of 3+2 Axis Machining 293
13.4.2 Machining Feature in 3+2 Axis Machining . 293
13.4.3 Extraction Method of 3+2 Axis Machining Features 295
13.4.4 Example 296
13.5 Machine Tools for ISO 14649 CNC Data Model . 297
13.5.1 Background of Developing ISO 14649 Machine Tools 297Contents xvii
13.5.2 Machine Tool Model Based on STEP Kinematic Model 298
13.5.3 Prototype of 5-Axis Machine Tool for ISO 14649 CNC Data
Model 300
13.5.4 Practical Results 301
13.6 Conclusions 302
Acknowledgment 303
References . 303
14 Development of a STEP-NC Network Management Protocol for
Decentralized Manufacturing 307
F. Calabrese and A. Buonanno
14.1 Introduction 307
14.2 Overview of STEP-NC . 309
14.3 Decentralized Manufacturing Solution . 310
14.3.1 STEP-NC Network Management Protocol . 311
14.3.2 Details of the Components 313
14.3.3 Simplified and Hybrid Architectures 317
14.3.4 SNMP Compliant Controller . 318
14.3.5 Interpreter 318
14.3.6 High-level Controller 318
14.3.7 Tool-path Generator 319
14.3.8 Low-level Controller . 319
14.3.9 Machining Inspector 319
14.4 Application of the SNMP Architecture in a Real Scenario 319
14.4.1 Evaluation of the Performance of the System . 324
14.5 Conclusion 327
References . 328
15 A Generic Product Modelling Framework for Rapid Development of
Customised Products 331
S. Q. Xie and W.L. Chen
15.1 Introduction 331
15.2 Product Modelling: A Review 333
15.3 Generic Product Information Framework . 33
15.3.1 STEP-based Modelling Environment 335
15.3.2 ‘Five-phase’ Modelling Methodology . 33
15.3.3 EDM Data Exchange and Sharing Methods 339
15.4 EXPRESS Data Model . 340
15.5 Case Study 342
15.5.1 Product and its Assembling Information . 342
15.5.2 Tooling Information 343
15.5.3 Machine Tool Information 344
15.5.4 Manufacturing Information . 345
15.6 STEP Compliant Product Data Management System . 346
15.7 Conclusion and Future Work 348
Acknowledgment 349
5 8xviii Contents
Reference 350
16 STEP in the Context of Product Data Management 353
V. Srinivasan
16.1 Introduction 353
16.2 Product Data and Metadata . 355
16.2.1 Product Data 355
16.2.2 Product Metadata 357
16.3 STEP PDM Schema . 360
16.4 OMG PLM Services . 368
16.4.1 OMG’s Model Driven Architecture 368
16.4.2 OMG PLM Services Architecture . 369
16.5 Others to Watch 379
16.6 Concluding Remarks 379
Acknowledgment 380
References . 380
17 STEP in the Context of PLM . 383
C. Mehta, L. Patil and D. Dutta
17.1 Introduction 383
17.2 Overview of Standards for PLM 385
17.2.1 EIA-649 National Consensus Standard for Configuration
Management 386
17.2.2 ANSI/GEIA GEIA-859-2004 Data Management 386
17.2.3 ISO/IEC 12207 Software Life Cycle Processes 386
17.2.4 PLM-XML 386
17.2.5 ISO 10303-239 (STEP AP 239) 387
17.2.6 STEP-based Standards 388
17.3 Applying STEP to Data Exchange and Reuse in PLM . 388
17.3.1 Engineering Change Management as a Typical PLM Activity . 388
17.3.2 Requirements for Exchange and Reuse of ECM Data 389
17.3.3 Suitability of STEP for Exchange and Reuse of ECM Data . 390
17.3.4 Enhancing EC Representation in STEP – Change Evaluation
Model 391
17.3.5 Example Application of CEM . 393
17.4 Further Issues and Directions . 394
17.4.1 Conflicts Within the Standard . 394
17.4.2 Abstract/Ambiguous Definitions . 396
17.5 Concluding Remarks 396
Acknowledgment 397
References . 397
18 Usage of Agent Technology to Coordinate Data Exchange in the
Extended Enterprise . 399
O. López-Ortega and K. López de la CruzContents xix
18.1 Introduction 399
18.2 Integrated EXPRESS Model 401
18.2.1 STEP-related Standards . 401
18.2.2 Semantic Integration to Represent Core Capabilities 402
18.2.3 The Integrated EXPRESS Model 404
18.3 Model and Implementation of the Multi-agent System 405
18.3.1 Business Processes as Inspiration for Communication
Protocols 405
18.3.2 Communication Protocols Among Agents to Support Data
Exchange . 406
18.3.3 Agent-oriented Programming 409
18.3.4 Exemplification of a Business Process Type . 412
18.4 On the Networking of Enterprises 415
18.4.1 Multi-agent Systems on Distributed Design and
Manufacturing . 415
18.4.2 Covenants in the Extended Enterprise . 415
18.5 Conclusions 416
References . 416
19 An XML Implementation for Data Exchange of Heterogeneous
Object Models . 419
X.Y. Kou and S.T. Tan
19.1 Introduction 419
19.2 XML Technologies and ISO 10303 421
19.3 An XML Implementation for Data Exchange of Heterogeneous
Object Models 422
19.3.1 Existing Heterogeneous Object Models 422
19.3.2 Representing Material Heterogeneity with XML 426
19.4 Implementations and a Case Study . 433
19.5 Conclusions 436
Acknowledgment 436
References . 436
20 Module-based Platform for Seamless Interoperable CAD-CAM-CNC
Planning . 439
C. Brecher, W. Lohse and M. Vitr
20.1 Challenges of Production Industries in High-wage Countries 439
20.2 Deficits in the Interoperability of Existing CAM Tools . 441
20.2.1 CAM Tools in Today’s Business Processes 442
20.2.2 Limits of Current CAM Systems . 443
20.3 IT Platform for Open Computer-based Manufacturing 443
20.3.1 The Open Computer-based Manufacturing Approach 443
20.3.2 Application of the Platform for Open Computer-based
Manufacturing . 445
20.4 Design Concept for the Module-based Platform 446
20.4.1 System Architecture of openCBM 447xx Contents
20.4.2 Service-oriented Architecture for the openCBM Platform 447
20.4.3 Interoperable Data Structures Based on STEP Standards . 449
20.5 Use Cases for the Module-based Platform . 451
20.5.1 CAx Framework for Process Planning 451
20.5.2 Process Data Acquisition and a Process Information Database 458
20.6 Conclusions 460
Acknowledgements . 461
References . 461
Appendix Software Tools for Using STEP 463
Index
A
AAM – application activity model,
12, 129
Abstract test suites, 4
Acceleration, 86, 188, 458
Accuracy, 86, 98, 179, 288, 291
ACIS, 429, 433
ACL messages, 410
Aerospace manufacturing, 250
Agent
communication language, 409,
coordinator, 406, 415
leader, 415
management, 406
MAS – Multi-Agent System, 57,
405
organization, 406
product, 406, 408
resources, 406
technology, 415
Agile, 224
AI – Artificial Intelligence, 56
AIC – Application Interpreted
Construct, 4, 12
AIM – Application interpreted
Model, 11, 25, 106, 390, 395
Allowance, 97, 115, 133, 138
AM – Application Module, 12
AMPS – Advanced Machining
Processes and Systems, 238
AMT – Assembly Model Tree, 217,
223, 339
Analysis and computations, 208
ANN – Artificial Neural Network, 71
AP – Application Protocol, 2, 12, 54,
110, 129, 334, 390, 396, 422,
442
API – Application Protocol Interface,
10, 11, 24, 36, 159, 339, 433
Application module, 4, 12
ARM – Application Reference
Model, 12, 25, 39, 106, 129
Attribute, 5, 246, 339, 364, 392, 428,
448
Axial depth, 172
B
Bending moment, 174, 180
Bidirectional, 209, 212, 406, 460
Black box, 65, 73, 250
Blitz++, 93
BOM – Bill of Material, 341
Boolean, 25, 29, 41, 115, 139
Boost, 92
Boundary geometry, 246
BP – Business Processes, 405
BPT – Business Process Types, 405,
412
BPV – Business Process Variations,
406
BSP – Business SubProcesses, 406
BSU – Basic Semantic Unit, 405
C
C language binding, 10
C++ language, 5, 10, 25, 92, 430
CAD4D, 430
Canned cycles, 83, 95, 99
Capability
machine, 107, 242
process, 237, 240, 263
CBR – Case-based Reasoning, 57
Index472 Index
CC – Conformance Classes, 239,
359, 378
CEM – Change Evaluation Model,
389
Central coordination, 406
Chatter, 187, 236
Chip
thickness, 172, 175, 179
thinning, 180, 185
Chips, 184
Christofides algorithm, 67
CIM – Computer Integrated
Manufacturing, 81, 333, 368,
377
Circularity, 242, 246
Class, 5, 11, 84, 87, 92, 112, 115,
359, 375, 396, 410, 430
Client, 99, 310, 320, 324, 414
CLM – Closed-loop Machining, 238,
239
CMM – Coordinate Measuring
Machine, 24, 27, 237, 240
Collaboration, 388
Collaborative, 17, 217, 221, 288, 334
Collaborative engineering, 288
Collective decision making, 406
Communication protocol, 311, 405,
409
Compensator, 248
Competitiveness, 17, 228
Computations, 93, 150, 209, 293
Computer Aided Systems
CACUI – Computer Aided
Customer User Interface, 339
CAD – Computer Aided Design,
2, 10, 25, 51, 60, 107, 201,
243, 252, 267, 287, 333, 360,
422, 430, 444
CAD-CAM-NC chain, 441, 458
CAE – Computer Aided
Engineering, 81, 287, 430
CAM – Computer Aided
Manufacturing, 52, 59, 106,
128, 140, 189, 198, 209, 216,
220, 240, 309, 441, 452
CAPP – Computer Aided Process
Planning, 51, 55, 109, 205,
333, 339
CAx – Generic Computer Aided
System, 107, 227, 238, 244,
254, 288, 451
Computer Numerical Control
Autonomous CNC, 53
CNC, 53, 60, 81, 106, 128, 139,
146, 162, 188, 198, 235, 249,
262, 276, 285, 297, 309, 318,
323
CNC Controllers, 16, 28, 39, 53,
106, 128, 147, 188, 200, 215,
217, 219, 238, 267
CNC machine tools, 190, 235,
238, 268
COMSOL Multiphysics, 430
Concurrent engineering, 81, 107, 288,
333
Conformance Classes, 12, 15, 84,
239, 359
Conformance testing, 2, 4, 15
Connective junction, 154
Consistence production, 237
Constructors, 114
Control, 44, 84, 98, 108, 128, 140,
148, 199, 202, 206, 215, 219,
224, 227, 242, 269, 293, 441,
450, 457
virtual controls, 451
Conversational programming, 83, 95
Cooperation, 216, 228, 378
CORBA, 368, 370
Core capabilities, 402
Corrigendum, 176
Cross-section, 136, 172, 192
CRUD function, 376
CSPC – Context Statistical Process
Control, 242
Cutter corner radius, 186
Cutting
condition, 174, 179, 298, 301, 309
force, 172, 179, 184, 189, 267
power, 184
strategy, 85, 131, 459
velocity, 183473
Cylindricity, 246
D
Data
analysis, 14, 43, 81, 90, 100, 112,
146, 208, 217, 235, 242, 327,
333, 338, 390, 396, 426, 430,
441, 447, 451
CNC model data, 298
collection, 11, 26, 29, 90, 99, 263,
371, 387, 422, 427, 450
exchange, 4, 84, 106, 160, 333,
339, 357, 386, 412, 421, 442,
449
geometric data, 82, 285, 334, 337,
338, 340, 341, 355, 359
integration, 81, 147
list, 28, 30, 41, 61, 68, 82, 92, 99,
294, 341, 373, 403, 410, 426,
432, 445, 458
model, 17, 59, 60, 64, 72, 91, 106,
111, 114, 133, 146, 176, 179,
182, 187, 205, 210, 218, 238,
263, 279, 285, 334, 337, 339,
342, 367, 387, 391, 401, 426,
450
shape data, 285
structure, 5, 17, 51, 111, 175, 188,
248, 289, 298, 318, 336, 339,
342, 346, 391, 424, 429, 446,
458
Database, 7, 10, 16, 61, 69, 73, 156,
310, 320, 323, 335, 339, 346,
409, 444, 445
Deceleration, 188
Decentralized manufacturing
solution, 310, 324
Decision making, 60, 148, 151, 161,
165, 206, 235, 249, 265
Deficiency, 443
Deflection, 86, 174, 181, 199, 211
Description methods, 4
Design features, 39, 54, 60, 72
Destination, 99, 312
DEXs – Data EXchange
specification, 387
Die casting dies, 292
Dimensional constraints, 408
Discrete components, 244
Dispatcher, 310, 325
Distributed, 17, 51, 84, 220, 227,
325, 342, 347, 368, 388, 405,
410, 415, 449
DLL – Dynamic Link Library, 150,
167
DMIS – Dimensional Measurement
Interface Standard, 33
DMPC – Dynamic Manufacturing
Process Control, 235
DNC – Distributed Numerical
Control, 51
DPIIM – Die and Product Integrated
Information Model, 333
Draughting, 12, 422
DTDs – Document Type Definitions,
10
DU – Decision Unit, 150, 159
DXF – Drawing eXchange Format,
106, 139
Dynamic model, 86, 273
Dynamic programming, 57
E
Early binding, 11
EBNF – Extended Backus Naur
Form, 92
EC – Engineering Changes, 58, 70,
218, 388
ECAT – Electronic and Assembly
and Test, 235
ECM – Engineering Change
Management, 374, 378, 388
ECM data, 390
EDM, 133, 218, 263, 293, 335
EDM – Engineering Data
Management, 224
e-economy, 17
Elements
electro-mechanical, 269
electronic, 263, 269, 279
mechanical, 268, 273
Index474 Index
mechanical machine element,
264, 270
EMI – Engine Machine Interface,
150, 157
Energy equilibrium principle, 184
Engine Based CNC Structure, 150
Engine kernel, 151, 158
Entity, 5, 15, 30, 45, 64, 87, 92, 93,
94, 115, 136, 139, 208, 247,
271, 293, 299, 311, 317, 319,
341, 367, 391, 392, 393, 395,
396, 403, 429, 447
Error
fixturing, 240
operator, 240
part deformation, 240
tool wear, 240
wear, 86, 151
ESPRIT III, 217
ET – Equivalent Transform language,
288
EtherMC
master driver, 159
tree-shape topology, 159
Ethernet-based fieldbus for Motion,
150, 151, 167
Execution, 26, 31, 34, 43, 92, 201,
209, 216, 243, 290, 315, 318,
405, 408, 453, 458
EXPRESS
EXPRESS language, 3, 24, 36,
91, 100, 111, 219, 265, 270,
285, 347, 359, 367, 390, 401,
421, 447, 449
schema, 6, 24, 31, 91, 111, 333,
341, 361, 367, 421, 449
EXPRESS-G, 4, 14, 270, 335,
390, 422
Extended Enterprise, 406, 412, 416
Extracted features, 293
F
FBICS – Feature-Based Inspection
and Control System, 24, 33
FBICS_ALPS, 33, 45
FBICS_COMBO, 33, 45
FDD – Function Description Data,
150, 165
Statechart modeling, 153
tree shape structure, 158
Feature, 16, 25, 35, 54, 57, 60, 72,
82, 109, 115, 119, 133, 161,
191, 203, 216, 218, 227, 238,
286, 293, 294, 297, 309, 318,
334, 371, 401, 406, 424, 426,
442, 450
attributes, 89
heterogeneous feature tree (HFT),
426, 432
models, 36
placement, 237, 250
tree, 9, 67, 92, 157, 207, 209, 424,
430
tree structure, 424
types, 36, 68
Feature-based, 17, 24, 35, 53, 56, 68,
82, 109, 111, 128, 219, 239,
243, 249, 334
assessment, 58, 60, 64, 267, 347,
416
design, 17, 35, 111
knowledge representation, 56, 64,
265
machining, 3, 53, 85
machining and inspection, 3
process planning, 38
Feed
derivation, 180
downward, 180
per flute, 186
Feed-forward tolerance, 85, 89, 95
Filter, 99
Finite Element Analysis, 12
FIPA Foundation for Physical
Agents, 409
Flexible manufacturing., 239
Force
coefficient, 172
tangential and radial, 173
Formatter, 100
Fortran, 93
FPGA – Field Programmable Gate
Array, 160475
FSM – Finite State Machine, 153
G
G codes (ISO 6983), 30, 216, 240
G2STEP, 109
GA – Genetic Algorithm, 57, 65
GD&T – Geometric Dimensions and
Tolerances, 85, 88, 246, 355
Generic Product Modelling
Framework, 334
Geometrical features, 176, 220
Geometrical transformation model,
207
Geometry, 3, 11, 25, 30, 37, 51, 81,
115, 119, 172, 184, 188, 202,
218, 227, 238, 246, 262, 309,
319, 355, 429, 433, 443, 460
Globalised, 17, 224
Globalization, 109, 128, 223
GPM – Generic Product Modeling,
333
GPMF – Generic Product Modeling
Framework, 334, 339, 342
Grammar, 24, 93, 339
Graph theory, 61, 64
H
Hamiltonian Path, 67, 70
Handshake, 406
Helix angle, 173
Heterogeneity, 422, 430
Heuristic algorithm, 56, 71
Heuristics, 61, 68, 70
HFT – Heterogeneous Feature Tree,
424
Hierarchical control, 24
History junction, 153
HMI – Human Machine Interface,
150, 151, 155, 167, 207, 208
HTM – Homogeneous
Transformation Matrix, 252
Human-linked parameters, 202
Hybrid architectures, 311
Hybrid solutions, 317
I
ICA – Independent Component
Analysis, 242
ICAM – Intelligent Computer Aided
Manufacturing, 199, 202, 211
IDEF0, 13
IDEF1X, 14
IDL – Interface Definition Language,
370, 447
IGES – Initial Graphics Exchange
Specification, 2, 106, 357
Illocutory content, 408
Implementation methods, 3, 339
Individual component occupancy,
326
Inertia, 188
Information
manufacturing, 111, 188, 245,
254, 262, 342
modelling, 4, 388, 447
process, 83, 107, 198, 238, 244,
318, 337, 341, 387, 415, 450
product, 3, 189, 218, 238, 246,
248, 335, 342, 347, 374, 387
Inheritance, 11, 94
Injection moulding machine, 344
Injection moulding moulds, 292
Inspection processes, 341
Integrated, 11, 17, 25, 52, 61, 81, 90,
107, 111, 128, 147, 189, 205,
217, 227, 236, 239, 265, 333,
401, 443, 450
Integrated application resources, 4,
12
Integrated generic resources, 4, 11
Integrated manufacturing
environment, 333
Integrated resources, 11, 25, 333
Integration, 3, 17, 82, 92, 107, 209,
219, 238, 244, 262, 334, 368,
386, 444
International standards, 3, 10
Internet, 11
Internet-based collaborative
manufacturing, 210
Index476 Index
Interoperability, 17, 53, 62, 82, 106,
128, 191, 201, 212, 267, 287,
385, 394, 430, 443, 449
Interoperability error, 287
Interoperable, 17, 107, 128, 199, 211,
220, 249
Interpreter, 28, 45, 140, 146, 201,
298, 318
Intranet, 10, 17, 347
ISO 10303, 3, 11, 28, 61, 91, 106,
134, 176, 205, 219, 238, 246,
285, 309, 366, 390, 401, 421,
450
AP203, 4, 12, 110, 119, 335, 341,
360, 371, 390, 422, 450
AP214, 15, 110, 285, 359, 370,
378, 390, 450
AP219, 14
AP224, 16, 36, 43, 61, 110, 115,
134, 274, 285, 333, 390, 450
AP238, 3, 10, 28, 36, 54, 106,
129, 176, 205, 239, 285, 298,
450
AP239, 226, 379, 395
AP240, 14, 17, 31, 36, 285, 366,
390, 395, 450
ISO 13399, 239
ISO 13584, 3, 12, 401, 405
ISO 14649, 3, 16, 28, 37, 45, 51, 54,
62, 91, 106, 129, 133, 203, 219,
238, 244, 254, 285, 297, 300,
450
ISO 6983(G-codes), 51, 62, 82, 92,
107, 128, 191, 215, 240, 297
ISO 7200, 358, 361
J
JADE platform, 409
JAMA, 287, 291
JAPIA, 291
Java, 10, 17, 25, 111, 248, 410
Java-based object-oriented
platform, 248
JBuilder, 111
JSDAI, 17
Job scheduling, 56, 57
K
Kinematic, 263, 278, 297, 455
chain, 264, 270
joint, 271, 299
structure, 298
Kinematics, 12, 52, 199, 207, 264,
270, 279
Knowledge database, 60, 68, 72, 161
Knowledge management, 216
L
L/D ratio, 187
Late binding, 11, 421
LCS – Local Coordinate System, 252
Lifecycle, 222, 285, 385, 394
Line shape, 246
Linux, 430
LITHO-PRO project, 133
Load ratio, 181
Local information systems, 406
Local ownership, 406
Lot size, 52, 408
Low pass filter, 188
Lower-fault, 243
Low-Level Controller, 318
M
Machine Downtime, 237
Machine native format, 222
Machine tool, 16, 90, 95, 109, 192,
198, 205, 209, 215, 237, 263,
268, 273, 279, 286, 293, 297,
346, 372, 442, 450, 456
2-Axis Lathe, 274
5-axis machining, 95, 264, 277,
285, 292, 298
Chiron, 238
information, 209, 342
multi-axis machines, 129, 243
virtual machine tools, 263
Machine-specific, 128, 140, 147, 216,
219
Machining
adaptive, 84477
die machining, 293
feature, 14, 24, 30, 35, 52, 82,
100, 107, 128, 203, 218, 239,
243, 285, 293, 309, 318, 333,
343, 371, 405, 424, 428, 444,
450, 459
high speed machining, 207, 293
multi-axis., 110
operations, 30, 51, 73, 82, 100,
109, 115, 134, 187, 192, 198,
239, 248, 293, 310
parameterization, 85, 90, 203
parameters, 89, 115, 132, 207,
237
process plan, 61, 64, 83
strategy, 85, 89, 107, 136, 203,
309
Managers, 310, 320
MANDATE – MANufacturing
management DATa Exchange,
401, 405, 408
Manufacturing
factors, 83
MDA – Manufacturing Data
Analysis, 242, 368, 374, 455
manufacturing friendly, 189
MIP – Manufacturing Information
Pipeline, 227
scenario, 66, 222, 267, 274
Material
compositions, 422, 430
distribution, 179, 190, 324, 372,
406, 423, 430, 451
heterogeneous material, 422, 426
homogeneous material, 422, 426
information, 336, 341, 347, 431
Material Removal Rate, 174, 179,
189
MathML language, 430
MATLAB®, 53, 162, 165
MCD – Machine Control Data, 82, 86
Mechanical chain, 270
Merchant, 172
MES – Manufacturing Execution
System, 51, 55
Metadata, 94, 357, 367, 370, 377
Meta-model, 404, 447
Meta-template programming, 92
Methods, 3, 16, 25, 51, 65, 94, 108,
114, 153, 182, 187, 198, 211,
225, 244, 248, 263, 288, 296,
333, 339, 372, 388, 405, 411,
444, 455
Microcontroller, 320, 323
Milling, 9, 16, 24, 36, 45, 82, 87, 90,
94, 108, 110, 115, 118, 129,
133, 139, 172, 185, 200, 212,
216, 218, 222, 252, 263, 276,
293, 443, 454, 457
climb, 175
conventional, 175
cutters, 9, 95, 172, 185, 293
features, 37, 222
operations, 97, 108, 116, 172, 185
plunge, 178, 203, 209
pocket, 87
trochoidal, 203, 209
MIM – Module Integrated Model, 15
MMI – Man Machine Interface, 140
Model
CNC data model, 286, 301
diagrams, 112
Digital Semantic Machining
Model, 285, 286
driven architecture, 369
kinematic model, 297, 300
Machine tool model, 263, 297,
450
Machining Model, 285
product model, 2, 84, 115, 218,
243, 265, 285, 333, 342, 386
semantic model, 285
MOSES – Model Oriented
Simultaneous engineering
System, 243
Motion control, 30, 85, 140, 162
Mould and die machining, 292
Moulding, 132, 342
MySQL, 320, 323
N
Navigation, 94
NC
Index478 Index
controller, 54, 128, 140, 147, 198,
212, 223, 450, 458
machining, 51, 56, 60, 67, 148,
199, 205, 250
NCG, 72
NDIS – Network Device Interface
Specification protocol, 159
NN – Neural Network, 57, 65
O
OAGi – Open Applications Group
Inc, 379
OASIS – Organization for the
Advancement of Structured
Information Standards, 379, 388
Object-oriented, 5, 54, 92, 107, 112,
206, 217, 297, 333
data, 54, 217, 333
programming, 5, 206
OEM, 221, 228
OMA – Object Management
Architecture, 368
OMG – Object Management Group,
361, 368, 379
OMM – On Machine Measurement,
237, 239
Operational feedback, 387
Optimization, 57, 174, 192, 202, 210
ORB – Object Request Broker, 368
Overview and fundamental
principles, 4, 16, 219
P
PACS – Process Analysis and
Control System, 236
PADDES – Product DATA Analysis
Distributed Diagnostic Expert
Systems, 243
Parallel kinematic machine tools,
265, 278
Parallelism, 246
Part
definition, 81, 366, 394
program, 82, 92, 95, 109, 115,
119, 146, 216, 266
tolerance information, 85
Pattern strategy, 203
PCA – Principal Component
Analysis, 242
PDES – Product Data Exchange
Specification, 2, 333, 360
PDM – Product Data Management,
224, 285, 355, 358, 366, 370,
377, 388, 441
PDM Schema, 360
PDQ – Product Data Quality, 287
PDTnet, 370, 373, 377
Performance evaluation, 324
Physical files, 8
Physical transformations, 235
PIM – Platform Independent Model,
369, 374, 377
PLC, 140, 453
PLCS, 226, 379, 387
PLM – Product Lifecycle
Management, 17, 224, 357, 361,
368, 374, 385, 396, 460
Plug-and-produce, 227
Poor parameterization machining
dilemma, 90
Portability, 191, 216
Post-process, 82, 86, 140, 200, 216,
243, 266
Post-process measurement, 243
Post-processor, 82, 86, 140, 200, 216,
220, 266
Power, 174, 181, 206, 207, 211, 227,
402, 423
Probing simulator, 248, 253
Probing Workingsteps, 246, 253
Process
capability, 237, 240, 263, 266
control, 227, 234, 248
cycle time, 237
data, 16, 99, 133, 199, 202, 209,
219, 246, 263, 298, 341, 450,
458
knowledge, 60, 82, 85, 240
PVR – Process Variability Reduction,
236
Process planning, 16, 24, 51, 68, 72,
81, 89, 110, 128, 209, 227, 238,479
244, 251, 265, 333, 390, 443,
450, 458
language, 24, 36
Process plans, 24, 38, 61, 111, 236,
249, 265, 334, 390, 442
Processing of request., 313
Process-intermittent, 243
Product data, 2, 11, 84, 114, 129,
225, 242, 286, 309, 333, 347,
355, 367, 374, 386, 390, 404,
408, 412, 421, 441
Product design, 84, 189, 220, 238,
333, 372, 403
Product Lifetime Management, 17,
224, 228, 357, 361, 368, 374,
379, 385, 460
Product metadata, 355, 367, 370, 377
Product model data, 2, 285
Production Industries, 443
Productivity, 82, 128, 179, 189, 224,
237
Proprietary functions, 216
ProSTEP, 360, 369, 374
Protocol Messages, 312
Q
Quality checking, 287
Quasi-newton algorithm, 254
R
RASOR – Rules and a System of
Rules, 243
Raw stock, 82, 84
Reactive system, 149, 153
RealNC, 450
Real-time, 10, 83, 149, 157, 198, 211,
217, 222, 239, 451, 458
Rectangular pocket, 89, 247
Rectangular shape, 174, 176, 178
Renishaw process control system,
240
Resource
availability, 263, 408
capability, 408
capacity, 408
configuration, 408
constitution, 408
manufacturing, 107, 114, 221,
263, 274, 279, 401, 408, 415
repeatability, 408
status, 408
technological, 268
tolerance, 408
Response time, 326
Retrofit, 200
Revolution and indexed feature, 136
Roughing and finishing operations,
138, 239
RS274, 26, 33, 35
RS274NGC, 45
S
Sampling Size, 237
Satisfactory, 57, 243
Sawblade, 128, 138
Schema, 5, 24, 45, 219, 250, 274,
335, 341, 361, 366, 388, 395,
421, 428
Sculptured surfaces, 277, 293
SDAI – Data Access Interface, 7, 408
Self-learning algorithms, 109
Self-learning NC machining, 228
Server – client communication
protocol, 406
Shop-floor, 51, 63, 82, 89, 107, 128,
140, 151, 201, 205, 209, 216,
237, 242, 266, 346, 450
Simple Network Management
Protocol, 311
Simplified architectures
Dispatcher/Manager – Agent., 317
Simulation, 56, 81, 98, 154, 161, 165,
191, 208, 216, 221, 240, 249,
264, 295, 379, 441, 459
Graphical, 222, 268
Tool path, 263
Simulink®, 54, 165
Smart NC Machining, 224, 227
SMEs, 223, 227
SOAP, 449
Software-on-demand, 446
Index480 Index
Solid metallic material, 184
SOP, 51
SPaDe – Standardised Positional
Deviation, 249, 254
SPC – Statistical Process Control,
242
Spindle 347
SProCS – Standardized Process
Control System, 248, 252
Standard Development
Organizations, 379
Standardization, 356, 370, 450
State-of-the-art, 57, 239
STEP Compliant, 107, 147, 205, 212,
335, 337, 346, 388, 422
STEP PDM Schema, 358, 377
STEP-ompliant CNC system, 148,
161
STEP-NC interpretation software,
200
STEP-NC Network Management
Protocol, 318
STEPNC++, 92, 100
ST-FeatCAPP, 109
Stiffness, 456
Stone cutting, 128, 133, 139
Structured engagement, 416
Subtype, 5, 34, 94, 247, 343
Supertype, 5, 34, 37, 94
Supplier, 226, 341, 389, 405
Supplier information, 341, 347
Supplier_BSU, 405
Supplier_Code, 405
Surface roughness, 85, 180, 237
Surface-finish, 129
Syntax, 10, 24, 355, 367, 388, 444,
449
T
Tactile sensation, 412
Thermal drift, 237, 240
Three-tiers software architecture, 310
Toleranced plane
angle measure, 246
flatness, 246
straightness, 246
surface shape, 246
toleranced_length_measure, 87,
246
Tolerances
dimensional tolerances, 246
Tool holder, 269, 295
Tool life, 86, 90, 179, 182
Tool wear, 66, 73, 90, 98, 151, 179,
182, 237, 240
Tool-path, 26, 30, 36, 54, 85, 95, 107,
128, 162, 174, 181, 198, 216,
240, 263, 293, 298, 319, 441,
447, 450, 457
Tool-stock, 173, 178, 184, 191
Topology, 3, 11, 25, 159, 444, 455
Touch trigger probes, 34, 244
Traceability, 98, 227, 460
Trajectory, 84, 174, 188, 301, 319
Trajectory motion, 86
Trigger, 24, 100, 153, 157, 245
Turning, 16, 24, 36, 44, 108, 118,
132, 172, 205, 212, 218, 267,
443
TurnSTEP, 109, 110
U
UML – Unified Modeling Language,
87, 94, 112, 367, 370, 374
UOF – Unit of Functionality, 12
Upper-fault, 243
User interface, 40, 115, 253, 333,
339, 347, 441
V
VDA4965, 391
Vericut, 263, 450
Virtual Enterprise, 84, 222, 415
Virtual time management, 453, 456
Visualization tool, 68
Volume-based, 184
W
Wafer fabrication, 235
Wire EDM, 220481
Wirth Syntax Notion, 92
Workability evaluation, 325
Workingsteps, 30, 107, 111, 119,
134, 161, 203, 247, 253, 298,
309, 319
Workpiece, 26, 35, 41, 51, 68, 84, 94,
98, 111, 246, 264, 269, 299,
455, 460
Workplan, 28, 51, 73, 107, 111, 136,
189, 202, 218, 246, 253, 262,
309, 318
WSDL, 378, 449
Wysiwyg, 227
X
XML(Extensible Markup Language)
data, 10, 109, 300
file, 7, 109, 140, 421, 429
format, 10, 109, 238, 301, 387,
434
model, 430
schema, 10, 222, 367, 387, 421,
433, 449
XML-based, 367, 386, 421, 431,
433
XPATH, 95
Index
كلمة سر فك الضغط : books-world.net
The Unzip Password : books-world.net

تحميل

يجب عليك التسجيل في الموقع لكي تتمكن من التحميل
تسجيل | تسجيل الدخول

التعليقات

اترك تعليقاً