Rotational Molding Technology

Rotational Molding Technology
اسم المؤلف
William Andrew , Roy J. Crawford
التاريخ
23 سبتمبر 2019
المشاهدات
التقييم
(لا توجد تقييمات)
Loading...

Rotational Molding Technology
William Andrew
Roy J. Crawford
The Queen’s University of Belfast
Belfast, Northern Ireland
James L. Throne
Sherwood Technologies, Inc.
Hinckley, Ohio
1 Introduction
2 Rotational Molding Technology
3 Grinding and Coloring
4 Rotational Molding Machines
5 Mold Design
6 Processing
7 Mechanical Part Design
Appendix a. Troubleshooting Guide for Rotational Molding
Problem Probable Cause Possible Solution Location in Book
Long oven cycle Excessively thick mold Change to aluminum or beryllium-copper Section 5.1
Reduce mold wall thickness Section 5.2
Inefficient heat transfer Increase air velocity
Add baffles, venturis
Section 4.3.2
Section 4.3.3
Poor polymer flow Use higher melt index polymer Section 2.9.1
Poor powder flow Change to a less sticky additive package Section 3.10.6
Reclassify to remove tails Section 3.6
Coarse particles Section 3.2
Underfused parts Insufficient heat transfer Reduce mold wall thickness Section 5.2
Chanee to aluminum molds Section 5.1.2
Add bYaffles, venturis Section 4.3.3
Oven temperature too low Increase oven temperature Section 6.6-6.8
Increase heating time Section 6.6-6.8
Oven time too short Increase oven temperature
Increase heating time
Section 6.6-6.8
Section 6.6-6.8
Coarse powder Check powder size, size distribution Section 3.2
Replace micropellets with -35 mesh powder Section 3.8
Overcured parts Oven temperature too high Reduce oven temperature Section 6.6-6.8
Decrease heating time Section 6.6-6.8
Oven time too long Reduce oven temperature Section 6.6-6.8 Problem Probable Cause Possible Solution Location in Book
Decrease heating time Section 66-6.8
Wrong polymer Change to less thermally sensitive polymer Section 2.8
Poor impact Wrong polymer Select polymer with higher inherent impact,
strength lower melt index, lower density
Section 2.2,2.9
High crystallinity due to Increase cooling rate
long cooling time
Insufficient powder fusion Increase heating time
Increase oven temperature
Increase air velocity in oven
Change to aluminum molds, thinner mold
walls
Bad part design
Wrong colorant
Overheated parts
Underfused parts
Increase corner radii
Increase distance between parallel walls
Change to pigment that doesn’t interfere
with impact or crystallization rate
Reduce level of masterbatched pigment
Use less pigment
Use precolored compounds
[See comments for Overcured parts]
[See comments for Underfused parts]
Section 6.20
Section 6.6-6.8
Section 6.6-6.8
Section 4.3.2
Section 5.2
Section 7.6.5
Section 7.6.8
Section 3.10
Section 3.10.4
Section 3.10
Section 3.10 Problem Probable Cause Possible Solution Location in Book
Long-term part Stress-cracking Change to stress-crack resistant polymer Section 2.2,-2.3
failure Old or unstable polymer Section 2.8,2.9
Redesign around inserts Section 7.6.10
Use lo;,-stress-concentration inserts Section 7.6.10
Reconsider appropriateness of original Section 7.3
design criteria
W-degradation Increase UV inhibitor level Section 2.10.3
Consider more expensive UV absorber Section 2.10.3,3.10.6
Consider higher loading of carbon black Section 3.10.4
Stress-cracking Improper polymer Change to stress-crack resistant polymer Section 2.2,2.3
Improper part design Redesign pert to minimize stress Section 7.6.7
concentration
Use low-stress-concentration inserts Section 7.6.10
Long cooling time Increase cooling rate to minimize shrinkage Section 6.20
particularly around inserts, cores
Nonuniform wall Improper mold rotation Change speed and arm ratio Section 4.2
thickness Use reverse rotation during heating Section 4.2
Improper mold design Check mold wall thickness for nonuniformity Section 5.2
Move mold supports away from mold to Section 5.3.2
prevent them from removing heat locally
Poor heat transfer Move mold away from other molds, unstack Section 4.2,4.3
molds to improve air circulation
Add baffles, venturis for deep cavities Section 4.3.3 Problem Probable Cause Possible Solution Location in Book
Parting line Poor mold parting line Rework parting line Section 5.3.1
bubbles Redesign mold with tongue-and-groove Section 5.3.1
parting line
Clean parting line of crud, recoat with mold Section 5.7
release
Misaligned support frame Rework support frame so mold halves seat
properly
Inadequate venting Resize vent
Reposition vent to middle of mold
Make certain glass wool is in vent tube
Use TeflonB vent tube
Use ‘T-shaped vent tube
Parts stick in mold Inadequate draft on female Rework mold with larger draft angles
parts of mold Coat locally with mold release
Section 5.3.2
Section 5.5
Section 5.5
Section 5.5
Section 5.5
Section 5.5
Section 7.6.5
Section 5.7
Heavily textured part Coat with low coefficient of friction mold Section 5.7,7.6.5
release
Rework mold with larger draft angles Section 7.6.5
Lack of mold release Strip off mold release and recoat Section 5.7
Recoat with higher temperature mold Section 5.7
release
Recoat with lower coefficient of friction Section 5.7
mold release
Recoat with mold release that is chemically Section 5.7
compatible with polymer, additives,
crosslinking agent, blowing agent Problem Probable Cause Possible Solution Location in Book
Mold surface damage Look for undercuts, dings, dents, then Section 7.6.5
rework mold
Flat area suction Modify mold to allow air bleed into flat area Section 5.3
Roughen mold surface in flat area Section 5.6
Interference between part Remove incidental undercuts, rework mold Section 7.6.5
and mold to move parting line, add draft to mold
Remove part warm Section 6.25
Increase pry points on mold frame, use Section 5.3.4
air-driven jack screws
Low-shrink polymer Use higher density polymer Section 2.2
Incomplete mold Melt viscosity high Use lower viscosity polymer Section 2.2
surface replication Increase oven temperature Section 6.6-6.8
Powder bridging Check particle size, size distribution Section 3.2
Mix micropellets with powder Section 3.8
Cold spots on mold Check local mold wall thickness Section 5.2
[also see comments for Nonuniform Wall Thickness]
Bubbles in part Trapped air
Moisture
Reduce heating rate in last part of oven time Section 6.20
Reduce powder size Section 3.2,6.20,6.2 1
Increase powder size distribution Section 3.2,6.20,6.21
Increase vent size Section 5.5
Apply vacuum during last part of oven time Section 6.15,6.20
Adequately dry PMMA, PC, PVC drysols Section 2.7 Problem Probable Cause Possible Solution Location in Book
Overcured part Decrease oven time or temperature Section 6.6-6.8
Use nitrogen purge throughout heating cycle Section 6.15
[see comments for Overcured parts]
Outgassing Change additive package in polymer Section 3.10.6
Check pigment for thermal stability Section 3.10
Replace temporary mold release with Section 5.7
permanent mold release
Undercured part Increase oven time or temperature Section 6.6-6.8
[see comments for Underfused parts]
Wrong polymer Switch to polymer with higher melt index Section 2.9.1
Bubbles along Poor parting line Clean, rework parting line Section 5.3.1
parting line Improper mold clamping Rework mold clamping mechanism Section 5.3.3
Internal pressure during Check, clear vent Section 5.5
heating Increase vent size Section 5.5
Internal pressure during Check, clear vent, replace glass wool Section 5.5
cooling Pressurize mold during cooling Section 6.15,6.23
Blow holes around Moisture in polymer Dry polymer, esp. PMMA, PC Section 2.7
inserts Apply vacuum during heating Section 6.15
Adsorbed air on insert Precoat insert with polymer Section 5.3.5
Bridging of powder at insert Move insert away from bridging area Section 7.6.9
Change insert to more open design Section 7.6.10
Replace metal insert with plastic one Section 7.6.10 Problem Probable Cause Possible Solution Location in Book
Flash at parting Poor parting line Clean, rework parting line Section 5.3.1
line Increase clamping force Section 5.3.3
Rework mold clamping mechanism Section 5.3.3
Internal pressure buildup Check, clear vent, replace glass wool Section 5.5
Increase vent size Section 5.5
Low polymer viscosity Decrease polymer melt index Section 2.9.1
Lower oven temperature Section 6.6-6.8
Warped parts Inadequate venting Increase vent size Section 5.5
Replace glass wool Section 5.5
Nonuniform cooling Maintain rotation during cooling
Increase air cooling time
Check vent size, glass wool quality
Rework mold to replace flat areas with
ribbed, corrugated, domed areas
Increase water coolant temperature
Minimize, remove mold release
Use air pressure during water cooling time
Reduce rate of external cooling
Introduce internal cooling
Section 6.18
Section 6.2 1
Section 5.5
Section 5.3
Section 6.23
Section 5.7
Section 6.15,6.23
Section 6.21,6.22
Section 6.24
Overcured part Decrease oven temperature Section 6.6-6.8
Decrease oven time Section 6.6-6.8
Use nitrogen purge throughout heating cycle Section 6.15 Problem Probable Cause Possible Solution Location in Book
– —
Underfused part Increase oven temperature, time Section 6 . 6 4 . 8
Increase heat transfer by using aluminum Section 5.2
molds
Use thinner molds Section 5.1
[see comments for Underfused parts]
Wall thickness variation Check rotation ratio Scction 4.2
Remove, minimize hot spots on mold Section 5.2
Increase cooling rate Section 6.21,6.22
Local part separation from Use internal pressure during cooling Section 6.15
wall
Poor parting line Improve mating surfaces on mold Section 5.3
Clean thoroughly mating surfaces on mold Section 5.3
Blocked vent Inspect vent before each cycle Section 5.5
*
Adapted from J. Rucher, “A Beginner’s Guide to Rotomolding,” Plastics World, 48:7 (July 1997), pp. 14-16. 3 7 5
APPENDIX B. Conversion Table
Metric to U.S. to Metric
Length
m x 3.28 ft • 0.3048 m
[1111 • 10 -6 m x 10 6 ]AITI
h n • 1.609 mile • 0.622 km
rrm x 39.37 mils x 0.0254 n m
Area
rn 2 x 10.76 ft 2 X 0.0929 rn 2
c m 2 • 0.155 in z • 6.452 c m 2
m m 2 x 1.55 • 10 -3 in 2 x 645.2 m m 2
Volume
fro x 35.31 f t 3 • 0.02832 m 3
rn 3 x 6.102 x 104 in 3 x 1.639 • 10 4 in 3
m m 3 x 6.102 x 10-5 in 3 • 1.639 x 10 4 m m 3
liter x 1000 c m 3 x 0.001 liter
c m 3 x 29.57 fluid oz • 0.0338 c m 3
rn 3 x 264.2 U.S. gat x 3.785 x 10-3 m 3
Mass
g x 0.0022 Ibm x 453.6 g
kg • 2.204 Ibm x 0.4536 kg
kg x 0.001 m e t r i c t o n n e x 1000 kg
kg x 0.0011 U.S. ton x 907.2 kg
Density
g / c m 3 x 62.42 Ibm/ft 3
k g / m 3 x 0.06242 lbm/ft 3
g / c m 3 x 0.578 o z / i n 3
k g / m 3 x 5.78 x 10 -4 o z / i n 3
x 0.016 g / c m 3
x 16.02 k g / m 3
x 1.73 g / c m 3
x 1.73 x103 k g / m 3
Force
N • 0.2248 lbf • 4.448 N
kgf x 0.2292 lbr x 4.363 kgf
kN • 0.2248 kip, 10001bf • 4.448 kN
d y n e • 2.248 • 10 -6 Ibf x 4.448 x 105 d y n e
d y n e x 10-5 N x 105 d y n e 3 7 6
Metric to U.S. to Metric
Pressure
Pa x 1.45 x 10 -4 lbf/in 2 x 6895 Pa
M P a • 9.869 atm x 0.1013 M P a
Pa x t0 d y n / c m 2 x 0.1 Pa
Pa x 7.5 x 10 .3 1 m m Hg x 133.3 Pa
Pa x 4.012 x 10 -3 1 in H 2 0 x 248.9 Pa
M P a x 10 b a r x 0.1 M P a
N l m m 2 x 145 lbtgin 2 • 6.895 x 10 -3 N l m m 2
Energy
J • 9.478 x 10 -4 B t u x 1055 J
ft-lbf x 1.286 • 10 -3 Btu x 778 fi-lbf
j x 0.2388 cal x 4.187 J
j x 1 x 10 7 e r g x 1 x 10-7 J
M J x 2.778 x 1 0 – 7 k W h r x 3.60 x 106 M J
j x 0.7375 tt-lbf x 1.356 J
Energy, Power, Heat, Fluid Flow Rate
W x 3.413 B t u / h r x 0.293 W
W x 1 x 10 7 e r g l s x 1 x 10 -7 W
W x 0.7375 ft-lbf/s • 1.356 W
k W x 1.34 hp • 0.746 k W
liter/min x 0.2642 gal/min x 3.785 liter/rain
liter/min x 2.393 ft3/hr x 0.4719 liter/rain
Heat Flux
W / m 2 x 0.317 B t u / h r ft 2 x 3.155 W l m 2
calls c m 2 x 3.687 B t u / h r ft 2 x 0.2712 cal/s c m 2
W / m 2 x 6.452 x 10 -4 W / i n 2 x 1550 W / m 2
Specific Heat
J / k g K
cal/g ~
x 2.388 x 10 -4 B t u / l b ~ x 4187 J / k g K
• 1 B t u / l b ~ x 1 c a l / g ~
Thermal Conductivity
W / m K • 0.5777
W / m K x 1 . 9 2 6 x 1 0 -3
W / m K • 7.028
W / m K x 2 . 3 9 x 10 -3
B t u l h r ft ~ • 1.731
B t u i n / s ft 2 ~ x 519.2
Btu in/hr ft 2 ~ • 0.1442
c a l / c m s ~ x 418.4
W l m K
W l m K
W l m K
W l m K 3 7 7
Metric to U.S. to Metric
Vetocity
km/hr x 0.6205 rniles/hr x 1.609 km/hr
m / s x 3.6 km/hr x 0.2778 m / s
m / s x 39.37 in/s x 0.0254 m/s
m / s x 3.281 ft/s x 0.3048 m/s
m / s x 1.181 x 104 ft/hr x 8.467 x 10-5 m/s
Mass Flow Rate
k g / s x 7.937 x 103
k g / s x 2.205
lb/hr x 1.26 x 10 -4 k g / s
lb/s x 0.4536 k g / s
Viscosity
Pa s x 10
P a s x 1000
m2/s x 10.76
Pa s x 1.488
c e n t i p o i s e x I488
m2/s x I x 106
P a s x 1 . 4 5 x 1 0 -4
P a s x 2.088 x 10 -2
P o i s e • 0.1
c e n t i p o i s e x 0.001
ft2/s x 0.0929
lb/s ft x 0.672
lb/s ft x 0.000672
c e n t i s t o k e x 1 x 10 -6
lbf s/in 2 • 6.895 • 103
lbf s/ft 2 x 47.88
Stress
M P a x 145
M P a x 0.102
M P a • 0.0725
M P a • 1
M P a x 1
l b ( i n 2 x 6.895 x 10 -3
k g t / m m 2 x 9.807
tone/in2 x 13.79
M N / m 2 x 1
N/ram 2 x l
Bending Moment
x 8.85
b4~n x 0.7375
Nrn/m x 0.2248
N m / m x 1.873 x 10-2
l b f i n x 0.113
lbfft x 1.356
lbf in/in x 4.448
lbf ft/in x 53.38
Fracture Toughness and Impact Strength
M P a m v~ x 0.9099 ksi in v2
J/m x 0.2248 ft lbf/ft
J/m x 0.01874 ft lbf/in
J/m 2 • 4.757 x 10-4 ft lbr/in 2
x 1.099
x 4.448
x 53.37
x 2102
Pa s
Pa s
rr12/8
P a s
c e n t i p o i s e
mZ/s
P a s
P a s
M P a
M P a
M P a
M P a
M P a
]N~TI
Nm
N m / m
N, rv’m
M P a m’,~
J/m
J/m
J/m 2 Author Index
A
Andrzejewski, S., 11,16
Arendt, W.D., 6, 15, 96,
109
Arpaci, V.S., 247, 302
Ashby, M.F., 325,327,
363
Astarita, T., 210, 211,300
Astarita, G., 210, 211,300
Attaran, M.T., 248,302
B
Balmer, R.T., 279, 282,
304, 305
Bawiskar, S., 138,147
Beall, G.L., vi, 2, 14, 112,
14 7, 160, 200, 206,
276,285,299,304,
305, 307, 310, 313,
318,319,335,340,
342, 344, 349, 351,
362, 364
Becker, H., 4, 14
Bellehumeur, C.T., 11,17,
20,69,93,108,225,
228, 234, 243,244,
301, 302, 354, 365
Benning, C.J., 28, 59, 60,
65, 68
Bent, A.A., 210, 299
Berins, M.L., 335,356,
364, 365
Bisaria, M.K., 6, 11, 15,
17
Boenig, H.V., 42, 66
Boersch, E., 1, 14, 96,
1 O4, I09
Bonis, L.J., 225,300
Bothun, G., 104, 110
Braeunig, D., 6,15
Brown, R.L., 205, 211,
212,299
Bruins, P.F., vi, 4, 14, 40,
66, 112, 147
Brydson, J.A., 20, 65,
211,300
Bucher, J., 4, 14, 367,374
Burnett, D.S., 333,335,
363, 364
Burns, M., 332, 363
C
Calafut, T., 28, 65
Campbell, C.S., 210, 300
Carrino, L., 104,110
Carter, B., 4, 14, 113,147
Cellier, G., 236, 237, 242,
301
Cerro, R.L., 279, 281, 304,
305
Chabot, J.F., 4, 14
Chan, L.S., 6, 16, 69, 108
Chen, C.-H., 146, 148,
201,214,247,248,
299
Cheney, G., 11, 16
Chiou, Y.H., 228,229,237,
301
Clark, D.T., 360, 365
Collins, E.A., 38, 65
Copeland, S., 6,15, 64,
68
Covington, H., 335,364
Cowan, S.C., 210, 299
Cramez, M.C., 12, 17, 18,
99, 109, 268, 303
Crawford, R.J., vi, l, 2, 6,
11, 12, 14-18, 69,
85, 90, 94, 99, 100,
108, 109, 112, 120,
138, 140, 142, 146,
147, 148, 186, 200,
201,207,214,238,
240, 248,268,299,
302, 303, 318, 319,
323,348,349,350,
352,353,354,362,
364, 365
Crouch, J., 146,148
Cumberland, D., 85, 109
Straight– Text Citing
379
Italic ~ Reference 380
D
Rotational Molding Technology
m
Gibson, L.J., 325,327,
de Bruin, W., 69, 90, 92, 363
108 Goddard, J.D., 239, 302
Dieber, J.A., 279,285, Gogos, G., 142, 148,240,
304, 305 250,251,273,274,
Dodge, P., 11,16 3 03
Domininghaus, H., 20, Goodman, M.A., 250, 299
65, 338,339, 364 Goodman, T.R., 249, 302
Dority, S., 505, 109, 110 Gotoh, K., 81, 108
Dusinberre, G.M., 2 6 6 , Graham, B., 6, 15, 58, 64,
303 68
D’Uva, S., 287, 306
E
Eilers, K., 330, 363
Elias, H.-G., 267, 268,303
Epstein, P.S., 240, 302
Ezrin, M., 56, 67, 307,362
F
Fahnler, F., 39, 66
Fawcett, J., 332, 363
Fayed, M.E.,219,300
Feast, W.J., 360, 365
Fenner, R.T., 333,363
Findley, W.N., 323,362
Flannery, B.P., 333,363
Fogler, H.S., 239, 302
Foy, D., 501,110
Frenkel, Ya.I.., 225,300
Frisch, K.C., 59, 67, 291,
306
G
Gachter, R., 63, 68
Gebhart, B., 333,363
Gianchandani, J., 6, 16,
279,282,283,304,
3O5
Straight – –
I-I
Han, C.D., 239, 302
Hang, C.C., 6, 16, 69, 108
Harkin-Jones, E.M.A., 6,
16, 38,39,40,41,
42, 65, 66, 69, 108,
279,282, 283,284,
303, 304, 305
Hartnett, J.P., 250, 261,
303
Hausner, H.H., 225,300
Hentrich, R., 154, 200
Hickey, H.F., 40, 66
Higashitani, K., 85, 108
Howard, H.R., 51,16, 501,
109, 110
Huebner, K.H., 333,363
Iwakura, K., 146,148,
205,214,247,248,
299
,I
Joesten, L., 6, 16, 64, 68
Johnson, L., 105, 110
Johnson, R.E., 279, 285,
304, 305
Jolly, R.E., 44, 66
Text Citing
K
Kampf, G., 44, 56, 66
Keurleker, R., 39, 66
Khemani, K.C., 291,305
Kinghorn, K.B., 6, 15
Klempner, D., 59, 67, 291,
306
Kobayashi, A., 356, 365
Kontopoulou, M., 6, 11,
15, 17, 64, 68, 234,
238,240, 241,243,
244, 301,302, 354,
365
Kreith, E, 205, 255, 216,
299, 300, 335, 364
Kuczynski, G.C., 225,300
Kumar, S., 328,363
Kurihara, K., 210, 215,
299
L
Lai, J.S., 323,362
Landrock, A.H., 291,306
Lang, J., 6, 15, 96, 109
Lefas, J.A.,287,306
Levitskiy, S.R, 231,238,
301, 302
Lin, S.T., 228,229, 238,
301
Liniger, E.G., 211,300
Linoya, K., 85, 108
Lipsteuer, S.J., 93,109,
287,306
Liu, F., 287,306
Liu, G., 287, 306
Liu, S.-J., 228,229,238,
301
Liu, X., 250, 273,274, 303
Lontz, J.F., 225,300
Lowe, J., 6,15
Italic Reference Author Index 381
Lui, S.-J., 11,17
Lun, C.K.K., 210, 299
M
Macauley, N., 270,303
MacKinnon, C., 191,200
Maier, C., 28, 65
Malkin, B.A., 279,280,
305
Malloy, R.A., 315,322,
323,345,346,
362-364
Malwitz, N., 291,305
Mansure, B., 6, 15
Marchal, J.-M., 287,306
Marion, R.L., 278, 304
Martin, D., 6, 16, 69, 108
Mazur, S., 225,226, 227,
228,232,233,301
McCarthy, T.J., 360, 365
McClellan, E., 6,15
McDaid, J., 69, 70, 71,73,
76, 86, 89, 90, 91,
94,108
McDonagh, J.M., 6, 15
Mello, J., 335,364
Mincey, E., 105, 110
Mish, K.D., 335,364
Mooney, P.J., 1, 14
Morawetz, H., 22, 30, 65
Moroni, G., 104, II 0
Muller, B., 6, 15, 101, 102,
110
Muller, H., 63, 68
Murphy, W.R., 270, 303
Muzzio, EJ.,243,306
N
Nagy, T., 100,109
Nakajima, N., 38, 65
Narkis, M., 25, 65, 218,
225,226,227,228,
232,233,235,236,
301,347,348,364
Neuville, B., 225,300
Newman, S.J.,236,301
Nickerson, J.A., 2, 14
Nugent, P.J., 11, 12,
16-18, 140, 147,
186,200,201,214,
273,274, 299, 303,
350,352,353,354,
365
0
Ocone, R., 210, 211,300
Ogorkiewicz, R.M., 4, 14,
44, 52, 66, 67, 268,
270,271,272,303
Ohta, Y., 146,148, 201,
214,247,248,299
Okoroafor, M.O., 291,
306
Oliveira, M.J., 12, 17, 18,
99,109, 268,303
Olson, L.G., 250, 273,274,
303
Onaran, K., 323,362
Onoda, C.Y., 211,300
Orr, J., 6,16, 69,108
Otten, L., 219, 300
P
Paiva, M.C., 12,18
Park, C.E, 59, 67, 291,
306
Park, C.L., 287, 306
Pasham, V.R., 250, 303
Passman, S.L., 210, 300
Peterson, A.C., 315,362
Petrucelli, F., 6,15
Pietsch, W., 81,109
Plessct, M.S., 240,302
Polini, W., 104, 110
Pop-lliev, R., 287,306
Press, W.H., 333,363
Progelhof, R.C., 20, 22,
23,44,45,50,53,
62, 63, 65-68, 217,
229,230,231,236,
237,242,267,279,
300, 301, 303,
304,315,323,328,
330,362, 363
Q
R
Rabinovitz, E., 6,16
Ramesh, N.S., 291,305
Rao, M.A., 81,108, 201,
205,214,299
Rauenzahn, R.M., 210,
211,300
Rauwendaal, C., 207, 299
Rees, R.L., 6, 15, 76,108
Rhodes, M., 77, 108
Richards, J.C., 205, 211,
212,299
Rigbi, Z., 6, 16
Rijksman, B., 287,306
Roark, R.J., 318, 362
Rohsenow, W.H., 250,
261,303
Rosenzweig, N., 25, 65,
218,225,226,227,
228,232,233,235,
236, 301,347, 348,
364
Ruetsch, R.R., 217,300
Rumpf, H., 205,299
Straight ~ Text Citing Italic ~ Reference 382 Rotational Molding Technology
S Susnjara, K., 355,365
Saffert, R., 6,15 Swain, R., 102,110
Sarvetnick, H.A., 37, 38, Syler, R., 242,302
65,278,304
Schmitz, W.E., 4, 14 T
Schneider, K., 39, 66 Takacs, E., 64, 68, 69, 93,
Schneider, EJ., 249, 250, 108, 109, 243,244,
261,303 287, 302, 306, 354,
Scott, J.A., 12, 17, 142, 365
14 7, 148 Tanaki, A., 36, 68
Shah, V., 44, 51,54, 57, 61, Taylor, T.J., 348,364
62, 66-68 Teoh, S.H., 6, 16, 69,108
Shinbrot, T., 243,306 Teukolsky, S.A., 333,363
Shinohara, K., 219, 300 Throne, J.L., 6, 10, 16, 20,
Shrastri, R.K., 48, 49, 6 7 22, 23, 25, 44, 45,
Shulman, Z.P., 231,238, 50, 53, 62, 63,
301, 302 65-68, 81,83,108,
109, 201,205,207,
Shutov, F.A., 289, 291,
210,214,215,217,
293,305, 306 218,224,229,230,
Silva, C., 100, 109 231,235,236,237,
Sin, K.K., 6, 16, 69, 108 238,239,242,245,
Smit, T., 69, 90, 92, 108 246, 247, 248, 251,
Sneller, J., 287, 306 267,275, 279, 281,
Sohn, M.-S., 83,109, 2 0 5 , 282,283,288,291,
211,299 293,299-305, 308,
Sowa, M.W., 6, 16 315,323,327, 328,
323,330,331,340,
Spence, A.G., 12, 17, 89, 341,347, 348,356,
100,109, 138, I42, 362-365
146, 147, 148,207,
238,240, 299, 302 Tordella, J.P., 44, 66
Spyrakos, C.C., 266,303, Tredwell, S., 64, 68
310, 333,334, 362, Turner, S., 47, 67
363 Turng, L.-S., 287, 306
Stanhope, B.E., 6, 15, 96,
109 U
Stoeckhert, K., 154, 200
Strebel, J., 89, 90, 91,109 V
Strong, A.B., 6, 15 Vetterling, W.T., 333,363
Stufft, T.J., 89, 90, 91,109 Vincent, P.I., 52, 67
Vlachopoulos, J., 6, 11,
15, 17, 64, 68, 69,
93, 108, 109, 225,
228,234, 238,240,
241,243,244,287,
301, 302, 306, 354,
365
Voldner, E., 6,15
W
Walls, K.O., 12, 18
Wang, H.P., 287,306
Ward, D.W., 38, 65
Ward, W.J., 360, 365
Weber, G., 4, 14
Werner, A.C., 37, 38, 65
White, J.L., 100, 109, 138,
147, 148,201,214,
247,248,299
Wisley, B.G., 6, 16
Wright, M.J., 138, 120,
147
Wright, E.J., 248, 302
Wytkin, A., 120, 14 7
X
Xin, W., 11, 16
Xu, L., 240, 302
Y
Yoo, H.J., 239, 302
Young, W.C., 318,362
Z
Zhang, D.Z., 210, 211,
300
Zimmerman, A.B., 4,14
S t r a i g h t – Text Citing Italic ~ Reference Subject Index
A
ABS 9
See also Acrylonitrile-butadiene-
styrene
Rotational molding grade, discussed
36
Limitations in rotational molding 36
Acrylic 9
See also PMMA, Polymethyl meth-
acrylate
Acrylonitrile-butadiene-styrene
As thermoplastic 19
Discussed 35-36
Air temperature, inner cavity, measure-
ment 140-143
Air solubility in polymer 239-241
Aluminum casting
See also Mold, ah4minum, cast
Procedure 152-153
Amorphous, defined 20
ARM, see Association of Rotational
Molders
Arms
Design weight, described 122
Hollow for inert gas injection 146
Hollow for pressuring molds 146
Offset 122
Straight 122
Support of molds 122, 122F
Swing diameter
Described 123-125, I23F, 124F,
125F
Examples of 123-125
Association of Rotational Molders 12
ASTM D-1238 24
See also Melt index
ASTM D- 1693 22
See also ESCR; Environmental stress
crack test
ASTM D-348 26, 32
See also Heat distortion temperature
ASTM D-2765 27
See also Polyethylene, crosslinked
ASTM D-1238 44
ASTM E-11 46
See also Sieve, screen sizes, dis-
cussed
ASTM D-1921 46
See also Sieve technolog3,
ASTM D- 1505 51
See also Density gradient column
ASTM D-256 53
See also Impact test, pendulum;
Impact test, Charpy; Impact
test, lzod
ASTM D-3029 53
See also Impact test, falling weight
ASTM D-790 54
See also Mechanical test, flexural
modulus
Straight ~ Text ” F ” – – Figure “T” ~ T a b l e
383 384 Rotational Molding Technology
ASTM D-638 64
See also Mechanical test, tensile
modulus
ASTM D-2990 55
See also Mechanical test, creep
ASTM D-671 55
See also Mechanical test, flexural
fatigue
ASTM D-1693 58
See also Environmental stress crack
test, notched strip
ASTM D-1435 61
See also Weathering, accelerated
tests
ASTMD-3801 63
See also Fire retardancy, standard
match test
ASTM D-2863 63
See also Fire retardancy, oxygen
index
ASTME-11 75T
See also Sieve
ASTM D-1921 76
See also Particle size distribution
ASTM D-1895 84, 84F
See also Powder flow, test method
ATM D- 1895 46
See also Sieve technology, bulk
density,” Sieve technology,
pourability
Attrition 69
See also Pulverization, described
Baffles
See also Molds
In mold design 136, 136F
Bridging, considerations for 311
Brittle fracture, impact test 51
Brittle temperature for several poly-
mers 52
Bubbles 15
Bulk density
Grinding factors affecting 89-91
Powder
Fluidized 88T
Measurement 84F, 88
Poured 88, 88T
Tamped 88, 88T
Vibrated 88, 88T
C
CAB, see Cellulose acetate butyrate
CAP, see Cellulose acetate propionate
Carousel machine
Fixed arm 117-118, 118F
Independent arm 118-119, 119F
Cellulose acetate butyrate, discussed
34-35
Cellulose acetate propionate, dis-
cussed 34-35
Cellulosic 9, 21
Discussed 34-35
General properties, discussion 35
Centrifugal casting 7, 15
Charge weight, calculation of 174-183
For cylinder 175, 175F
For rectangle 176, 176F, 177F
For various shapes 177, 179T
Chemical resistance, post-applied 359-360
Chemical test
Crazing 57
Haze formation 56
Plasticization 56
Solvation 56
Solvent migration 56
Stress-cracking 57
Chocolate 7
Clamshell machine
Discussed 115, 115F
Oven design 116
Coalescence 26
As sintering 26
Effect of particle size distribution on 87
S t r a i g h t – Text ” F ” – – Figure ” T ” – – T a b l e Subject Index 385
Color
CIE standard 56
Compounding 96, 101
Dry blending 96
Concentration level effect 99F
High speed mixing 97
Low-intensity 97
Low-intensity, equipment 97
Tumbling 96, 97
Turbo-blending 97
Effect of blending technique on
dispersion of 100F
Effect of blending technique on
mechanical properties 101
Factors that affect 55
Methods of, discussed 96
Rotational molding factors that
affect 56
XYZ diagram 56
Cooling
Air 137,274
Cycle time for
Discussion 259
Mathematical model 260, 262
Wall thickness effect on 277
Discussed 137
Effect on shrinkage/warpage
137-138
Effect of water quench on 275
Experimental and theoretical compari-
son of 273-274, 274F
Part release from mold during 203F,
204
Pressurized mold 276
Recrystallization during 203F, 204
Recrystallization effects during
266-274
Recrystallization effects during,
modeling
Temperature measurements during
202F, 203F
Thermal inversion
Described 262
Technical description 262-266,
263E 264F
Distributed parameter model
264-265
Lumped parameter model 266
Water spray/mist 137
Cooling methods, discussed 137
Cooling rate 16
Coordinate measuring machine,
discussion 360-361
Cracking, localized, impact test 51
Crazing 57
Creep modulus, see Mechanical test,
creep modulus; Mechanical
test, creep
Crystallinity, defined 20
D
Decoration
Adhesives 358
Hot stamping 358
In-mold 359
Methods of, discussion 357-360,
357T
Painting 358
Post-mold 359
Design
Of molds, see Molds, design of
Of parts, see Parts, design of” Parts
design
Part removal 276-277
Design, mechanical
CAD/CAM in 332
Cantilever beam flexural 316
Column bending 317
Computer-aided stress analysis for
332-335
Computer-aided stress analysis for;
see Finite-element analysis
Computer aids for, discussed 330,
331F
Computer aids in prototyping 332
Straight – – Text “F”— Figure ” T ” ~ Table 386 Rotational Molding Technology
Creep in 322-323
Criteria for parts 314
Finite difference analysis for 333
Finite-element analysis for 333-335
Foams, discussion 324
Skin-core foams
Stiffness of 329
I-beam model for 329-330, 330F
Polynomial beam model, dis-
cussed 330, 331F
Uniform density foams 324
Stiffness of 325
Modulus for 325
Foaming efficiency of 325,326T
Tensile strength for 327
Impact characteristics of 327,
328T
Ductile-brittle characteristics of
327,328F
Hollow beam with kiss-off 318-321
Long-term loading 314
Moderate-term loading 314
Plate bending, edge-on 317-318
Ribbed plate 319-322
Short-term loading 314
Temperature-dependency in
323-324, 324T
Tensile creep in 323,323F
Three-point flexural 315
Demolding, schematic 5,5F
Density gradient column 51
Density, polyethylene property changes
with 25T
Differential Scanning Calorimetry 268,
270,271 F, 272F
DIN 6174 56
See also Color, CIE standard
DIN 5033 56
See also Color, XYZ diagram
Distortion 16
Dry blender
Double-cone 97, 98F
Double-ribbon 97
Vee mixer 97, 98F
Dry blending
See also Color
Additives in melt-blending 98
Additives in tumble-blending 97-98
Additives suitable for 97-98
Effect on mechanical properties 99
Effect on polymer crystalline nucle-
ation 99
Effect on polymer morphology 99
Henschel-type mixer 99
Rotational molding powders 97
Turbo mixing 99
Drying conditions for polymers 34T
Ductile failure, impact test 51
Ductile yield, impact test 51
Ductile-brittle transition, impact test
52,52F
E
Electroformed nickel
Procedure 155
See also Molds, electroformed nickel
Environmental stress crack resistance,
LDPE 50, 50F
Environmental stress crack test
Bentstrip 57, 57F
Constant stress test 58
Defined 57
Notched strip 58
Polyethylene 58
Epoxy 9
As liquid polymer 37
ESCR, see Environmental stress crack
test
Ethylene vinyl acetate
Chemical structure 27
Density 28
Environmental stress crack resis-
tance 28
Extent ofvinyl acetate 28
Foamability 28
S t r a i g h t – Text ” F ” m Figure ” T ” – – T a b l e Subject Index 387
Melt temperature range 28
Shore hardness 28
EVA, see Ethylene vinyl acetate
FDE, see Finite difference analysis
FEA, see Finite-element analysis
FEP, see Fluoroethylene polymer
Finite difference analysis 333
Finite-element analysis 333-335
Arithmetic for 334-335
Formalization of 334T
Limitations of 335
Fire retardancy
Defined 62
Oxygen index 63, 63T
Standard match test 63
Flexural modulus, dee Mechanical test,
flexural modulus
Fluorocarbon 9
Fluoroethylene polymer, as thermoplas-
tic 19
Foam rotational molding
Blowing agent efficiency in 290
Bubble nucleation in 291
Chemical foaming agents for
287-291,288T, 289T
Endothermic 288
Exothermic 288-291
Containerized inner layer in 298
Diffusional bubble growth in 291
Discussed 287
Inertial bubble growth in 291
Limitations of 292-295
One-step process in 295-296
Oven conditions for 293,293T
Physical foaming agents for 287
Single layer structures in 295
Skin/core structure in 287
Terminal bubble growth in 292
Two-step process in 296
Fracture, brittle, impact test 51
G
Glass transition temperature, defined
2O
Grinding 69
See also Pulverization, described
Ball-mill 69
Costs associated with
Discussion 91-93
Factors 92
Economies of scale 92
Frictional heat 71
Gap size effect on powder quality 89
Hammer-mill 69
Horizontal mill 72, 73F
In-house v. outsourcing 91-92
Mill tooth number effect on powder
quality 90
Parallel plate 69-71
Particle sieving 71
Powder characteristics 73
Particle size distribution 74
Flow 74
Bulk density 74
LLDPE 74
As related to rotational molding
parameters 74, 75-76
Particle shape 75
Process control 72
Process equipment 69F, 72F
Skill factors involved in 92
Temperature effect on powder
quality 90–91,90F, 91F
Vertical mill 70, 70F
H
Haze formation 57
HDPE
Crystallinity of 20T
See also Polyethylene, high-density
Heat capacity, of powder 218
Heat transfer
Straight Text “F” – – Vigur’ ‘”Y” ‘ Vai;le 388 Rotational Molding Technology
Coefficient of
For air 274
For water 275
Combustion 129, 130T
Conduction 213
Defined 127
Convection 213
Defined 127
Coefficient 127-129, 127T
Effect of polymer morphology on
243,244F
Modes, defined 127
Radiation 213
Defined 127
Thermal lag in mold 214, 222, 245
To coalescing powder bed 223
To powder 215-218
To powder bed 217-218
To powder particle 215
To mold 213-214
To mold assembly 139
To mold assembly, measurements of
139-140, 139F
Transient heat conduction in 216F
Transient heat conduction model
247
Types in rotational molding 213
Heating
See also Oven; Heat transfer
Cycle time of 251
Actual 258T
Oven temperature effect on 255T,
256, 256T, 258
Thickness effect on 254-255,
255T, 256, 256T
Direct-gas impingement 113
Discussion of 201
Effect of pressure on powder behav-
ior during 244
Effect of vacuum on powder behavior
during 244
Kink temperature during 202,203F,
220,253
Mathematical modeling of 245-25 l,
246F
Mold cavity air temperature during
221-222
Mold energy uptake to polymer
uptake ratio 252
Polymer morphology effect on rate
of 223,224F
Temperature measurements during
201-202, 202F, 203F
Time to inner cavity temperature,
thickness effect on 255
Time to kink temperature, thickness
effect on 255
Overall cycle time, thickness effect
on 256,257F
Henry’s law 239-240
And foam rotational molding
293-294
lgepal 22, 23, 24, 27, 28, 49, 58
Impact, process effects on 350, 350F,
353F,354F
Impact test
Charpy 53
Constant velocity puncture 53
Described 51-52
Failure type 51
Factors affecting 53
Falling weight 53
Bruceton method 53
ARM standard, see Impact test,
falling weight, Bruceton
method
ARM standard, low-temperature,
see Impact test, falling
weight, Bruceton method
Probit method 53
Staircase method, see Impact test,
falling weight, Bruceton
method
Straight – – Text ” F ” – – Figure ” T ” – – T a b l e Subject Index 389
“Up-and-down” method, see
Impact test, falling weight,
Bruceton method
Izod 53
Low-temperature, ARM terms 52
Pendulum 53
Test types 53
Tensile 53
K
L
Latex rubber 7
LDPE
See also Polyethylene, low-density
Crystallinity of 20T
Environmental stress crack resis-
tance, melt index effect 50,
50F
Liquid polymers 69
Discussed 36
Liquid rotational molding
Bubble entrainment in 284
Cascading flow in 280F, 281,283F,
286F
Circulating pool in 280, 280F, 283F,
286F
Discussed 278
Flow behavior in 280, 280F, 283F,
286F
Hydrocyst formation in 282-283,
282F, 284F
Ideal fluid for 286
Localized pooling in 285
Polymers used in 278-279
Process 279
Process controls for 285
Rimming flow in 280F, 281,283F,
286F
Roleofreaction in 285
Roleofgelation in 285
Solid body rotation in 281,283F,
286F
Time-dependent viscosity in 279,
279F
LLDPE
See also Polyethylene, linear low-
density
Crystallinity of 20T
M
Machines
Basic elements of 112-113
Clamshell 115-116, 115F
Cooling design in, see Cooling
Compared with competition 11 l
Electrically-heated molds for
120-121,120F, 121F
Fixed-arm carousel 117-118, 118F
Limiting factors 118
Heat transfer in, see Heat transfer
Home-built 111-112
Independent-arm carousel 118-119,
l19F
Advantages of 118-119
Infrared heated 121
Make-Vs-buy 111
Oil-jacketed molds for 119
Oven design in, see Oven
Process control of, see Process
control
Rock-and-roll 113-115
Shuttle 116-117, 117F
Types of, discussed 112-113
Vertical 116, 116F
MDPE, see Polyethylene, medium-
density
MechanicalProperties 16
Mechanical test
Creep, defined 54-55
Creep modulus 55
Creep rupture 55
S t r a i g h t – Text ” F ” ~ Figure ” T ” – – Table 390 Rotational Molding Technology
Defined 54
Flexural fatigue 55
Flexural modulus 54
Tensile modulus 54
MEKP, see Methyl ethyl ketone
peroxide
Melt flow index 28
See also Melt index
Described 44
Melt index 28, 45F, 64
HDPE 24
LDPE 22
MDPE 23
Polyethylene property changes with
25T
Process effects on 352F
Quality control of 43, 44
Described 44
Melt index test conditions
Nonpolyolefins 44, 45T
Polyolefins 45T, 46T
Melt indexer 44, 45F
Melt viscosity 15, 43
Melt elastic modulus 64
Melting temperature, defined 20
Methyl ethyl ketone peroxide, catalyst
for Unsaturated polyester
resin 42
Micropellet 46
See also Polyvinyl chloride
Coloring of 95
Comparison with conventional pellet
94, 95T
Discussed 93-95
Method of production 93-94
Processing comparison with powder
94,95T
Polyethylene 69
PVC, discussed 96, 96T
Reason for use 93
Mold charging, schematic 5, 5F
Mold cooling, schematic 5, 5F
Mold heating, schematic 5, 5F
Mold release 103
Cost of 199
Discussed 196
Disiloxanes 197
Early part release with 199
Fluoropolymers 197
Selection criteria for 198
Silicone 197
Spray-on 197
Surfaces coated by 198
Molds
Air flow around deep pockets 136,
136F
Air flow using baffles 136, 136F
Air flow using venturi 136-137, 137F
Alignment methods for 165, 164F
Aluminum 150, 150F, 150T, 152
Cast 150, 152-153, 154F
Welded 152
Machined 152, 152F
Clamping of 166, 166F
Commercial 149
Design of
Discussion 160
For pressurization 276
Parting line 161-165
Buttorflat 161,161F
Lap joint 162, 162F
Tongue-and-groove 162, 163F
Gaskets 163-164, 163F
Electroformed nickel 149, 150T,
154-155, 155F
Frames for 165
Heat transfer to 213-214
J-clamps for 166, 168F
Manual clamps for 166-167
Materials for
Discussed 149
Properties 150T
Nonmetallic 149
Pressure buildup without venting
183
Pressurization for 340-341
S t r a i g h t – Text ” F ” ~ Figure ” T ” – – T a b l e Subject Index 391
Pressurized 146
Pry points, location for 167-168,
167F
Sheet-metal 149, 149F, 150T, 151-152
Spiders for 165, 165F O
Surfaces coated with mold releases
198
Surface finishes for 196
Thermal behavior of
Various types 156-160, 157E 158F,
159F
Equivalent mechanical thickness
156-157,157F
Equivalent static thermal thick-
ness 157-158, 158F
Equivalent transient thermal
thickness 159-160, 159F
Toggle clamps for 166, 167F
Useofdrop-box in 297-298
Use of drop-box on 296-298, 297F
Venting of, see Venting
Moment of area, second, see Moment of
inertia
Moment of inertia, defined 315 p
Morphology
Changes in PP, due to cooling rate
270T, 273,273T
Crystallinity level and 267, 267T
Effects of additives on 272,272T
Recrystallization rates and 267-271,
268T, 269F, 270T, 271 F, 272F
N
Natural gas combustion 129, 130T
Nylon 9
As thermoplastic 19
Chemical structure 31
Chemical types 32T
Crystallinity of 20T, 32
Fiber-reinforced 9
Melting temperature 32T
Moisture concerns with 310
Rotational molding grades 32, 32T
Nylon 6, WLF constants for 324T
Nylon 12, as liquid polymer 40
Odor
Defined 62
Test
Olfactory 62
Gas chromatography 62
Oven time 14
Effect on design parameters 351T
Oven temperature 14
Oven
Air flow around molds with deep
pockets 136, 136F
Air flow in 136
Design of, discussed 127, 129-131
Efficiency ofoperation of 130
Heat transfer in 131-135
Heat transfer in
Examples of 133-135
PA-6
See also Nylon: Polycaprolactam
As liquid polymer 36
Flexural modulus 32
Heat deflection temperature 32
Melting temperature 32
Part design
Acute-angled corners in 346, 347F
Aesthetics 307
Almost kiss-offs in 312
Appearance effect on 308
Application effect on 308
Assembly constraints effect on 309
Bridging criteria for 311
Cavity depth criteria for 312
Competition effect on 309
Computer-aided technique effect on
310
Straight – – Text ” F ” – – Figure ” T ” – – Table 392 Rotational Molding Technology
Concerns ofwarpage in 311
Control ofwall thickness in 312
Coordinate measuring machine use
in 360–361
Corner radius guidelines in 345,
345T, 347F
Cost effect on 309
Criteria 307
Criteria for kiss-off 318-319
Cycle time effect on 310
Decoration effect on 309
Detentsin 312
Dimensional tolerance effect on 310
Draft angles 341-343,342T
Female molds in 312
Polymer-specific 341,342T
Texture 342, 342T
Environment effect on 308
External threads in 312,349
Fiber-reinforcement in 312
Flat panels in 311
General guidelines for, discussed
310
General considerations for 335-349
Gussets in 312
Holes in 349
Improving mechanical strength
through 312
Insert 349
Criteria for 312
Stresses around 312
Internal threads in 312, 349
Kiss-offs in 312
Limitations of 309
Market considerations 307
Material choice effect on 309
Mechanical
Criteria for 314
Discussion 307, 317
Metal molded-in inserts for 313
Minimum wall thickness in 336
Mold cost effect on 309
Molded-in holes in 312
Mold texture transfer to parts in 312
Nominal wall thickness in 336
Parallel walls in 311,348
Part function effect on 308
Part wall separation for 348
Philosophy 307-310
Powder flow effect on 310
Pressurization effects on 340-341
Process effects on
Discussion 350
Impact 350, 350F
Melt index 352F
Radius concerns in 312, 313
Right-angled corners in 345-346
Ribs in 311-312
Rim stiffening in 312
Shrinkage guidelines in 337-340
Size effect on 309
Surface decoration; see Decoration
Wall thickness considerations for
311
Wall thickness in 336-337, 337T
Wall thickness limitation effect on
309
Wall thickness range in 337T
Warpage guidelines for 344,344T
Warpage in 311
Undercuts in 311,312
Particle size distribution 75
Data presentation 79-80, 79F, 80T,
80F
Discussed 74
Dry sieving 77
Elutriation 78
Fluidization 79
Light scattering 78, 79
Measurement 77-79
Sedimentation 78
Streaming 78
Test method 76, 78
Factors affecting 78
Test purpose 77
Particle shape
S t r a i g h t – Text ” F ” – – Figure ” T ” – – T a b l e Subject Index 393
Acicular 81
Discussed 81
Effect on part performance 81
Methods of classification 81
Particle size analyzers 82
Physical methods 82
Shape factor 81,82T
Spherical 81
Squared-egg 81
Terms defined 82T
Particle size analysis 77
Parting line
See also Molds, design of parting
line
Buttorflat 161,161F
Design of 161-165
Gaskets 163-164, 163F
Lap joint 162, 162F
Tongue-and-groove 162, 163F
See also Part design
Parts
Blowhole problems in 183
Cutout areas in 172
Failure
Discussed 307-308
Fracture 307
Creep 307
Crazing 307
Stress cracking 307
Fatigue 307
Adhesive failure 308
Warpage 308
Shrinkage 308
Color change 308
Additive migration 308
Cracking element migration 308
Inserts for 168-171
Kiss-offs for 172, 173F
Mechanical fastening of 169
Molded-in handles for 173
Molded-in inserts for 169-171,170F
Molded-in threads for 171, 171F
Post-molded fasteners for 169
Self-tapping screws for 168-169
Suck-holeproblems in 185
Temporary inserts for 173
Warpage with mold release 199
PC, see Polycarbonate
PEEK 9
See also Polyether-ether ketone
Phenolic 9
As thermoset 19
Crosslinked, discussion 19
Pigments
Classes of 101
Classification of 104T
Color shitt in 103
Discussion of 101
Dry-color blending of 101
Heavy metals, restricted use of
101-102
Organics 102
Azo-type 102
Polycyclic-type 102
Processing concerns of 102-103
Fluorescents 103
Plate-outof 103
Special-effect 103-104
Temperature effect on selection of
101
Pinholes 15
Plaster, molding, properties 154
PMMA, see Polymethyl methacrylate
Poly-a-aminoacid, see Nylon
Polyacetal 9
See also POM, Polyoxymethylene
Polyamide, see Nylon
Polybutylene 9
Polycaprolactam
Chemical structure 39
Defined 32
Fillers for 41
Gellation rate 40
General production method 40
Time-dependent crystallinity 40F
S t r a i g h t – Text “F” – – Figure ” T ” – – Table 394 Rotational Molding Technology
Time-dependent viscosity during
reaction 39F
Polycarbonate 9
As thermoplastic 19
Chemical resistance, discussed 34
Chemical structure 33
Drying for rotational molding,
discussed 33, 34T
Flexural modulus 33
Heat distortion temperature 33
Impact strength, discussed 33
Moisture concerns with 310
WLF constants for 324T
Polyester
Unsaturated 9
As thermoset 19
Polyether-etherketone 21
As thermoplastic 19
Polyethylene terephthalate, crystallinity
of 20, 20T
Polyethylene
As thermoplastic 19
Branched, see Polyethylene, low-
density
Chemical structure 22
Crosslinked 9
Advantages 58
Crosslinking agents 27, 58, 59T
Density 27
Discussion 19-20,27
Environmental stress crack resis-
tance 27
Flexural modulus 27
Gel content 27
Peroxide level 60F
Time dependency 60F
Test 59
Level, procedure 59
Shore hardness 27
Crystallinity of 20T
Early applications 6-8
High-density
Chain configuration 23F
Crystalline morphology 24
Crystallinity 24
Defined 24
Density 24
Environmental stress crack resis-
tance 24
Flexural modulus 24
Melt index 24
High-pressure, see Polyethylene,
low-density
Low-density
Chain configuration 23F
Crystallinity 22
Defined 22
Density 22
Environmental stress crack resis-
tance 22
Flexural modulus 22
Melt index 22
Shore hardness 22
Low-pressure, see Polyethylene,
high-density
Linear, see Polyethylene, high-
density
Linear low-density
Chain configuration 23F
Crystallinity 27
Density 26
Defined 25-26
Environmental stress crack resis-
tance 27
Flexural modulus 27
Medium-density
Crystallinity 23
Defined 23
Density 23
Environmental stress crack resis-
tance 23
Flexural modulus 23
Melt index 23
Metallocene, discussed 26
Micropellet 69
Odor 15
S t r a i g h t – Text ” F ” ~ Figure ” T ” – – T a b l e Subject Index 395
Powder 69
WLF constants for 324T
Polyimide 21
Polymer morphology, discussed 20
Polymethyl methacrylate, chemical
structure 35
Polyolefin 7
Polypropylene 9
As thermoplastic 19
Atactic, defined 28
Chemical structure 28
Copolymer
Defined 29
Effect on properties 29, 29T
Crystallinity of 20, 20T
Fillers in 29
High-temperature stability of 29-30
Homopolymer, flexural modulus
28-29
Isotactic, defined 28
Melt flow index 28
Recrystallization of 30
Syndiotactic, defined 28
WLF constants for 324T
Polystyrene 9
See also Styrenics
As thermoplastic 19
Discussed 35
Impact, discussed 35
WLF constants for 324T
Polytetrafluoroethylene, crystallinity
of 20
Polyurethane 9
As liquid polymer 37
As thermoset 19
Chemical structure 41
Nature of reaction 42
Time-dependent viscosity during
reaction 41
Polyvinyl chloride 21
As thermoplastic 19
Chemical structure 30
Drysol, discussed 30-31
Drysol hardness 31
Drysol v. micropellet 96, 96T
Liquid 6
Micropellet 31
Micropelletcharacteristics 96,96T
Plastisols, discussed 30
Plastisol hardness 30
Plastisol v. micropellet 96, 96T
Role ofplasticizers in 30
Types of additives for 30
Porosity, discussed 242
Powder density
Discussed 84-85
Related to powder flow 85F
Powder
Coalescence 12
Consolidation 14
Densification 12
Fusion 14
Sintering 15
Size 21
Powder particle characterization, quality
control 44
Powder flow
Discussed 74, 83-84
Effect of tails on 83
Grinding factors affecting 89-91
Related to powder density 85F
Test method 84
Powder packing 85
See also Powder flow; Particle shape
Bulk density
Fluidized 88T
Measurement 84F, 88
Poured 88, 88T
Tamped 88, 88T
Vibrated 88, 88T
Deviation from ideal packing 86
Equal spheres 85-86, 86F, 86T
Packing fraction defined 85-87
Particle size distribution effect 87
Powder quality
See also Grinding
S t r a i g h t – Text ” F ” ~ Figure ” T ” – – Table 396 Rotational Molding Technology
Discussed 88-89
Grinding factors effecting 89
Powder
Airborne dust generation with 207
Antistatic agents for 105-106
Avalanche flow of 208,208F, 209T,
222
Bed behavior during heating 222
Bubble dissolution in coalesced
235F
Bulk densityofvarious 206T
Carbon black in 106
Coalescence 203,235F
Defined 223
Coulomb flowing 207
Temperature effect on 219
Densification in 203,235F
Air absorption 238-243
Rayleigh’s model for 238-239
Capillary action 236
Defined 236-243
Network collapse 236-237,237F,
238F
Particle size distribution during
coalescence 242-243
Rate of 242
Three mechanisms for 234-236
Under vacuum 237
Flow aspects of 206
Fluidizing 207
Mathematical modeling
Bed 248-251
Static bed 249-250
Circulating bed 248-249,250
Moisture concerns with 310
Neck growth
Compared with heating profile
226F
Defined 223-234
Viscous model 225,225F, 227F
Neck growth rate 226-234, 227T
Creep compliance model 232-234,
232F,233F
Hertzian 228
Linear viscoelastic 229F, 230-231,
231F
Newtonian 227F, 228
Packing aspects of 205
Polyethylene 69
Polymer elasticity effect on coales-
cence of 234
Rheology of flowing 210-211
Rotating cylinder flow of 211-213,
212F
Sintering of, defined 223
Slip flow of 208-210, 208F, 209T, 222
Steady-state circulation of 207, 208F,
209T,222
Stearates for 106
UV additives for 106
Viscous flowing 207
Process control
Discussed 138
Inner cavity air temperature monitor-
ing for 140
Process cycle
Discussion of 201
Steps in 201,204, 205T
Processing and properties, general
considerations 14-16
Propane combustion 129, 130T
PS, see Polystyrene,” Styrenics
PSD 74, 77
See also Particle size distribution
Pulverization, described 69
P-V-T curves
HDPE 338T
Polycarbonate 339T
Shrinkage and 337-340
PVC plastisol 9, 21
As liquid polymer 36
Effect of heat on molecular character-
istics 37F
Effect of heat on viscosity 38F
Fusion 37F, 38
Gellation 37F, 38
Straight Text ” F ” ~ Figure ” T ” – – T a b l e Subject Index 397
Method of production 38
Product types 39
Shore hardness 39
PVC, see Polyvinyl chloride
Q
Quality assurance, discussion 360
R
Rayleigh’s equation
Inviscid 238
Newtonian 238
Viscoelastic 239
Recrystallization, part design restric-
tions for 311
Ribs, design criteria for, discussed 311
Rock-and-roll machine 113, 114F, 115
Oven design 114F, 115
Products made on 113
Rotation
Fixed ratio, discussed 125
Major-to-minor axis ratio 125
Speed of, discussed 125
Speed ratio
Defined 126
Recommended for various geom-
etries 126T
Rotational molding
Advantages ! 0, 12, 14
Applications 5T
Basic process 5, 10
Cooling 16
Competition 4, 6, 13T
Defined 4
Degradation 15
Design 8-9, l 1-12
Desirable polymer characteristics 64
Disadvantages 10-11, 14
Heating 15
History 6
Internal surface appearance 15
Markets 4, 8F
Materials 9, 10F
Molder consumption 21T
Nature ofpolymerin 69
Polymer use 21T
Powder flow 15
Rotational molding process
Limitations 145
Advances in 146
Rotocasting, see Rotational molding
Rotomolding, see Rotational molding
S
SAN, see Styrene-acrylonitrile
Service station, discussed 144
Shrinkage
Discussion 337-340
Guidelines for 340
Linear 338, 340T
Volumetric, discussion 338
Shuttle machine 116-117, 117F
Dual carriage 117, 117F
Sieve technology
Bulk density 46
Described 46
Dry sieving 46
Pourability 46
ARM recommendation 46
Sieve
See also Powder technology
Grinding 71
Dry, types of 77
Elutriation 78
Screen sizes, discussed 46
Shaker sizes 76F
Sizes of 75T
Sonic sifter 78
Silicone 9
As liquid polymer 37
Chemical structure 43
Method of reaction 43
Sintering 26
See also Coalescence
S t r a i g h t – Text ” F ” – – Figure ” T ” q Table 398 Rotational Molding Technology
Slip casting, ceramics 7
Slush molding 278
Society of Plastics Engineers Rotational
Molding Division 12
Spin casting 7
Stress concentration factor 346F
Stress-cracking 57
Styrene-acrylonitrile, see Styrenies
Styrenics, chemical structure 35
Surface treatment
Activation methods for 104
Applied graphics as 105, 105F
Discussed 104
Plasma 104-105
T
Tack temperature
Amorphous 219,220T
Crystalline 219,220T
Defined 219
Related to kink temperature 220, 253,
253T
Temperature measurement
Correlation of
Bubble dissolution time 142, 142F
Coalescence time 141
Part release from mold 143
Process step 140-143, 141F
Recrystallization time 143
Infrared method 144
Inner cavity air temperature 140
Interpretation 140-I 43, 141F
Mold assembly 139-144
See also Heat transfer
Tensile modulus, see Mechanical test,
tensile modulus
Testing protocol
Actual part 47
Costs 48-49, 49T
Defined 47
Full-scale 47-48
Segment 48
Test acceptability criteria 48
Testing
Environmental stress crack resis-
tance 50, 50F
Full-scale 49
Molded density 51
Sections 50
Tg, see Glass transition temperature
Thermal lag 214, 222,245
See also Heat transfer, to mold
Mathematical model of 245
Thermal conductivity, of powder
217-218,218F
Thermal diffusivity 248
Powder 218
Thermoplastics
Defined 19
Discussed 6
Thermosets
See also Thermosetting polymers
Defined 19
Rotational molding advantages 43
Thermosetting polymers, liquids 36
Thermosetting liquids, nature of
reaction 36
Thermosetting, discussed 6
Titanium dioxide
Asopacifier 107
As UV additive 107
Tm, see Melting temperature
Trimming
Cutting characteristics 356T
Various polymers 356-357
Discussion 354–357
Multiaxis 354-356, 356T
Troubleshooting
Discussion 360
Guidelines, Appendix A
U
UHMWPE, see Ultrahigh molecular
weight polyethylene
Straight – – Text ” F ” – – Figure ” T ” – – T a b l e Subject Index 399
UL E-84 tunnel test 62-63
See also Fire retardancy
UL94 63
See also Fire retardancy, standard
match test
Ultrahigh molecular weight polyethyl-
ene, characteristics 22
Undercuts, design criteria for, dis-
cussed 311
Unload/load process station, see
Service station
Unsaturated polyester resin
As liquid polymer 37
Chemical structure 42
Fillers for 42
Processing difficulties with 42
Reaction via MEKP 42
UPE, see Unsaturated polyester resin
UV additive
Carbon black as 106
Classification of 106
Hindered amine light stabilizers as
106–107
Titanium dioxide as 107
Requirements for 195
Types of 193
Selection criteria 193
Vacuum without 185
Venturi
See also Molds
Mold design with 136-137, 137F
Vertical machine, discussed 116, 116F
W
Wall thickness
Calculation of 174-183
Maximum allowable 180–183, 181F
Warpage 16
Weathering
Accelerated tests 61
Acid rain 61
Defined 6l
Resistance of polymers 61
Ultraviolet effect 61
Williams-Landel-Ferry model 323-324
Constants for 324T
WLF equation 323-324, 324T
See also Williams-Landel-Ferry
model
V
Venting X
Design guidelines for 186-192, 190F, XLPE, see Polyethylene, crosslinked
192F
Discussion 183 y
Disposable 193
Permanent 193, 194F
Pressure buildup without 183 Z
Straight ~ Text ” F ” ~ Figure ” T ” ~ Table
كلمة سر فك الضغط : books-world.net
The Unzip Password : books-world.net

تحميل

يجب عليك التسجيل في الموقع لكي تتمكن من التحميل
تسجيل | تسجيل الدخول

التعليقات

اترك تعليقاً