Advanced 2D Materials

Advanced 2D Materials
اسم المؤلف
Ashutosh Tiwari and Mikael Syvajarvi
التاريخ
1 يناير 2019
المشاهدات
368
التقييم
Loading...

Advanced 2D Materials
من سلسلة علم المواد المتقدمة
Advanced Material Series
Ashutosh Tiwari and Mikael Syvajarvi
Contents
Preface xiii
Part 1 Synthesis, Characterizations, Modeling and
Properties
1 Two-Dimensional Layered Gallium Selenide:
Preparation, Properties, and Applications 3
Wenjing Jie and Jianhua Hao
1.1 Introduction 4
1.2 Preparation of 2D Layered GaSe Crystals 5
1.2.1 Mechanical Exfoliation 5
1.2.1.1 Synthesis of Bulk GaSe Crystals 5
1.2.1.2 Synthesis of 2D Nanosheets 6
1.2.2 Vapor-Phase Mass Transport 6
1.2.3 Van der Waals’ Epitaxy 8
1.2.4 Molecular Beam Epitaxy 9
1.2.5 Pulse Laser Deposition 10
1.3 Structure, Characterization, and Properties 10
1.3.1 Crystal Structure 10
1.3.2 Characterization 12
1.3.2.1 Transmission Electron Microscopy 12
1.3.2.2 Raman Spectroscopy 14
1.3.3 Properties 17
1.3.3.1 Electronic Properties 17
1.3.3.2 Optical Properties 19
1.3.3.3 Nonlinear Optical Properties 20
1.4 Applications 24
1.4.1 Field-E?ect Transistors 24
1.4.2 Photodetectors 26
1.4.2.1 Phototransistors 26
1.4.2.2 p–n Junction Photodetectors 29vi Contents
1.5 Conclusions and Perspectives 31
Acknowledgment 32
References 32
2 Recent Progress on the Synthesis of 2D Boron Nitride
Nanosheets 37
Li Fu and Aimin Yu
2.1 Boron Nitride and Its Nanomorphologies 37
2.2 Boron Nitride Nanosheets Synthesis 39
2.2.1 Chemical Vapor Deposition 39
2.2.2 Solid-State Formation 41
2.2.3 Unzipping BN Nanotubes 43
2.2.4 High-Energy Electron Irradiation 45
2.2.5 Substitution Formation 45
2.2.6 Mechanical Exfoliation 46
2.2.7 Ball Milling 46
2.2.8 Molten Hydroxide Exfoliation 48
2.2.9 Surface Segregation 49
2.2.10 Laser Deposition 50
2.2.11 Magnetron Sputtering 50
2.2.12 Electrochemical Lithium Intercalation 52
2.2.13 Hydrodynamics Exfoliation 53
2.2.14 Chemical-Liquid Exfoliation 54
2.3 Conclusion 56
References 57
3 Te E?ects of Substrates on 2D Crystals 67
Emanuela Margapoti, Mahmoud M. Asmar
and Sergio E. Ulloa
3.1 Introduction 68
3.2 Fundamental Studies of 2D Crystals 71
3.2.1 Raman Spectroscopy and the 2D Crystals 71
3.2.2 Photoluminescence of MoS
2 74
3.2.3 KPFM in 2D Nano?akes 76
3.3 Graphene Symmetries and Teir Modifcation by
Substrates and Functionalization 80
3.3.1 Magnetoconductance of the Massless Dirac
Fermions in Graphene 84
3.3.2 Valley-Dependent Transport in Graphene 87
3.3.3 Enhancement of Spin–Orbit Interaction in
Deposited Graphene 88Contents vii
3.4 TMDs on Insulators and Metal Substrates 89
3.4.1 MoS
2 on Clean or Defective Oxide Substrates 89
3.4.2 Defect-Free Hybrid MoS2/SiO2 System 92
3.4.3 SiO
2/MoS2 Composite with Siloxane
Reconstruction 92
3.4.4 MoS
2 Monolayer on Metals Surface 94
3.4.5 Optical Studies of MoS2 on SiO2, LaAlO3,
and SrTiO
3 Substrates 100
3.4.6 Optical Studies of MoS2 on Functionalized
Substrate 103
3.5 Conclusion 107
References 108
4 Hubbard Model in Materials Science: Electrical Conductivity
and Re?ectivity of Models of Some 2D Materials 115
Vladan Celebonovic
4.1 Introduction 115
4.2 Te Hubbard Model 116
4.2.1 Te Hubbard Model in 1D 116
4.2.2 Te Hubbard Model in 2D 119
4.3 Calculations of Conductivity 124
4.4 Te Hubbard Model and Optics 135
4.4.1 HM and Invisibility 139
4.5 Conclusions 141
Acknowledgment 142
References 142
Part 2 State-of-the-Art Design of Functional
2D composites
5 Graphene Derivatives in Semicrystalline Polymer
Composites 147
Sandra Paszkiewicz, Anna Szymczyk
and Zbigniew Ros?aniec
5.1 Introduction 147
5.2 Preparation of Polymer Nanocomposites
Containing Graphene Derivatives 150
5.2.1 Solution Mixing 151
5.2.2 Melt Blending 152
5.2.3 In Situ Polymerization 153viii Contents
5.3 Properties of Graphene-based Polymer
Nanocomposites 156
5.3.1 Electrical Conductivity 156
5.3.2 Termal Conductivity 164
5.3.3 Barrier Properties 166
5.4 Synergic E?ect of 2D/1D System 174
5.5 Conclusions and Future Perspectives 175
5.5.1 Conclusions 175
5.5.2 Challenges 177
5.5.3 Future Applications 179
References 180
6 Graphene Oxide: A Unique Nano-platform to Build
Advanced Multifunctional Composites 193
André F. Gir?o, Susana Pinto, Ana Bessa, Gil Gonçalves,
Bruno Henriques, Eduarda Pereira and
Paula A. A. P. Marques
6.1 Introduction to Graphene Oxide as Building Unit 194
6.2 Sca?olds for Tissue Engineering 196
6.2.1 Bone Tissue Engineering 198
6.2.2 Nerve Tissue Engineering 202
6.2.3 Skeletal Muscle Tissue Engineering 204
6.3 Water Remediation 206
6.3.1 Removal of Organic Contaminants 207
6.3.2 Removal of Inorganic Contaminants 209
6.4 Multifunctional Structural Materials 212
6.4.1 Graphene Oxide as Mechanical Reinforcement 214
6.4.2 Graphene Oxide as Fire-Retardant Additive 215
6.4.3 Graphene Oxide as Termal Conductivity
Enhancer 218
6.4.4 Construction/Building Sector 221
6.5 Conclusions 223
Acknowledgments 224
References 224
7 Synthesis of ZnO–Graphene Hybrids for Photocatalytic
Degradation of Organic Contaminants 237
Alina Pruna and Daniele Pullini
7.1 Introduction into Wastewater Treatment 237
7.2 Semiconductor-based Photocatalytic
Degradation Mechanism 239Contents ix
7.3 ZnO Hybridization Toward Enhanced
Photocatalytic Efciency 240
7.4 Synthesis Approaches for ZnO–Graphene
Hybrid Photocatalysts 242
7.5 ZnO–Graphene Hybrid Photocatalysts 244
7.5.1 Suspended ZnO–Graphene Hybrids by
Sof Integration of Graphene into Hybrids 244
7.5.2 Suspended ZnO–Graphene Hybrids by
Hard Integration of Graphene into Hybrids 255
7.5.3 Immobilized ZnO–Graphene Hybrids by
Sof Integration of Graphene into Hybrids 267
7.5.4 Immobilized ZnO–Graphene Hybrids by
Hard Integration of Graphene 269
7.6 Ternary Hybrids with ZnO and rGO Materials 270
7.6.1 Suspended Ternary Hybrids by
Sof Integration of Graphene 271
7.6.2 Immobilized Ternary Hybrids by
Hard Integration of Graphene 274
7.7 Conclusions 276
Acknowledgments 278
References 278
8 Covalent and Non-covalent Modifcation of Graphene Oxide
Trough Polymer Grafing 287
Akbar Hassanpour, Khatereh Gorbanpour
and Abbas Dadkhah Tehrani
8.1 Introduction 288
8.2 Covalent Modifcation of Graphene Oxide 288
8.2.1 Functionalization via the “Grafing from”
Method 289
8.2.1.1 Atom Transfer Radical Polymerization 290
8.2.1.2 Reversible Addition Fragmentation
Chain-Transfer Polymerization 294
8.2.1.3 Free Radical Polymerization 298
8.2.1.4 Ring-Opening Metathesis
Polymerization 300
8.2.1.5 Nitroxide-mediated Radical
Polymerization 300
8.2.1.6 Anionic and Cationic Polymerization 302
8.2.1.7 Ziegler–Natta Catalyzed Polymerization 303
8.2.1.8 Irradiation Polymerization 305x Contents
8.2.2 Functionalization via the “Grafing to” Method 305
8.2.2.1 Amidation Reaction 306
8.2.2.2 Esterifcation Reaction 308
8.2.2.3 Nitrene Cycloaddition 309
8.2.2.4 Click Chemistry 310
8.2.2.5 Ring-opening Epoxide 314
8.3 Non-covalent Modifcation of Graphene Oxide 314
8.3.1 Functionalization via ?–? Stacking Interaction 315
8.3.2 Functionalization via Electrostatic Interaction 318
8.3.3 Functionalization via Hydrogen Bonding 319
8.4 Composites and Grafs of GO with Natural Polymers 321
8.4.1 Graphene Oxide/Starch Grafs and Composites 321
8.4.2 Graphene Oxide/Cellulose Grafs and Composites 324
8.4.3 Graphene Oxide/Chitosan Grafs and Composites 328
8.5 Conclusion 333
Acknowledgment 334
References 334
Part 3 High-tech Applications of 2D Materials
9 Graphene–Semiconductor Hybrid Photocatalysts
and Teir Application in Solar Fuel Production 355
Pawan Kumar, Anurag Kumar, Chetan Joshi,
Rabah Boukherroub and Suman L. Jain
9.1 Introduction 356
9.2 TiO
2-based Photocatalyst 357
9.3 Non-TiO
2 Semiconductors 358
9.4 Metal Complexes Sensitized Semiconductors 359
9.5 Graphene/Semicondutor/Metal Complexes-based
Photocatalysts 360
9.6 Metal Free Dye-graphene Composite 375
9.7 Polymeric Semiconductors/Graphene Composites 376
9.8 Solar Fuel Production by Doped Graphene 377
9.9 Conclusion 379
References 379
10 Graphene in Sensors Design 387
Andreea Cernat, Mihaela Terti?, Lumini?a Fritea
and Cecilia Cristea
10.1 Introduction 388
10.2 Fabrication and Characterization of
Graphene-based Materials 389Contents xi
10.2.1 Graphene Sheets 391
10.2.2 Graphene Nanocomposites 391
10.2.3 Functionalized Graphene 392
10.3 Applications 394
10.3.1 Graphene-based Sensors 395
10.3.2 Graphene-based Nanocomposite Sensors 397
10.3.3 Functionalized Graphene-based Sensors 410
10.4 Conclusions 418
Acknowledgements 418
References 419
11 Bio-applications of Graphene Composites:
From Bench to Clinic 433
Meisam Omidi, A. Fatehinya, M. Frahani, Z. Niknam,
A. Yadegari, M. Hashemi, H. Jazayeri, H. Zali,
M. Zahedinik, and L. Tayebi
11.1 Introduction 433
11.2 Synthesis and Structural Features 435
11.2.1 Graphene Synthesis Methods 436
11.2.1.1 Exfoliation 437
11.2.1.2 Chemical Vapor Deposition 437
11.2.1.3 Chemical-based Techniques 437
11.3 Biomedical Applications 438
11.3.1 Sensing and Imaging 438
11.3.1.1 Optics-based Imaging 439
11.3.1.2 Non-optics-based Imaging 442
11.3.2 Drug Delivery 444
11.3.2.1 Graphene-based Composites in
Terapeutics: A Focus on
Drug Delivery System 444
11.3.2.2 Graphene-based Drug Nanocarrier 445
11.3.2.3 Graphene-based Gene Nanocarrier 450
11.3.2.4 Combination Terapy and
Graphene-based Co-delivery
Nanocarrier 450
11.3.2.5 Controlled Targeting and Transport
of Drug Compounds 451
11.3.3 Tissue Engineering 452
11.3.3.1 Tissue Engineering Sca?olds 452
11.3.3.2 iPSC-based Regenerative Medicine 455
11.3.3.3 Wound Healing 45511.4 Conclusions (Current Limitations and
Future Perspectives) 457
11.4.1 Graphene Toxicology 457
11.4.2 Promise and Challenges 459
References 461
12 Hydroxyapatite–Graphene as Advanced Bioceramic
Composites for Orthopedic Applications 473
Wan Je?rey Basirun, Saeid Baradaran and
Bahman Nasiri-Tabrizi
12.1 Background of Study 474
12.2 Literature Review 478
12.2.1 Overview of Bioceramics 478
12.2.2 Hydroxyapatite 480
12.2.3 Carbon Nanostructures 483
12.2.3.1 Graphene 483
12.2.3.2 Graphene Oxide 484
12.2.3.3 Reduced Graphene Oxide 485
12.2.3.4 Graphene Nanoplatelets 486
12.3 Functional Specifcations 486
12.3.1 Physical Properties of HA/GNP Composites 486
12.3.2 Biological Properties of HA/GNP Composites 488
12.3.2.1 In Vitro Bioactivity 488
12.3.2.2 In Vitro Biocompatibility 490
12.4 Summary and Concluding Remarks 494
References 495
Index
كلمة سر فك الضغط : books-world.net
The Unzip Password : books-world.net

تحميل

يجب عليك التسجيل في الموقع لكي تتمكن من التحميل
تسجيل | تسجيل الدخول

التعليقات

اترك تعليقاً